passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-macosx_13_0_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (354) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/x86_64-apple-darwin22-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1082 -0
  17. gap/pkg/semigroups/config.status +1134 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +354 -0
  349. passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +6 -0
  350. passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
  352. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  353. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  354. sage/libs/gap_pkg_semigroups.abi3.so +0 -0
@@ -0,0 +1,2803 @@
1
+ #############################################################################
2
+ ##
3
+ #W extreme/bipart.tst
4
+ #Y Copyright (C) 2014-15 Attila Egri-Nagy
5
+ ## James D. Mitchell
6
+ ##
7
+ ## Licensing information can be found in the README file of this package.
8
+ ##
9
+ #############################################################################
10
+ ##
11
+
12
+ #@local D, DD, G, H, HH, L, LL, N, R, S, T, acting, an, bp, classes, classes2
13
+ #@local e, elts, f, g, gens, inv, iso, l, r, s, triples, x
14
+ gap> START_TEST("Semigroups package: extreme/bipart.tst");
15
+ gap> LoadPackage("semigroups", false);;
16
+
17
+ #
18
+ gap> SEMIGROUPS.StartTest();
19
+
20
+ # BipartitionTest1: IsomorphismTransformationMonoid, IsomorphismTransformationSemigroup
21
+ gap> S := DualSymmetricInverseMonoid(4);
22
+ <inverse block bijection monoid of degree 4 with 3 generators>
23
+ gap> IsomorphismTransformationMonoid(S);
24
+ <inverse block bijection monoid of size 339, degree 4 with 3 generators> ->
25
+ <transformation monoid of size 339, degree 339 with 3 generators>
26
+ gap> S := Semigroup(Bipartition([[1, 2, 3, 4, -2, -3], [-1], [-4]]),
27
+ > Bipartition([[1, 2, -1, -3], [3, 4, -2, -4]]),
28
+ > Bipartition([[1, 3, -1], [2, 4, -2, -3], [-4]]),
29
+ > Bipartition([[1, -4], [2], [3, -2], [4, -1], [-3]]));;
30
+ gap> IsomorphismTransformationSemigroup(S);
31
+ <bipartition semigroup of size 284, degree 4 with 4 generators> ->
32
+ <transformation semigroup of size 284, degree 285 with 4 generators>
33
+ gap> S := Monoid(Bipartition([[1, 2, -2], [3], [4, -3, -4], [-1]]),
34
+ > Bipartition([[1, 3, -3, -4], [2, 4, -1, -2]]),
35
+ > Bipartition([[1, -1, -2], [2, 3, -3, -4], [4]]),
36
+ > Bipartition([[1, 4, -4], [2, -1], [3, -2, -3]]));;
37
+ gap> IsomorphismTransformationMonoid(S);
38
+ <bipartition monoid of size 41, degree 4 with 4 generators> ->
39
+ <transformation monoid of size 41, degree 41 with 4 generators>
40
+
41
+ # the number of iterations, change here to get faster test
42
+ gap> N := 333;;
43
+
44
+ # BipartitionTest2: BASICS
45
+ gap> classes := [[1, 2, 3, -2], [4, -5], [5, -7], [6, -3, -4], [7], [-1],
46
+ > [-6]];;
47
+ gap> f := Bipartition(classes);
48
+ <bipartition: [ 1, 2, 3, -2 ], [ 4, -5 ], [ 5, -7 ], [ 6, -3, -4 ], [ 7 ],
49
+ [ -1 ], [ -6 ]>
50
+ gap> LeftProjection(f);
51
+ <bipartition: [ 1, 2, 3, -1, -2, -3 ], [ 4, -4 ], [ 5, -5 ], [ 6, -6 ],
52
+ [ 7 ], [ -7 ]>
53
+
54
+ # BipartitionTest3: different order of classes
55
+ gap> classes2 := [[-6], [1, 2, 3, -2], [4, -5], [5, -7], [6, -3, -4], [-1],
56
+ > [7]];;
57
+ gap> f = Bipartition(classes2);
58
+ true
59
+ gap> f := Bipartition([[1, 2, -3, -5, -6], [3, -2, -4], [4, 7],
60
+ > [5, -7, -8, -9],
61
+ > [6], [8, 9, -1]]);
62
+ <bipartition: [ 1, 2, -3, -5, -6 ], [ 3, -2, -4 ], [ 4, 7 ], [ 5, -7, -8, -9 ]
63
+ , [ 6 ], [ 8, 9, -1 ]>
64
+ gap> LeftProjection(f);
65
+ <bipartition: [ 1, 2, -1, -2 ], [ 3, -3 ], [ 4, 7 ], [ 5, -5 ], [ 6 ],
66
+ [ 8, 9, -8, -9 ], [ -4, -7 ], [ -6 ]>
67
+
68
+ # BipartitionTest4: ASSOCIATIVITY
69
+ gap> l := List([1 .. 3 * N], i -> RandomBipartition(17));;
70
+ gap> triples := List([1 .. N], i -> [l[i], l[i + 1], l[i + 2]]);;
71
+ gap> ForAll(triples, x -> ((x[1] * x[2]) * x[3]) = (x[1] * (x[2] * x[3])));
72
+ true
73
+
74
+ # BipartitionTest5: EMBEDDING into T_n
75
+ gap> l := List([1, 2, 3, 4, 5, 15, 35, 1999, 64999, 65000], RandomTransformation);;
76
+ gap> ForAll(l, t -> t = AsTransformation(AsBipartition(t)));
77
+ true
78
+
79
+ # BipartitionTest6: checking IsTransBipartitition
80
+ gap> l := List([1, 2, 3, 4, 5, 15, 35, 1999, 30101, 54321], RandomTransformation);;
81
+ gap> ForAll(l, t -> IsTransBipartition(AsBipartition(t)));
82
+ true
83
+
84
+ # BipartitionTest7: check big size, identity, multiplication
85
+ gap> bp := RandomBipartition(70000);;bp * One(bp) = bp;One(bp) * bp = bp;
86
+ true
87
+ true
88
+
89
+ # BipartitionTest8: check BlocksIdempotentTester, first a few little examples
90
+ gap> l := BLOCKS_NC([[-1], [-2, -3, -4]]);;
91
+ gap> r := BLOCKS_NC([[-1], [-2], [-3, -4]]);;
92
+ gap> BLOCKS_E_TESTER(l, r);
93
+ true
94
+ gap> e := BLOCKS_E_CREATOR(l, r);
95
+ <bipartition: [ 1 ], [ 2 ], [ 3, 4 ], [ -1 ], [ -2, -3, -4 ]>
96
+ gap> IsIdempotent(e);
97
+ true
98
+
99
+ # BipartitionTest9: JDM is this the right behaviour?
100
+ gap> RightBlocks(e) = l;
101
+ true
102
+ gap> LeftBlocks(e) = r;
103
+ true
104
+
105
+ # BipartitionTest10: AsBipartition for a bipartition
106
+ gap> f := Bipartition([[1, 2, 3], [4, -1, -3], [5, 6, -4, -5],
107
+ > [-2], [-6]]);;
108
+ gap> AsBipartition(f, 8);
109
+ <bipartition: [ 1, 2, 3 ], [ 4, -1, -3 ], [ 5, 6, -4, -5 ], [ 7 ], [ 8 ],
110
+ [ -2 ], [ -6 ], [ -7 ], [ -8 ]>
111
+ gap> AsBipartition(f, 6);
112
+ <bipartition: [ 1, 2, 3 ], [ 4, -1, -3 ], [ 5, 6, -4, -5 ], [ -2 ], [ -6 ]>
113
+ gap> AsBipartition(f, 4);
114
+ <bipartition: [ 1, 2, 3 ], [ 4, -1, -3 ], [ -2 ], [ -4 ]>
115
+
116
+ # BipartitionTest11: AsPartialPerm for bipartitions
117
+ gap> S := DualSymmetricInverseMonoid(4);;
118
+ gap> Number(S, IsPartialPermBipartition);
119
+ 24
120
+ gap> S := PartitionMonoid(4);;
121
+ gap> Number(S, IsPartialPermBipartition);
122
+ 209
123
+ gap> Size(SymmetricInverseMonoid(4));
124
+ 209
125
+ gap> S := SymmetricInverseMonoid(4);;
126
+ gap> ForAll(S, x -> AsPartialPerm(AsBipartition(x)) = x);
127
+ true
128
+ gap> elts := Filtered(PartitionMonoid(4), IsPartialPermBipartition);;
129
+ gap> ForAll(elts, x -> AsBipartition(AsPartialPerm(x), 4) = x);
130
+ true
131
+
132
+ # BipartitionTest12: AsPermutation for bipartitions
133
+ gap> G := SymmetricGroup(5);;
134
+ gap> ForAll(G, x -> AsPermutation(AsBipartition(x)) = x);
135
+ true
136
+ gap> G := GroupOfUnits(PartitionMonoid(5));
137
+ <block bijection group of degree 5 with 2 generators>
138
+ gap> ForAll(G, x -> AsBipartition(AsPermutation(x), 5) = x);
139
+ true
140
+
141
+ # Test IsomorphismBipartitionSemigroup for a CanUseFroidurePin semigroup
142
+ gap> S := Semigroup(
143
+ > Bipartition([[1, 2, 3, -3], [4, -4, -5], [5, -1], [-2]]),
144
+ > Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]),
145
+ > Bipartition([[1, 5], [2, 4, -3, -5], [3, -1, -2], [-4]]),
146
+ > Bipartition([[1], [2], [3, 5, -1, -2], [4, -3], [-4, -5]]),
147
+ > Bipartition([[1], [2], [3], [4, -1, -4], [5], [-2, -3],
148
+ > [-5]]));;
149
+ gap> D := DClass(S, Bipartition([[1], [2], [3], [4, -1, -4],
150
+ > [5], [-2, -3], [-5]]));;
151
+ gap> IsRegularDClass(D);
152
+ true
153
+ gap> R := PrincipalFactor(D);
154
+ <Rees 0-matrix semigroup 12x15 over Group(())>
155
+ gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, R);
156
+ <Rees 0-matrix semigroup 12x15 over Group(())> ->
157
+ <bipartition semigroup of size 181, degree 182 with 26 generators>
158
+ gap> g := InverseGeneralMapping(f);;
159
+ gap> ForAll(R, x -> (x ^ f) ^ g = x);
160
+ true
161
+ gap> x := RMSElement(R, 12, (), 8);;
162
+ gap> ForAll(R, y -> (x ^ f) * (y ^ f) = (x * y) ^ f);
163
+ true
164
+
165
+ # BipartitionTest14: IsomorphismBipartitionSemigroup
166
+ # for a transformation semigroup
167
+ gap> gens := [Transformation([3, 4, 1, 2, 1]),
168
+ > Transformation([4, 2, 1, 5, 5]),
169
+ > Transformation([4, 2, 2, 2, 4])];;
170
+ gap> s := Semigroup(gens);;
171
+ gap> S := Range(IsomorphismSemigroup(IsBipartitionSemigroup, s));
172
+ <bipartition semigroup of degree 5 with 3 generators>
173
+ gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, s);
174
+ <transformation semigroup of degree 5 with 3 generators> ->
175
+ <bipartition semigroup of degree 5 with 3 generators>
176
+ gap> g := InverseGeneralMapping(f);;
177
+ gap> ForAll(s, x -> (x ^ f) ^ g = x);
178
+ true
179
+ gap> ForAll(S, x -> (x ^ g) ^ f = x);
180
+ true
181
+ gap> Size(s);
182
+ 731
183
+ gap> Size(S);
184
+ 731
185
+ gap> x := Transformation([3, 1, 3, 3, 3]);;
186
+ gap> ForAll(s, y -> (x ^ f) * (y ^ f) = (x * y) ^ f);
187
+ true
188
+
189
+ # BipartitionTest15: IsomorphismTransformationSemigroup for a bipartition
190
+ # semigroup consisting of IsTransBipartition
191
+ gap> S := Semigroup(Transformation([1, 3, 4, 1, 3]),
192
+ > Transformation([2, 4, 1, 5, 5]),
193
+ > Transformation([2, 5, 3, 5, 3]),
194
+ > Transformation([4, 1, 2, 2, 1]),
195
+ > Transformation([5, 5, 1, 1, 3]));;
196
+ gap> T := Range(IsomorphismSemigroup(IsBipartitionSemigroup, S));
197
+ <bipartition semigroup of degree 5 with 5 generators>
198
+ gap> f := IsomorphismTransformationSemigroup(T);
199
+ <bipartition semigroup of degree 5 with 5 generators> ->
200
+ <transformation semigroup of degree 5 with 5 generators>
201
+ gap> g := InverseGeneralMapping(f);;
202
+ gap> ForAll(T, x -> (x ^ f) ^ g = x);
203
+ true
204
+ gap> ForAll(S, x -> (x ^ g) ^ f = x);
205
+ true
206
+ gap> Size(T);
207
+ 602
208
+ gap> Size(S);
209
+ 602
210
+ gap> Size(Range(f));
211
+ 602
212
+
213
+ # BipartitionTest16: IsomorphismBipartitionSemigroup
214
+ # for a partial perm semigroup
215
+ gap> S := Semigroup(
216
+ > [PartialPerm([1, 2, 3], [1, 3, 4]),
217
+ > PartialPerm([1, 2, 3], [2, 5, 3]),
218
+ > PartialPerm([1, 2, 3], [4, 1, 2]),
219
+ > PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
220
+ > PartialPerm([1, 3, 5], [5, 1, 3])]);;
221
+ gap> T := Range(IsomorphismSemigroup(IsBipartitionSemigroup, S));
222
+ <bipartition semigroup of degree 5 with 5 generators>
223
+ gap> Generators(S);
224
+ [ [2,3,4](1), [1,2,5](3), [3,2,1,4], [3,1,2,4,5], (1,5,3) ]
225
+ gap> Generators(T);
226
+ [ <bipartition: [ 1, -1 ], [ 2, -3 ], [ 3, -4 ], [ 4 ], [ 5 ], [ -2 ], [ -5 ]>
227
+ , <bipartition: [ 1, -2 ], [ 2, -5 ], [ 3, -3 ], [ 4 ], [ 5 ], [ -1 ],
228
+ [ -4 ]>, <bipartition: [ 1, -4 ], [ 2, -1 ], [ 3, -2 ], [ 4 ], [ 5 ],
229
+ [ -3 ], [ -5 ]>,
230
+ <bipartition: [ 1, -2 ], [ 2, -4 ], [ 3, -1 ], [ 4, -5 ], [ 5 ], [ -3 ]>,
231
+ <bipartition: [ 1, -5 ], [ 2 ], [ 3, -1 ], [ 4 ], [ 5, -3 ], [ -2 ], [ -4 ]>
232
+ ]
233
+ gap> Size(S);
234
+ 156
235
+ gap> Size(T);
236
+ 156
237
+ gap> IsInverseSemigroup(S);
238
+ false
239
+ gap> IsInverseSemigroup(T);
240
+ false
241
+ gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, S);;
242
+ gap> g := InverseGeneralMapping(f);;
243
+ gap> ForAll(S, x -> (x ^ f) ^ g = x);
244
+ true
245
+ gap> ForAll(T, x -> (x ^ g) ^ f = x);
246
+ true
247
+ gap> Size(S);
248
+ 156
249
+ gap> ForAll(S, x -> ForAll(S, y -> (x * y) ^ f = (x ^ f) * (y ^ f)));
250
+ true
251
+
252
+ # BipartitionTest17: IsomorphismPartialPermSemigroup
253
+ # for a semigroup of bipartitions consisting of IsPartialPermBipartition
254
+ gap> f := IsomorphismPartialPermSemigroup(T);;
255
+ gap> g := InverseGeneralMapping(f);;
256
+ gap> ForAll(T, x -> ForAll(T, y -> (x * y) ^ f = (x ^ f) * (y ^ f)));
257
+ true
258
+ gap> Size(S); Size(T);
259
+ 156
260
+ 156
261
+ gap> ForAll(T, x -> (x ^ f) ^ g = x);
262
+ true
263
+ gap> ForAll(S, x -> (x ^ g) ^ f = x);
264
+ true
265
+
266
+ # BipartitionTest18
267
+ # Testing the cases to which the new methods for
268
+ # IsomorphismPartialPermSemigroup and IsomorphismTransformationSemigroup
269
+ # don't apply
270
+ gap> S := Semigroup(
271
+ > Bipartition([[1, 2, 3, 4, -1, -2, -5], [5], [-3, -4]]),
272
+ > Bipartition([[1, 2, 3], [4, -2, -4], [5, -1, -5], [-3]]),
273
+ > Bipartition([[1, 3, 5], [2, 4, -1, -2, -5], [-3], [-4]]),
274
+ > Bipartition([[1, -5], [2, 3, 4, 5], [-1], [-2], [-3, -4]]),
275
+ > Bipartition([[1, -4], [2], [3, -2], [4, 5, -1], [-3, -5]]));;
276
+ gap> IsomorphismPartialPermSemigroup(S);
277
+ Error, the argument must be an inverse semigroup
278
+ gap> Range(IsomorphismTransformationSemigroup(S));
279
+ <transformation semigroup of size 207, degree 208 with 5 generators>
280
+
281
+ # BipartitionTest19: IsomorphismBipartitionSemigroup for a perm group
282
+ gap> G := DihedralGroup(IsPermGroup, 10);;
283
+ gap> f := IsomorphismSemigroup(IsBipartitionSemigroup, G);;
284
+ gap> g := InverseGeneralMapping(f);;
285
+ gap> ForAll(G, x -> (x ^ f) ^ g = x);
286
+ true
287
+ gap> ForAll(G, x -> ForAll(G, y -> (x * y) ^ f = x ^ f * y ^ f));
288
+ true
289
+ gap> ForAll(Range(f), x -> (x ^ g) ^ f = x);
290
+ true
291
+
292
+ # BipartitionTest20: IsomorphismPermGroup
293
+ gap> G := GroupOfUnits(PartitionMonoid(5));
294
+ <block bijection group of degree 5 with 2 generators>
295
+ gap> IsomorphismPermGroup(G);;
296
+ gap> f := last;; g := InverseGeneralMapping(f);;
297
+ gap> ForAll(G, x -> ForAll(G, y -> (x * y) ^ f = x ^ f * y ^ f));
298
+ true
299
+ gap> ForAll(G, x -> (x ^ f) ^ g = x);
300
+ true
301
+ gap> ForAll(Range(f), x -> (x ^ g) ^ f = x);
302
+ true
303
+ gap> S := PartitionMonoid(5);;
304
+ gap> D := DClass(S,
305
+ > Bipartition([[1], [2, -3], [3, -4], [4, -5], [5], [-1],
306
+ > [-2]]));;
307
+ gap> G := GroupHClass(D);;
308
+ gap> G = GreensHClassOfElement(S, Bipartition([[1], [2], [3, -3], [4, -4],
309
+ > [5, -5], [-1], [-2]]))
310
+ > or G = GreensHClassOfElement(S, Bipartition([[1], [2, -1, -2], [3, -3],
311
+ > [4, -4, -5], [5]]));
312
+ true
313
+ gap> IsomorphismPermGroup(G);;
314
+
315
+ # BipartitionTest21: IsomorphismBipartitionSemigroup
316
+ # for an inverse semigroup of partial perms
317
+ gap> S := InverseSemigroup(
318
+ > PartialPerm([1, 3, 5, 7, 9], [7, 6, 5, 10, 1]),
319
+ > PartialPerm([1, 2, 3, 4, 6, 10], [9, 10, 4, 2, 5, 6]));;
320
+ gap> T := Range(IsomorphismSemigroup(IsBipartitionSemigroup, S));
321
+ <inverse bipartition semigroup of degree 10 with 2 generators>
322
+ gap> Size(S);
323
+ 281
324
+ gap> Size(T);
325
+ 281
326
+ gap> IsomorphismPartialPermSemigroup(T);
327
+ <inverse bipartition semigroup of size 281, degree 10 with 2 generators> ->
328
+ <inverse partial perm semigroup of size 281, rank 9 with 2 generators>
329
+ gap> Size(Range(last));
330
+ 281
331
+ gap> f := last2;; g := InverseGeneralMapping(f);;
332
+ gap> ForAll(T, x -> (x ^ f) ^ g = x);
333
+ true
334
+
335
+ # BipartitionTest22: AsBlockBijection and
336
+ # IsomorphismSemigroup(IsBlockBijectionSemigroup for an inverse semigroup of
337
+ # partial perms
338
+ gap> S := InverseSemigroup(
339
+ > PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),
340
+ > PartialPerm([1, 2, 3, 4, 6, 7, 8, 10], [3, 8, 1, 9, 4, 10, 5, 6]));;
341
+ gap> AsBlockBijection(S.1);
342
+ <block bijection: [ 1, -2 ], [ 2, -6 ], [ 3, -7 ],
343
+ [ 4, 5, 7, 9, 11, -3, -4, -8, -10, -11 ], [ 6, -9 ], [ 8, -1 ], [ 10, -5 ]>
344
+ gap> S.1;
345
+ [3,7][8,1,2,6,9][10,5]
346
+ gap> T := Range(IsomorphismSemigroup(IsBlockBijectionSemigroup, S));
347
+ <inverse block bijection semigroup of degree 11 with 2 generators>
348
+ gap> f := IsomorphismSemigroup(IsBlockBijectionSemigroup, S);;
349
+ gap> g := InverseGeneralMapping(f);;
350
+ gap> ForAll(S, x -> (x ^ f) ^ g = x);
351
+ true
352
+ gap> ForAll(T, x -> (x ^ g) ^ f = x);
353
+ true
354
+ gap> Size(S);
355
+ 2657
356
+ gap> Size(T);
357
+ 2657
358
+ gap> x := PartialPerm([1, 2, 3, 8], [8, 4, 10, 3]);;
359
+ gap> ForAll(S, y -> x ^ f * y ^ f = (x * y) ^ f);
360
+ true
361
+
362
+ # BipartitionTest23: Same as last for non-inverse partial perm semigroup
363
+ gap> S := Semigroup(
364
+ > PartialPerm([1, 2, 3, 6, 8, 10], [2, 6, 7, 9, 1, 5]),
365
+ > PartialPerm([1, 2, 3, 4, 6, 7, 8, 10], [3, 8, 1, 9, 4, 10, 5, 6]));;
366
+ gap> Size(S);
367
+ 90
368
+ gap> IsInverseSemigroup(S);
369
+ false
370
+ gap> T := Range(IsomorphismSemigroup(IsBlockBijectionSemigroup, S));
371
+ <block bijection semigroup of size 90, degree 11 with 2 generators>
372
+ gap> Size(T);
373
+ 90
374
+ gap> IsInverseSemigroup(T);
375
+ false
376
+ gap> f := IsomorphismSemigroup(IsBlockBijectionSemigroup, S);;
377
+ gap> g := InverseGeneralMapping(f);;
378
+ gap> ForAll(S, x -> (x ^ f) ^ g = x);
379
+ true
380
+ gap> ForAll(T, x -> (x ^ g) ^ f = x);
381
+ true
382
+ gap> x := PartialPerm([1, 3], [3, 1]);;
383
+ gap> ForAll(S, y -> x ^ f * y ^ f = (x * y) ^ f);
384
+ true
385
+
386
+ # BipartitionTest24: NaturalLeqBlockBijection
387
+ gap> S := DualSymmetricInverseMonoid(4);;
388
+ gap> f := Bipartition([[1, -2], [2, -1], [3, -3], [4, -4]]);;
389
+ gap> g := Bipartition([[1, 4, -3], [2, -1, -2], [3, -4]]);;
390
+ gap> NaturalLeqBlockBijection(f, g);
391
+ false
392
+ gap> NaturalLeqBlockBijection(f, f);
393
+ true
394
+ gap> NaturalLeqBlockBijection(f, g);
395
+ false
396
+ gap> NaturalLeqBlockBijection(g, f);
397
+ false
398
+ gap> NaturalLeqBlockBijection(g, g);
399
+ true
400
+ gap> f := Bipartition([[1, 4, 2, -1, -2, -3], [3, -4]]);
401
+ <block bijection: [ 1, 2, 4, -1, -2, -3 ], [ 3, -4 ]>
402
+ gap> NaturalLeqBlockBijection(f, g);
403
+ true
404
+ gap> NaturalLeqBlockBijection(g, f);
405
+ false
406
+ gap> First(Idempotents(S), e -> e * g = f);
407
+ <block bijection: [ 1, 2, -1, -2 ], [ 3, -3 ], [ 4, -4 ]>
408
+ gap> Set(Filtered(S, f -> NaturalLeqBlockBijection(f, g)));
409
+ [ <block bijection: [ 1, 2, 3, 4, -1, -2, -3, -4 ]>,
410
+ <block bijection: [ 1, 2, 4, -1, -2, -3 ], [ 3, -4 ]>,
411
+ <block bijection: [ 1, 3, 4, -3, -4 ], [ 2, -1, -2 ]>,
412
+ <block bijection: [ 1, 4, -3 ], [ 2, 3, -1, -2, -4 ]>,
413
+ <block bijection: [ 1, 4, -3 ], [ 2, -1, -2 ], [ 3, -4 ]> ]
414
+ gap> Set(Filtered(S, f -> ForAny(Idempotents(S), e -> e * f = g)));
415
+ [ <block bijection: [ 1, 4, -3 ], [ 2, -1, -2 ], [ 3, -4 ]> ]
416
+ gap> Set(Filtered(S, f -> ForAny(Idempotents(S), e -> e * g = f)));
417
+ [ <block bijection: [ 1, 2, 3, 4, -1, -2, -3, -4 ]>,
418
+ <block bijection: [ 1, 2, 4, -1, -2, -3 ], [ 3, -4 ]>,
419
+ <block bijection: [ 1, 3, 4, -3, -4 ], [ 2, -1, -2 ]>,
420
+ <block bijection: [ 1, 4, -3 ], [ 2, 3, -1, -2, -4 ]>,
421
+ <block bijection: [ 1, 4, -3 ], [ 2, -1, -2 ], [ 3, -4 ]> ]
422
+
423
+ # BipartitionTest25: Factorization/EvaluateWord
424
+ gap> S := DualSymmetricInverseMonoid(6);;
425
+ gap> f := S.1 * S.2 * S.3 * S.2 * S.1;
426
+ <block bijection: [ 1, 6, -4 ], [ 2, -2, -3 ], [ 3, -5 ], [ 4, -6 ],
427
+ [ 5, -1 ]>
428
+ gap> EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, f));
429
+ <block bijection: [ 1, 6, -4 ], [ 2, -2, -3 ], [ 3, -5 ], [ 4, -6 ],
430
+ [ 5, -1 ]>
431
+ gap> S := PartitionMonoid(5);;
432
+ gap> f := Bipartition([[1, 4, -2, -3], [2, 3, 5, -5], [-1, -4]]);;
433
+ gap> EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, f));
434
+ <bipartition: [ 1, 4, -2, -3 ], [ 2, 3, 5, -5 ], [ -1, -4 ]>
435
+ gap> S := Range(IsomorphismSemigroup(IsBipartitionSemigroup,
436
+ > SymmetricInverseMonoid(5)));
437
+ <inverse bipartition monoid of degree 5 with 3 generators>
438
+ gap> f := S.1 * S.2 * S.3 * S.2 * S.1;
439
+ <bipartition: [ 1 ], [ 2, -2 ], [ 3, -4 ], [ 4, -5 ], [ 5, -3 ], [ -1 ]>
440
+ gap> EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, f));
441
+ <bipartition: [ 1 ], [ 2, -2 ], [ 3, -4 ], [ 4, -5 ], [ 5, -3 ], [ -1 ]>
442
+ gap> S := Semigroup(
443
+ > [Bipartition([[1, 2, 3, 5, -1, -4], [4], [-2, -3], [-5]]),
444
+ > Bipartition([[1, 2, 4], [3, 5, -1, -4], [-2, -5], [-3]]),
445
+ > Bipartition([[1, 2], [3, -1, -3], [4, 5, -4, -5], [-2]]),
446
+ > Bipartition([[1, 3, 4, -4], [2], [5], [-1, -2, -3], [-5]]),
447
+ > Bipartition([[1, -3], [2, -5], [3, -1], [4, 5],
448
+ > [-2, -4]])]);;
449
+ gap> x := S.1 * S.2 * S.3 * S.4 * S.5;
450
+ <bipartition: [ 1, 2, 3, 5 ], [ 4 ], [ -1, -3, -5 ], [ -2, -4 ]>
451
+ gap> EvaluateWord(GeneratorsOfSemigroup(S), Factorization(S, x));
452
+ <bipartition: [ 1, 2, 3, 5 ], [ 4 ], [ -1, -3, -5 ], [ -2, -4 ]>
453
+ gap> IsInverseSemigroup(S);
454
+ false
455
+
456
+ # BipartitionTest26:
457
+ # Tests of things in greens-generic.xml in the order they appear in that file.
458
+ gap> S := Semigroup(
459
+ > Bipartition([[1, -1], [2, -2], [3, -3], [4, -4], [5, -8],
460
+ > [6, -9], [7, -10], [8, -11], [9, -12], [10, -13], [11, -5],
461
+ > [12, -6], [13, -7]]),
462
+ > Bipartition([[1, -2], [2, -5], [3, -8], [4, -11], [5, -1],
463
+ > [6, -4], [7, -3], [8, -7], [9, -10], [10, -13], [11, -6],
464
+ > [12, -12], [13, -9]]),
465
+ > Bipartition([[1, 7, -10, -12], [2, 3, 4, 6, 10, 13, -13],
466
+ > [5, 12, -1], [8, 9, 11], [-2, -9], [-3, -7, -8], [-4],
467
+ > [-5], [-6, -11]]), rec(acting := true));
468
+ <bipartition semigroup of degree 13 with 3 generators>
469
+ gap> f := Bipartition([[1, 2, 3, 4, 7, 8, 11, 13], [5, 9], [6, 10, 12],
470
+ > [-1, -2, -6], [-3], [-4, -8], [-5, -11], [-7, -10, -13], [-9],
471
+ > [-12]]);;
472
+ gap> H := HClassNC(S, f);
473
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ],
474
+ [ 6, 10, 12 ], [ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ],
475
+ [ -7, -10, -13 ], [ -9 ], [ -12 ]>>
476
+ gap> IsGreensClassNC(H);
477
+ true
478
+ gap> MultiplicativeNeutralElement(H);
479
+ <bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ], [ 6, 10, 12 ],
480
+ [ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ], [ -7, -10, -13 ], [ -9 ],
481
+ [ -12 ]>
482
+ gap> StructureDescription(H);
483
+ "1"
484
+ gap> H := HClassNC(S, f);
485
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ],
486
+ [ 6, 10, 12 ], [ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ],
487
+ [ -7, -10, -13 ], [ -9 ], [ -12 ]>>
488
+ gap> f := Bipartition([[1, 2, 5, 6, 7, 8, 9, 10, 11, 12, -1, -10, -12, -13],
489
+ > [3, 4, 13], [-2, -9], [-3, -7, -8], [-4], [-5], [-6, -11]]);;
490
+ gap> HH := HClassNC(S, f);
491
+ <Green's H-class:
492
+ <bipartition: [ 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, -1, -10, -12, -13 ],
493
+ [ 3, 4, 13 ], [ -2, -9 ], [ -3, -7, -8 ], [ -4 ], [ -5 ], [ -6, -11 ]>>
494
+ gap> HH < H;
495
+ false
496
+ gap> H < HH;
497
+ true
498
+ gap> H = HH;
499
+ false
500
+ gap> D := DClass(H);
501
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 7, 8, 11, 13 ], [ 5, 9 ],
502
+ [ 6, 10, 12 ], [ -1, -2, -6 ], [ -3 ], [ -4, -8 ], [ -5, -11 ],
503
+ [ -7, -10, -13 ], [ -9 ], [ -12 ]>>
504
+ gap> DD := DClass(HH);
505
+ <Green's D-class:
506
+ <bipartition: [ 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, -1, -10, -12, -13 ],
507
+ [ 3, 4, 13 ], [ -2, -9 ], [ -3, -7, -8 ], [ -4 ], [ -5 ], [ -6, -11 ]>>
508
+ gap> DD < D;
509
+ true
510
+ gap> D < DD;
511
+ false
512
+ gap> D = DD;
513
+ false
514
+ gap> S := Semigroup(
515
+ > [Bipartition([[1, 2, 3, 4, 5], [-1, -2, -4, -5], [-3]]),
516
+ > Bipartition([[1, 2, 3, 4, -2, -3, -4], [5], [-1, -5]]),
517
+ > Bipartition([[1, 2, 3, -3, -5], [4, -1], [5, -2, -4]]),
518
+ > Bipartition([[1, 5, -1, -3], [2, 3], [4, -2], [-4, -5]]),
519
+ > Bipartition([[1, 4, -3], [2], [3], [5, -1, -2, -5], [-4]])]);;
520
+ gap> IsGreensLessThanOrEqual(DClass(S, S.1), DClass(S, S.2));
521
+ true
522
+ gap> IsGreensLessThanOrEqual(DClass(S, S.2), DClass(S, S.1));
523
+ false
524
+ gap> f := S.1 * S.2 * S.3;
525
+ <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -2, -3, -4, -5 ]>
526
+ gap> f := S.1 * S.2;
527
+ <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
528
+ gap> H := HClass(S, f);
529
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
530
+ >
531
+ gap> LClass(H);
532
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5 ], [ -1, -5 ], [ -2, -3, -4 ]>
533
+ >
534
+ gap> RClass(H);;
535
+ gap> DClass(RClass(H));;
536
+ gap> DClass(LClass(H));;
537
+ gap> DClass(H);;
538
+ gap> f := Bipartition([[1, 2, 3, 4, 5, -2], [-1, -3], [-4, -5]]);
539
+ <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
540
+ gap> H := HClassNC(S, f);
541
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
542
+ >
543
+ gap> LClass(H);
544
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
545
+ >
546
+ gap> RClass(H);
547
+ <Green's R-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
548
+ >
549
+ gap> DClass(RClass(H));
550
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
551
+ >
552
+ gap> DClass(LClass(H));
553
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
554
+ >
555
+ gap> DClass(H);
556
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
557
+ >
558
+ gap> DClasses(S);;
559
+ gap> H := HClassNC(S, f);
560
+ <Green's H-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
561
+ >
562
+ gap> RClasses(DClass(H));;
563
+ gap> LClasses(DClass(H));;
564
+ gap> HClasses(LClass(H));;
565
+ gap> HClasses(RClass(H));;
566
+ gap> JClasses(S);;
567
+ gap> S := Semigroup(S);
568
+ <bipartition semigroup of degree 5 with 5 generators>
569
+ gap> D := DClassNC(S, f);
570
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
571
+ >
572
+ gap> D := [D];
573
+ [ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ],
574
+ [ -4, -5 ]>> ]
575
+ gap> D[2] := DClass(S, f);;
576
+ gap> D[3] := DClass(RClass(S, f));;
577
+ gap> D[4] := DClass(RClass(S, f));;
578
+ gap> D[5] := DClass(LClass(S, f));;
579
+ gap> D[6] := DClass(HClass(S, f));;
580
+ gap> D[7] := DClass(LClass(HClass(S, f)));;
581
+ gap> D[8] := DClass(RClass(HClass(S, f)));;
582
+ gap> ForAll(Combinations([1 .. 8], 2), x -> D[x[1]] = D[x[2]]);
583
+ true
584
+ gap> Number(D, IsGreensClassNC) in [0, 1];
585
+ true
586
+ gap> D[7] := DClass(LClass(HClassNC(S, f)));
587
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
588
+ >
589
+ gap> D[6] := DClass(RClass(HClassNC(S, f)));
590
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
591
+ >
592
+ gap> D[5] := DClass(HClassNC(S, f));
593
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
594
+ >
595
+ gap> D[4] := DClass(LClassNC(S, f));
596
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
597
+ >
598
+ gap> ForAll(Combinations([1 .. 8], 2), x -> D[x[1]] = D[x[2]]);
599
+ true
600
+ gap> Number(D, IsGreensClassNC) in [0, 5];
601
+ true
602
+ gap> S := Semigroup(S);
603
+ <bipartition semigroup of degree 5 with 5 generators>
604
+ gap> D := DClassNC(S, f);
605
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
606
+ >
607
+ gap> LClassNC(D, f);
608
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
609
+ >
610
+ gap> Size(last);
611
+ 7
612
+ gap> Size(LClass(S, f));
613
+ 7
614
+ gap> LClass(S, f) = LClassNC(D, f);
615
+ true
616
+ gap> LClass(D, f) = LClassNC(S, f);
617
+ true
618
+ gap> LClassNC(D, f) = LClassNC(S, f);
619
+ true
620
+ gap> LClassNC(D, f) = LClass(S, f);
621
+ true
622
+ gap> S := Semigroup(S);
623
+ <bipartition semigroup of degree 5 with 5 generators>
624
+ gap> D := DClass(S, f);;
625
+ gap> LClassNC(D, f);
626
+ <Green's L-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
627
+ >
628
+ gap> Size(last);
629
+ 7
630
+ gap> Size(LClass(S, f));
631
+ 7
632
+ gap> LClass(S, f) = LClassNC(D, f);
633
+ true
634
+ gap> LClass(D, f) = LClassNC(S, f);
635
+ true
636
+ gap> LClassNC(D, f) = LClassNC(S, f);
637
+ true
638
+ gap> LClassNC(D, f) = LClass(S, f);
639
+ true
640
+ gap> S := Semigroup(S);
641
+ <bipartition semigroup of degree 5 with 5 generators>
642
+ gap> D := DClass(S, f);;
643
+ gap> RClassNC(D, f);;
644
+ gap> Size(last);
645
+ 9
646
+ gap> Size(RClass(S, f));
647
+ 9
648
+ gap> RClass(S, f) = RClassNC(D, f);
649
+ true
650
+ gap> RClass(D, f) = RClassNC(S, f);
651
+ true
652
+ gap> RClassNC(D, f) = RClassNC(S, f);
653
+ true
654
+ gap> RClassNC(D, f) = RClass(S, f);
655
+ true
656
+ gap> S := Semigroup(S);
657
+ <bipartition semigroup of degree 5 with 5 generators>
658
+ gap> D := DClassNC(S, f);
659
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
660
+ >
661
+ gap> RClassNC(D, f);
662
+ <Green's R-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
663
+ >
664
+ gap> Size(last);
665
+ 9
666
+ gap> Size(RClass(S, f));
667
+ 9
668
+ gap> RClass(S, f) = RClassNC(D, f);
669
+ true
670
+ gap> RClass(D, f) = RClassNC(S, f);
671
+ true
672
+ gap> RClassNC(D, f) = RClassNC(S, f);
673
+ true
674
+ gap> RClassNC(D, f) = RClass(S, f);
675
+ true
676
+ gap> S := Semigroup(S);
677
+ <bipartition semigroup of degree 5 with 5 generators>
678
+ gap> D := DClass(S, f);;
679
+ gap> HClassNC(D, f);;
680
+ gap> Size(last);
681
+ 1
682
+ gap> Size(HClass(S, f));
683
+ 1
684
+ gap> HClass(S, f) = HClassNC(D, f);
685
+ true
686
+ gap> HClass(D, f) = HClassNC(S, f);
687
+ true
688
+ gap> HClassNC(D, f) = HClassNC(S, f);
689
+ true
690
+ gap> HClassNC(D, f) = HClass(S, f);
691
+ true
692
+ gap> S := Semigroup(S);
693
+ <bipartition semigroup of degree 5 with 5 generators>
694
+ gap> D := DClassNC(S, f);
695
+ <Green's D-class: <bipartition: [ 1, 2, 3, 4, 5, -2 ], [ -1, -3 ], [ -4, -5 ]>
696
+ >
697
+ gap> HClassNC(D, f);;
698
+ gap> Size(last);
699
+ 1
700
+ gap> Size(HClass(S, f));
701
+ 1
702
+ gap> HClass(S, f) = HClassNC(D, f);
703
+ true
704
+ gap> HClass(D, f) = HClassNC(S, f);
705
+ true
706
+ gap> HClassNC(D, f) = HClassNC(S, f);
707
+ true
708
+ gap> HClassNC(D, f) = HClass(S, f);
709
+ true
710
+ gap> S := Semigroup([
711
+ > Bipartition([[1, 2, 3, 4, 5, -2, -4], [6, 7], [8, -1, -6],
712
+ > [-3, -5, -7], [-8]]),
713
+ > Bipartition([[1, 2, 3, 4, -1, -2], [5, 6, -5], [7, 8, -4, -6],
714
+ > [-3, -7], [-8]]),
715
+ > Bipartition([[1, 2, 3, 7, -7], [4, 5, 6, 8], [-1, -2],
716
+ > [-3, -6, -8], [-4], [-5]]),
717
+ > Bipartition([[1, 2, 4, 7, -1, -2, -4], [3, -7], [5, -5], [6, 8],
718
+ > [-3], [-6, -8]]),
719
+ > Bipartition([[1, 2, 8, -2], [3, 4, 5, -5], [6, 7, -4], [-1, -7],
720
+ > [-3, -6, -8]]),
721
+ > Bipartition([[1, 2, 5, 6, 7, -4], [3, 8, -5], [4],
722
+ > [-1, -2, -3, -6], [-7], [-8]]),
723
+ > Bipartition([[1, 3, 4, 5, 6, 8, -1, -5], [2, -4], [7, -3, -8],
724
+ > [-2, -6, -7]]),
725
+ > Bipartition([[1, 3, 4, 5, -1, -7], [2, -6], [6], [7, -3],
726
+ > [8, -4], [-2, -5, -8]]),
727
+ > Bipartition([[1, 3, 4, 6, 7, -1, -7, -8], [2, 5, 8, -6], [-2, -4],
728
+ > [-3, -5]]),
729
+ > Bipartition([[1, 3, 4, -8], [2, 6, 8, -1], [5, 7, -2, -3, -4, -7],
730
+ > [-5], [-6]]),
731
+ > Bipartition([[1, 4, 8, -4, -6, -8], [2, 3, 6, -3, -5], [5, -1, -7],
732
+ > [7], [-2]]),
733
+ > Bipartition([[1, 5, -1, -2], [2, 3, 4, 6, 7], [8, -4], [-3, -5],
734
+ > [-6], [-7], [-8]]),
735
+ > Bipartition([[1, -6], [2, 3, 4, -2, -8], [5, 6, 7, -1, -3], [8],
736
+ > [-4, -7], [-5]]),
737
+ > Bipartition([[1, 7, 8, -1, -3, -4, -6], [2, 3, 4], [5, -2, -5],
738
+ > [6], [-7, -8]]),
739
+ > Bipartition([[1, 8, -3, -5, -6], [2, 3, 4, -1], [5, -2], [6, 7],
740
+ > [-4, -7], [-8]]),
741
+ > Bipartition([[1, 7, 8, -5], [2, 3, 5, -6], [4], [6, -1, -3],
742
+ > [-2], [-4, -7, -8]]),
743
+ > Bipartition([[1, 4, -1, -3, -4], [2, 7, 8, -2, -6], [3, 5, 6, -8],
744
+ > [-5, -7]]),
745
+ > Bipartition([[1, 5, 8], [2, 4, 7, -2], [3, 6], [-1, -3],
746
+ > [-4, -5], [-6], [-7], [-8]]),
747
+ > Bipartition([[1], [2, 4], [3, 6, -5], [5, 7, -3, -4, -6],
748
+ > [8, -2], [-1, -7], [-8]]),
749
+ > Bipartition([[1, 5, -8], [2, -4], [3, 6, 8, -1, -6],
750
+ > [4, 7, -2, -3, -5], [-7]])], rec(acting := true));;
751
+ gap> DClassReps(S);
752
+ [ <bipartition: [ 1, 2, 3, 4, 5, -2, -4 ], [ 6, 7 ], [ 8, -1, -6 ],
753
+ [ -3, -5, -7 ], [ -8 ]>,
754
+ <bipartition: [ 1, 2, 3, 4, -1, -2 ], [ 5, 6, -5 ], [ 7, 8, -4, -6 ],
755
+ [ -3, -7 ], [ -8 ]>, <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
756
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
757
+ <bipartition: [ 1, 2, 4, 7, -1, -2, -4 ], [ 3, -7 ], [ 5, -5 ], [ 6, 8 ],
758
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 8, -2 ], [ 3, 4, 5, -5 ],
759
+ [ 6, 7, -4 ], [ -1, -7 ], [ -3, -6, -8 ]>,
760
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -5 ], [ 4 ], [ -1, -2, -3, -6 ]
761
+ , [ -7 ], [ -8 ]>,
762
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -5 ], [ 2, -4 ], [ 7, -3, -8 ],
763
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, -1, -7 ], [ 2, -6 ], [ 6 ],
764
+ [ 7, -3 ], [ 8, -4 ], [ -2, -5, -8 ]>,
765
+ <bipartition: [ 1, 3, 4, -8 ], [ 2, 6, 8, -1 ], [ 5, 7, -2, -3, -4, -7 ],
766
+ [ -5 ], [ -6 ]>,
767
+ <bipartition: [ 1, 4, 8, -4, -6, -8 ], [ 2, 3, 6, -3, -5 ], [ 5, -1, -7 ],
768
+ [ 7 ], [ -2 ]>,
769
+ <bipartition: [ 1, -6 ], [ 2, 3, 4, -2, -8 ], [ 5, 6, 7, -1, -3 ], [ 8 ],
770
+ [ -4, -7 ], [ -5 ]>,
771
+ <bipartition: [ 1, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 4 ], [ 5, -2, -5 ],
772
+ [ 6 ], [ -7, -8 ]>, <bipartition: [ 1, 8, -3, -5, -6 ], [ 2, 3, 4, -1 ],
773
+ [ 5, -2 ], [ 6, 7 ], [ -4, -7 ], [ -8 ]>,
774
+ <bipartition: [ 1, 7, 8, -5 ], [ 2, 3, 5, -6 ], [ 4 ], [ 6, -1, -3 ],
775
+ [ -2 ], [ -4, -7, -8 ]>,
776
+ <bipartition: [ 1, 4, -1, -3, -4 ], [ 2, 7, 8, -2, -6 ], [ 3, 5, 6, -8 ],
777
+ [ -5, -7 ]>,
778
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -5 ], [ 5, 7, -3, -4, -6 ],
779
+ [ 8, -2 ], [ -1, -7 ], [ -8 ]>,
780
+ <bipartition: [ 1, 5, -8 ], [ 2, -4 ], [ 3, 6, 8, -1, -6 ],
781
+ [ 4, 7, -2, -3, -5 ], [ -7 ]>,
782
+ <bipartition: [ 1, 2, 4, 5, 7, -2, -4 ], [ 3, -1, -6 ], [ 6, 8 ],
783
+ [ -3, -5, -7 ], [ -8 ]>,
784
+ <bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 5, 6, 7, 8, -2, -4 ],
785
+ [ -3, -5, -7 ], [ -8 ]>,
786
+ <bipartition: [ 1, 2, 4, 7, 8, -2, -4 ], [ 3, 5, 6, -1, -6 ],
787
+ [ -3, -5, -7 ], [ -8 ]>,
788
+ <bipartition: [ 1, 2, 4, 7, -1, -2, -4, -7 ], [ 3, 5, -5 ], [ 6, 8 ],
789
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -2, -4, -7 ],
790
+ [ 3, 8, -5 ], [ 4 ], [ -3 ], [ -6, -8 ]>,
791
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6, -7 ], [ 6 ], [ 7, -3 ],
792
+ [ -2, -5, -8 ], [ -4 ]>,
793
+ <bipartition: [ 1, 4, 5, 8, -5 ], [ 2, 3, 6, -1, -2, -4, -7 ], [ 7 ],
794
+ [ -3 ], [ -6, -8 ]>,
795
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -5 ], [ -1, -2, -3, -6 ]
796
+ , [ -7 ], [ -8 ]>,
797
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -4, -5 ], [ 3, -3, -8 ], [ 6, 8 ],
798
+ [ -2, -6, -7 ]>,
799
+ <bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -3, -5, -8 ],
800
+ [ -2, -6, -7 ]>,
801
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 5, 6, 7, 8, -1, -3, -6, -7 ],
802
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 4, -1, -3, -7 ], [ 2, 7, 8, -6 ],
803
+ [ 3, 5, 6, -4 ], [ -2, -5, -8 ]>,
804
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -6, -7 ],
805
+ [ -2, -5, -8 ], [ -3 ]>,
806
+ <bipartition: [ 1, 5, 6, 7, -5 ], [ 2, 3, 4, -1, -2, -4, -7 ], [ 8 ],
807
+ [ -3 ], [ -6, -8 ]>,
808
+ <bipartition: [ 1, 4, -8 ], [ 2, 3, 5, 6, 7, 8, -1 ], [ -2, -3, -4, -7 ],
809
+ [ -5 ], [ -6 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -3, -4, -5, -6, -8 ],
810
+ [ 5, 6, -1, -7 ], [ -2 ]>,
811
+ <bipartition: [ 1, 2, 4, 7, -3, -4, -5, -6, -8 ], [ 3 ], [ 5, -1, -7 ],
812
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 5, 6, 7, -3, -4, -5, -6, -8 ],
813
+ [ 3, 8, -1, -7 ], [ 4 ], [ -2 ]>,
814
+ <bipartition: [ 1, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
815
+ [ 6, 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ],
816
+ [ 2, 7, -5 ], [ -3 ], [ -6, -8 ]>,
817
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -4, -6 ], [ 5, 6, -2, -5 ],
818
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -4, -6 ],
819
+ [ 3, 8, -2, -5 ], [ 4 ], [ -7, -8 ]>,
820
+ <bipartition: [ 1, 7, 8, -2, -5 ], [ 2, 3, 5 ], [ 4 ], [ 6, -1, -3, -4, -6 ]
821
+ , [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -2, -4, -7 ],
822
+ [ 2, 7, -5 ], [ 6 ], [ -3 ], [ -6, -8 ]>,
823
+ <bipartition: [ 1, 5, 8 ], [ 2, 3, 4, 6, 7 ], [ -1, -2, -3, -6 ],
824
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
825
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4, -8 ], [ 7, 8, -1, -2, -3, -5, -6 ],
826
+ [ -7 ]>, <bipartition: [ 1, 4, -1, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -4 ],
827
+ [ -3, -5, -7 ], [ -8 ]>,
828
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2, 7, -2, -4 ],
829
+ [ -3, -5, -7 ], [ -8 ]>,
830
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ], [ 2 ], [ 7, -5 ],
831
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -5 ],
832
+ [ 6, 8 ], [ -1, -2, -3, -6 ], [ -7 ], [ -8 ]>,
833
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -8 ], [ 3, 8, -4 ], [ 4 ],
834
+ [ -2, -6, -7 ]>,
835
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -6, -7 ],
836
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -6, -7 ],
837
+ [ 2, 5, 8, -4 ], [ -2, -5, -8 ]>,
838
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -6, -7 ],
839
+ [ -2, -5, -8 ], [ -3 ]>,
840
+ <bipartition: [ 1, 4, 5, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 6, -1, -7 ],
841
+ [ 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ],
842
+ [ 2 ], [ 7, -1, -7 ], [ -2 ]>,
843
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -7 ], [ 3, 8, -3, -4, -5, -6, -8 ],
844
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -3, -4, -5, -6, -8 ],
845
+ [ 2, 7, -1, -7 ], [ 6 ], [ -2 ]>,
846
+ <bipartition: [ 1, 5, 6, 7, -1, -7 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
847
+ [ 8 ], [ -2 ]>,
848
+ <bipartition: [ 1, 4, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -4, -7 ], [ -3 ],
849
+ [ -6, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ], [ 2 ],
850
+ [ 7, -2, -5 ], [ -7, -8 ]>,
851
+ <bipartition: [ 1, 4, -5 ], [ 2, 7, 8, -1, -2, -4, -7 ], [ 3, 5, 6 ],
852
+ [ -3 ], [ -6, -8 ]>,
853
+ <bipartition: [ 1, 5, 6, 7, -2, -4 ], [ 2, 3, 4, -1, -6 ], [ 8 ],
854
+ [ -3, -5, -7 ], [ -8 ]>,
855
+ <bipartition: [ 1, 4, -2, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6 ],
856
+ [ -3, -5, -7 ], [ -8 ]>,
857
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -2, -4, -7 ], [ 3, -5 ], [ 6, 8 ],
858
+ [ -3 ], [ -6, -8 ]>,
859
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ],
860
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
861
+ [ 2 ], [ 7, -4 ], [ -2, -6, -7 ]>,
862
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -5, -8 ], [ 4 ],
863
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -8 ],
864
+ [ 2, 7, -4 ], [ 6 ], [ -2, -6, -7 ]>,
865
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -5, -8 ], [ 8 ],
866
+ [ -2, -6, -7 ]>,
867
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
868
+ [ -2, -5, -8 ]>,
869
+ <bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
870
+ [ -2, -5, -8 ], [ -3 ]>,
871
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2, 7, -1, -7 ],
872
+ [ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -3, -4, -5, -6, -8 ],
873
+ [ 3, -1, -7 ], [ 6, 8 ], [ -2 ]>,
874
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -7 ], [ 3, 8, -4, -6, -8 ],
875
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2 ],
876
+ [ 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
877
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
878
+ [ 6 ], [ -2 ]>, <bipartition: [ 1, 5, 6, 7, -3, -4, -5, -6, -8 ],
879
+ [ 2, 3, 4, -1, -7 ], [ 8 ], [ -2 ]>,
880
+ <bipartition: [ 1, 2, 5, 6, 7, -2, -5 ], [ 3, 8, -1, -3, -4, -6 ], [ 4 ],
881
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -4, -6 ],
882
+ [ 2, 7, -2, -5 ], [ 6 ], [ -7, -8 ]>,
883
+ <bipartition: [ 1, 5, 6, 7, -2, -5 ], [ 2, 3, 4, -1, -3, -4, -6 ], [ 8 ],
884
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ],
885
+ [ 2, 7, -2, -5 ], [ -7, -8 ]>,
886
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -4, -6 ], [ 3, -2, -5 ], [ 6, 8 ],
887
+ [ -7, -8 ]>,
888
+ <bipartition: [ 1, 4, -2, -5 ], [ 2, 7, 8, -1, -3, -4, -6 ], [ 3, 5, 6 ],
889
+ [ -7, -8 ]>,
890
+ <bipartition: [ 1, 4, 5, 8, -2, -5 ], [ 2, 3, 6, -1, -3, -4, -6 ], [ 7 ],
891
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ],
892
+ [ 2, 7, -4, -8 ], [ -7 ]>,
893
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -6 ], [ 3, 8, -2, -4 ], [ 4 ],
894
+ [ -3, -5, -7 ], [ -8 ]>,
895
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -5, -8 ], [ 7 ],
896
+ [ -2, -6, -7 ]>,
897
+ <bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 3, 5, 6, 7, 8, -4 ],
898
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
899
+ [ 2, 7, -4 ], [ -2, -6, -7 ]>,
900
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -8 ], [ 3, -4 ], [ 6, 8 ],
901
+ [ -2, -6, -7 ]>,
902
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -5, -8 ],
903
+ [ -2, -6, -7 ]>,
904
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ], [ 6 ],
905
+ [ -2, -6, -7 ]>,
906
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -5, -8 ], [ 2, 3, 4, -4 ], [ 8 ],
907
+ [ -2, -6, -7 ]>,
908
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -6, -7 ], [ 4 ],
909
+ [ -2, -5, -8 ]>,
910
+ <bipartition: [ 1, 4, -1, -7 ], [ 2, 7, 8, -3, -4, -5, -6, -8 ],
911
+ [ 3, 5, 6 ], [ -2 ]>,
912
+ <bipartition: [ 1, 4, 5, 8, -1, -7 ], [ 2, 3, 6, -3, -4, -5, -6, -8 ],
913
+ [ 7 ], [ -2 ]>,
914
+ <bipartition: [ 1, 4, -1, -7 ], [ 2, 3, 5, 6, 7, 8, -3, -4, -5, -6, -8 ],
915
+ [ -2 ]>,
916
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
917
+ [ -2 ]>,
918
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 6, -4, -6, -8 ],
919
+ [ 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ],
920
+ [ 2 ], [ 7, -4, -6, -8 ], [ -2 ]>,
921
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -7 ], [ 3, -3, -4, -5, -6, -8 ],
922
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2 ],
923
+ [ 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
924
+ <bipartition: [ 1, 3, 4, 5, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ], [ 6 ],
925
+ [ -7, -8 ]>,
926
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -4, -6 ], [ 2, 3, 4, -2, -5 ], [ 8 ],
927
+ [ -7, -8 ]>,
928
+ <bipartition: [ 1, 4, -2, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -4, -6 ],
929
+ [ -7, -8 ]>,
930
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ],
931
+ [ -7, -8 ]>,
932
+ <bipartition: [ 1, 4, -4, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -3, -5, -6 ],
933
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2 ],
934
+ [ 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
935
+ <bipartition: [ 1, 2, 5, 6, 7, -2, -4 ], [ 3, 8, -1, -6 ], [ 4 ],
936
+ [ -3, -5, -7 ], [ -8 ]>,
937
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -6 ], [ 2, 7, -2, -4 ], [ 6 ],
938
+ [ -3, -5, -7 ], [ -8 ]>,
939
+ <bipartition: [ 1, 4, 5, 8, -1, -6 ], [ 2, 3, 6, -2, -4 ], [ 7 ],
940
+ [ -3, -5, -7 ], [ -8 ]>,
941
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -8 ],
942
+ [ -2, -6, -7 ]>,
943
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -5, -8 ], [ 2, 3, 6, -4 ], [ 7 ],
944
+ [ -2, -6, -7 ]>,
945
+ <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -5, -8 ], [ 3, 5, 6 ],
946
+ [ -2, -6, -7 ]>,
947
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -5, -8 ], [ 6, 8 ],
948
+ [ -2, -6, -7 ]>,
949
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -6, -7 ],
950
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -6, -7 ],
951
+ [ 3, 8, -4 ], [ 4 ], [ -2, -5, -8 ]>,
952
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ], [ 6 ],
953
+ [ -2, -5, -8 ]>,
954
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -6, -7 ], [ 7 ],
955
+ [ -2, -5, -8 ]>,
956
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -6, -7 ], [ 7 ],
957
+ [ -2, -5, -8 ], [ -3 ]>,
958
+ <bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -7 ],
959
+ [ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -7 ],
960
+ [ 3, -4, -6, -8 ], [ 6, 8 ], [ -2 ]>,
961
+ <bipartition: [ 1, 2, 4, 5, 7, -2, -5 ], [ 3, -1, -3, -4, -6 ], [ 6, 8 ],
962
+ [ -7, -8 ]>,
963
+ <bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -5 ],
964
+ [ -7, -8 ]>,
965
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -4, -6 ], [ 2, 3, 6, -2, -5 ], [ 7 ],
966
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -6 ], [ 3, -2, -4 ],
967
+ [ 6, 8 ], [ -3, -5, -7 ], [ -8 ]>,
968
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2 ], [ 7, -1, -6 ],
969
+ [ -3, -5, -7 ], [ -8 ]>,
970
+ <bipartition: [ 1, 3, 4, 5, 8, -2, -4 ], [ 2, 7, -1, -6 ], [ 6 ],
971
+ [ -3, -5, -7 ], [ -8 ]>,
972
+ <bipartition: [ 1, 5, 6, 7, -1, -6 ], [ 2, 3, 4, -2, -4 ], [ 8 ],
973
+ [ -3, -5, -7 ], [ -8 ]>,
974
+ <bipartition: [ 1, 4, 5, 8, -2, -4 ], [ 2, 3, 6, -1, -6 ], [ 7 ],
975
+ [ -3, -5, -7 ], [ -8 ]>,
976
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -6, -7 ], [ 6, 8 ],
977
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
978
+ [ 2 ], [ 7, -4 ], [ -2, -5, -8 ]>,
979
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -6, -7 ], [ 2, 7, -4 ], [ 6 ],
980
+ [ -2, -5, -8 ]>,
981
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -6, -7 ], [ 8 ],
982
+ [ -2, -5, -8 ]>,
983
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
984
+ [ -2, -5, -8 ]>,
985
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -6, -7 ], [ 4 ],
986
+ [ -2, -5, -8 ], [ -3 ]>,
987
+ <bipartition: [ 1, 2, 5, 6, 7, -4, -6, -8 ], [ 3, 8, -1, -3, -5, -7 ],
988
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -7 ],
989
+ [ 2, 7, -4, -6, -8 ], [ 6 ], [ -2 ]>,
990
+ <bipartition: [ 1, 5, 6, 7, -4, -6, -8 ], [ 2, 3, 4, -1, -3, -5, -7 ],
991
+ [ 8 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ],
992
+ [ 2, 7, -4, -6, -8 ], [ -2 ]>,
993
+ <bipartition: [ 1, 4, 5, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 6, -4, -8 ],
994
+ [ 7 ], [ -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -6, -7 ],
995
+ [ 3, -4 ], [ 6, 8 ], [ -2, -5, -8 ]>,
996
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ],
997
+ [ -2, -5, -8 ]>,
998
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -6, -7 ],
999
+ [ -2, -5, -8 ], [ -3 ]>,
1000
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -6, -7 ], [ 3, 8, -4 ], [ 4 ],
1001
+ [ -2, -5, -8 ], [ -3 ]>,
1002
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -6, -7 ], [ 6 ],
1003
+ [ -2, -5, -8 ], [ -3 ]>,
1004
+ <bipartition: [ 1, 5, 6, 7, -1, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
1005
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ],
1006
+ [ 2 ], [ 7, -1, -3, -5, -7 ], [ -2 ]>,
1007
+ <bipartition: [ 1, 3, 4, 5, 8, -4, -6, -8 ], [ 2, 7, -1, -3, -5, -7 ],
1008
+ [ 6 ], [ -2 ]>,
1009
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
1010
+ [ 8 ], [ -2 ]>,
1011
+ <bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -7 ],
1012
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ],
1013
+ [ 2, 7, -1, -3, -5, -7 ], [ -2 ]>,
1014
+ <bipartition: [ 1, 4, 5, 8, -4, -6, -8 ], [ 2, 3, 6, -1, -3, -5, -7 ],
1015
+ [ 7 ], [ -2 ]>,
1016
+ <bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 7, 8, -2, -5 ], [ 3, 5, 6 ],
1017
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -2, -3, -5, -6 ],
1018
+ [ 3, 8, -4, -8 ], [ 4 ], [ -7 ]>,
1019
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2, 7, -1, -6 ],
1020
+ [ -3, -5, -7 ], [ -8 ]>,
1021
+ <bipartition: [ 1, 4, -2, -4 ], [ 2, 7, 8, -1, -6 ], [ 3, 5, 6 ],
1022
+ [ -3, -5, -7 ], [ -8 ]>,
1023
+ <bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
1024
+ [ -2, -6, -7 ]>,
1025
+ <bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
1026
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
1027
+ [ 2, 7, -4 ], [ -2, -5, -8 ]>,
1028
+ <bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
1029
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -6, -7 ],
1030
+ [ 6, 8 ], [ -2, -5, -8 ], [ -3 ]>,
1031
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ], [ 2 ], [ 7, -4 ],
1032
+ [ -2, -5, -8 ], [ -3 ]>,
1033
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -6, -7 ], [ 2, 7, -4 ], [ 6 ],
1034
+ [ -2, -5, -8 ], [ -3 ]>,
1035
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -6, -7 ], [ 8 ],
1036
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ],
1037
+ [ 2, 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
1038
+ <bipartition: [ 1, 4, 5, 8, -1, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
1039
+ [ -2, -5, -8 ], [ -3 ]>,
1040
+ <bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 7, 8, -1, -7 ],
1041
+ [ 3, 5, 6 ], [ -2 ]>,
1042
+ <bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 7, 8, -1, -3, -5, -7 ],
1043
+ [ 3, 5, 6 ], [ -2 ]>,
1044
+ <bipartition: [ 1, 2, 4, 5, 7, -4, -6, -8 ], [ 3, -1, -3, -5, -7 ],
1045
+ [ 6, 8 ], [ -2 ]>,
1046
+ <bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 3, 5, 6, 7, 8, -4, -6, -8 ],
1047
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2 ],
1048
+ [ 7, -4, -8 ], [ -7 ]>,
1049
+ <bipartition: [ 1, 2, 5, 6, 7, -4, -8 ], [ 3, 8, -1, -2, -3, -5, -6 ],
1050
+ [ 4 ], [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -2, -3, -5, -6 ],
1051
+ [ 2, 7, -4, -8 ], [ 6 ], [ -7 ]>,
1052
+ <bipartition: [ 1, 5, 6, 7, -4, -8 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
1053
+ [ 8 ], [ -7 ]>, <bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 7, 8, -4 ],
1054
+ [ 3, 5, 6 ], [ -2, -5, -8 ], [ -3 ]>,
1055
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -6, -7 ], [ 3, -4 ], [ 6, 8 ],
1056
+ [ -2, -5, -8 ], [ -3 ]>,
1057
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6, -7 ],
1058
+ [ -2, -5, -8 ], [ -3 ]>,
1059
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -2, -3, -5, -6 ], [ 3, -4, -8 ],
1060
+ [ 6, 8 ], [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2 ],
1061
+ [ 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
1062
+ <bipartition: [ 1, 3, 4, 5, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
1063
+ [ 6 ], [ -7 ]>, <bipartition: [ 1, 5, 6, 7, -1, -2, -3, -5, -6 ],
1064
+ [ 2, 3, 4, -4, -8 ], [ 8 ], [ -7 ]>,
1065
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
1066
+ [ -7 ]>,
1067
+ <bipartition: [ 1, 4, 5, 8, -4, -8 ], [ 2, 3, 6, -1, -2, -3, -5, -6 ],
1068
+ [ 7 ], [ -7 ]>, <bipartition: [ 1, 4, -1, -6 ], [ 2, 7, 8, -2, -4 ],
1069
+ [ 3, 5, 6 ], [ -3, -5, -7 ], [ -8 ]>,
1070
+ <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -6, -7 ], [ 3, 5, 6 ],
1071
+ [ -2, -5, -8 ]>,
1072
+ <bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 7, 8, -4, -6, -8 ],
1073
+ [ 3, 5, 6 ], [ -2 ]>,
1074
+ <bipartition: [ 1, 4, -4, -8 ], [ 2, 7, 8, -1, -2, -3, -5, -6 ],
1075
+ [ 3, 5, 6 ], [ -7 ]>,
1076
+ <bipartition: [ 1, 2, 4, 5, 7, -4, -8 ], [ 3, -1, -2, -3, -5, -6 ],
1077
+ [ 6, 8 ], [ -7 ]>,
1078
+ <bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 3, 5, 6, 7, 8, -4, -8 ],
1079
+ [ -7 ]>, <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -6, -7 ],
1080
+ [ 3, 5, 6 ], [ -2, -5, -8 ], [ -3 ]>,
1081
+ <bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 7, 8, -4, -8 ],
1082
+ [ 3, 5, 6 ], [ -7 ]> ]
1083
+ gap> RClassReps(S);
1084
+ [ <bipartition: [ 1, 2, 3, 4, 5, -2, -4 ], [ 6, 7 ], [ 8, -1, -6 ],
1085
+ [ -3, -5, -7 ], [ -8 ]>,
1086
+ <bipartition: [ 1, 2, 3, 4, -1, -2 ], [ 5, 6, -5 ], [ 7, 8, -4, -6 ],
1087
+ [ -3, -7 ], [ -8 ]>, <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
1088
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1089
+ <bipartition: [ 1, 2, 4, 7, -1, -2, -4 ], [ 3, -7 ], [ 5, -5 ], [ 6, 8 ],
1090
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 8, -2 ], [ 3, 4, 5, -5 ],
1091
+ [ 6, 7, -4 ], [ -1, -7 ], [ -3, -6, -8 ]>,
1092
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -5 ], [ 4 ], [ -1, -2, -3, -6 ]
1093
+ , [ -7 ], [ -8 ]>,
1094
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -5 ], [ 2, -4 ], [ 7, -3, -8 ],
1095
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, -1, -7 ], [ 2, -6 ], [ 6 ],
1096
+ [ 7, -3 ], [ 8, -4 ], [ -2, -5, -8 ]>,
1097
+ <bipartition: [ 1, 3, 4, 6, 7, -5 ], [ 2, 5, 8, -1, -2, -4, -7 ], [ -3 ],
1098
+ [ -6, -8 ]>, <bipartition: [ 1, 3, 4, -8 ], [ 2, 6, 8, -1 ],
1099
+ [ 5, 7, -2, -3, -4, -7 ], [ -5 ], [ -6 ]>,
1100
+ <bipartition: [ 1, 4, 8, -4, -6, -8 ], [ 2, 3, 6, -3, -5 ], [ 5, -1, -7 ],
1101
+ [ 7 ], [ -2 ]>,
1102
+ <bipartition: [ 1, 5, -1, -2, -4, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -5 ],
1103
+ [ -3 ], [ -6, -8 ]>,
1104
+ <bipartition: [ 1, -6 ], [ 2, 3, 4, -2, -8 ], [ 5, 6, 7, -1, -3 ], [ 8 ],
1105
+ [ -4, -7 ], [ -5 ]>,
1106
+ <bipartition: [ 1, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 4 ], [ 5, -2, -5 ],
1107
+ [ 6 ], [ -7, -8 ]>, <bipartition: [ 1, 8, -3, -5, -6 ], [ 2, 3, 4, -1 ],
1108
+ [ 5, -2 ], [ 6, 7 ], [ -4, -7 ], [ -8 ]>,
1109
+ <bipartition: [ 1, 7, 8, -5 ], [ 2, 3, 5, -6 ], [ 4 ], [ 6, -1, -3 ],
1110
+ [ -2 ], [ -4, -7, -8 ]>,
1111
+ <bipartition: [ 1, 4, -1, -3, -4 ], [ 2, 7, 8, -2, -6 ], [ 3, 5, 6, -8 ],
1112
+ [ -5, -7 ]>, <bipartition: [ 1, 5, 8 ], [ 2, 4, 7, -7 ], [ 3, 6 ],
1113
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1114
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -5 ], [ 5, 7, -3, -4, -6 ],
1115
+ [ 8, -2 ], [ -1, -7 ], [ -8 ]>,
1116
+ <bipartition: [ 1, 5, -8 ], [ 2, -4 ], [ 3, 6, 8, -1, -6 ],
1117
+ [ 4, 7, -2, -3, -5 ], [ -7 ]>,
1118
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -7 ], [ 6, 7 ], [ -1, -2 ],
1119
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1120
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, 8, -7 ], [ -1, -2 ], [ -3, -6, -8 ],
1121
+ [ -4 ], [ -5 ]>, <bipartition: [ 1, 2, 4, 5, 7, -2, -4 ], [ 3, -1, -6 ],
1122
+ [ 6, 8 ], [ -3, -5, -7 ], [ -8 ]>,
1123
+ <bipartition: [ 1, 2, 3, 5, 6, 7, 8, -7 ], [ 4 ], [ -1, -2 ],
1124
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1125
+ <bipartition: [ 1, 2, 3, 4, 5, 7, 8, -7 ], [ 6 ], [ -1, -2 ],
1126
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1127
+ <bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 5, 6, 7, 8, -2, -4 ],
1128
+ [ -3, -5, -7 ], [ -8 ]>,
1129
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 8, -7 ], [ 7 ], [ -1, -2 ],
1130
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1131
+ <bipartition: [ 1, 5, 8, -7 ], [ 2, 3, 4, 6, 7 ], [ -1, -2 ],
1132
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1133
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
1134
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1135
+ <bipartition: [ 1, 5, 7, 8, -7 ], [ 2, 3, 4 ], [ 6 ], [ -1, -2 ],
1136
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1137
+ <bipartition: [ 1, 2, 4, 7, 8, -2, -4 ], [ 3, 5, 6, -1, -6 ],
1138
+ [ -3, -5, -7 ], [ -8 ]>,
1139
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, 8, -7 ], [ -1, -2 ],
1140
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1141
+ <bipartition: [ 1, 5, -1, -6 ], [ 2, 3, 4, 6, 7, 8, -2, -4 ],
1142
+ [ -3, -5, -7 ], [ -8 ]>,
1143
+ <bipartition: [ 1, 2, 4, 7, -1, -2, -4, -7 ], [ 3, 5, -5 ], [ 6, 8 ],
1144
+ [ -3 ], [ -6, -8 ]>,
1145
+ <bipartition: [ 1, -5 ], [ 2, 3, 4, 5, 6, 7, -1, -2, -4, -7 ], [ 8 ],
1146
+ [ -3 ], [ -6, -8 ]>,
1147
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -5 ], [ 4 ], [ 6, -1, -2, -4, -7 ],
1148
+ [ -3 ], [ -6, -8 ]>,
1149
+ <bipartition: [ 1, 5, -1, -2, -4, -7 ], [ 2, 3, 4, 6, 7, 8, -5 ], [ -3 ],
1150
+ [ -6, -8 ]>, <bipartition: [ 1, 2, 3, 4, -7 ], [ 5, 6, 7, 8 ],
1151
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1152
+ <bipartition: [ 1, 2, 3, 4, 5, 7, -7 ], [ 6, 8 ], [ -1, -2 ],
1153
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1154
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -2, -4, -7 ], [ 5, 6, -5 ], [ -3 ],
1155
+ [ -6, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -5 ], [ 5, -1, -2, -4, -7 ],
1156
+ [ 6, 8 ], [ -3 ], [ -6, -8 ]>,
1157
+ <bipartition: [ 1, 2, 6, 7, 8, -5 ], [ 3, 4, 5, -1, -2, -4, -7 ], [ -3 ],
1158
+ [ -6, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -2, -4, -7 ],
1159
+ [ 3, 8, -5 ], [ 4 ], [ -3 ], [ -6, -8 ]>,
1160
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6, -7 ], [ 6 ], [ 7, -3 ],
1161
+ [ -2, -5, -8 ], [ -4 ]>,
1162
+ <bipartition: [ 1, 3, 4 ], [ 2, 5, 6, 7, 8, -7 ], [ -1, -2 ],
1163
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1164
+ <bipartition: [ 1, 4, 5, 8, -5 ], [ 2, 3, 6, -1, -2, -4, -7 ], [ 7 ],
1165
+ [ -3 ], [ -6, -8 ]>,
1166
+ <bipartition: [ 1, 8, -1, -2, -4, -7 ], [ 2, 3, 4, 5, -5 ], [ 6, 7 ],
1167
+ [ -3 ], [ -6, -8 ]>,
1168
+ <bipartition: [ 1, 7, 8, -5 ], [ 2, 3, 5, 6, -1, -2, -4, -7 ], [ 4 ],
1169
+ [ -3 ], [ -6, -8 ]>,
1170
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -5 ], [ 5, 7, 8, -1, -2, -4, -7 ],
1171
+ [ -3 ], [ -6, -8 ]>,
1172
+ <bipartition: [ 1, 2, 3, 4, -1, -2, -4, -7 ], [ 5, 6, 7, 8, -5 ], [ -3 ],
1173
+ [ -6, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7 ], [ 3, 8, -7 ], [ 4 ],
1174
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1175
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -5 ], [ -1, -2, -3, -6 ]
1176
+ , [ -7 ], [ -8 ]>,
1177
+ <bipartition: [ 1, 2, 3, 4, 5, 7, -7 ], [ 6 ], [ 8 ], [ -1, -2 ],
1178
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1179
+ <bipartition: [ 1, 5, -7 ], [ 2, 3, 4, 6, 7 ], [ 8 ], [ -1, -2 ],
1180
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1181
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -7 ], [ 2 ], [ -1, -2 ],
1182
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1183
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -4, -5 ], [ 3, -3, -8 ], [ 6, 8 ],
1184
+ [ -2, -6, -7 ]>,
1185
+ <bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -3, -5, -8 ],
1186
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 8, -1, -3, -5, -8 ],
1187
+ [ 5, -4 ], [ 6, 7 ], [ -2, -6, -7 ]>,
1188
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -5, -8 ], [ 8, -4 ],
1189
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -6, -7 ], [ 3, -3 ],
1190
+ [ 6, 8 ], [ -2, -5, -8 ], [ -4 ]>,
1191
+ <bipartition: [ 1, 2, 8, -1, -2, -4, -7 ], [ 3, 4, 5, 6, 7, -5 ], [ -3 ],
1192
+ [ -6, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, 8, -7 ], [ 2 ], [ 6 ],
1193
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1194
+ <bipartition: [ 1, 3, 4, 6, 7, -7 ], [ 2, 5, 8 ], [ -1, -2 ],
1195
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1196
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 5, 6, 7, 8, -1, -3, -6, -7 ],
1197
+ [ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -2, -4, -7 ],
1198
+ [ 5, 6, 7, -5 ], [ 8 ], [ -3 ], [ -6, -8 ]>,
1199
+ <bipartition: [ 1, 2, 3, 4, 8, -5 ], [ 5, -1, -2, -4, -7 ], [ 6, 7 ],
1200
+ [ -3 ], [ -6, -8 ]>,
1201
+ <bipartition: [ 1, 6, 7, 8, -7 ], [ 2, 3, 5 ], [ 4 ], [ -1, -2 ],
1202
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1203
+ <bipartition: [ 1, 4, -1, -3, -7 ], [ 2, 7, 8, -6 ], [ 3, 5, 6, -4 ],
1204
+ [ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -5 ],
1205
+ [ 8, -1, -2, -4, -7 ], [ -3 ], [ -6, -8 ]>,
1206
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -6, -7 ],
1207
+ [ -2, -5, -8 ], [ -3 ]>,
1208
+ <bipartition: [ 1, 5, 6, 7, -5 ], [ 2, 3, 4, -1, -2, -4, -7 ], [ 8 ],
1209
+ [ -3 ], [ -6, -8 ]>,
1210
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -2, -4, -7 ], [ 5, 7, -5 ],
1211
+ [ -3 ], [ -6, -8 ]>,
1212
+ <bipartition: [ 1, 2, 3, 4, -5 ], [ 5, 6, 7, -1, -2, -4, -7 ], [ 8 ],
1213
+ [ -3 ], [ -6, -8 ]>,
1214
+ <bipartition: [ 1, 4, -8 ], [ 2, 3, 5, 6, 7, 8, -1 ], [ -2, -3, -4, -7 ],
1215
+ [ -5 ], [ -6 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -3, -4, -5, -6, -8 ],
1216
+ [ 5, 6, -1, -7 ], [ -2 ]>,
1217
+ <bipartition: [ 1, 2, 3, 7 ], [ 4, 5, 6, 8 ], [ -1, -2, -3, -6 ],
1218
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1219
+ <bipartition: [ 1, 2, 4, 7, -3, -4, -5, -6, -8 ], [ 3 ], [ 5, -1, -7 ],
1220
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 6, 7, 8, -3, -4, -5, -6, -8 ],
1221
+ [ 3, 4, 5, -1, -7 ], [ -2 ]>,
1222
+ <bipartition: [ 1, 2, 5, 6, 7, -3, -4, -5, -6, -8 ], [ 3, 8, -1, -7 ],
1223
+ [ 4 ], [ -2 ]>,
1224
+ <bipartition: [ 1, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
1225
+ [ 6, 7 ], [ -2 ]>,
1226
+ <bipartition: [ 1, 7, 8, -1, -7 ], [ 2, 3, 5, 6, -3, -4, -5, -6, -8 ],
1227
+ [ 4 ], [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -7 ],
1228
+ [ 5, 7, 8, -3, -4, -5, -6, -8 ], [ -2 ]>,
1229
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ], [ 2, 7, -5 ], [ -3 ],
1230
+ [ -6, -8 ]>, <bipartition: [ 1, 3, 4, -5 ], [ 2, 6, 8, -1, -2, -4, -7 ],
1231
+ [ 5, 7 ], [ -3 ], [ -6, -8 ]>,
1232
+ <bipartition: [ 1, 2, 4, 7, 8, -1, -2, -4, -7 ], [ 3, 5, 6, -5 ], [ -3 ],
1233
+ [ -6, -8 ]>,
1234
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -5 ], [ 5, 7, -1, -2, -4, -7 ],
1235
+ [ -3 ], [ -6, -8 ]>,
1236
+ <bipartition: [ 1, 5, 8, -1, -2, -4, -7 ], [ 2, 3, 4, -5 ], [ 6, 7 ],
1237
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 2, 4, 7, 8, -7 ], [ 3, 5, 6 ],
1238
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1239
+ <bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7, 8, -7 ], [ -1, -2 ],
1240
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1241
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -4, -6 ], [ 5, 6, -2, -5 ],
1242
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -1, -3, -4, -6 ],
1243
+ [ 5, -2, -5 ], [ 6, 8 ], [ -7, -8 ]>,
1244
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -3, -4, -6 ], [ 3, 4, 5, -2, -5 ],
1245
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -4, -6 ],
1246
+ [ 3, 8, -2, -5 ], [ 4 ], [ -7, -8 ]>,
1247
+ <bipartition: [ 1 ], [ 2, 3, 4, 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
1248
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1249
+ <bipartition: [ 1, 7, 8, -2, -5 ], [ 2, 3, 5 ], [ 4 ], [ 6, -1, -3, -4, -6 ]
1250
+ , [ -7, -8 ]>,
1251
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -7 ], [ 5, 7, 8 ], [ -1, -2 ],
1252
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1253
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -4, -6 ], [ 2, 4, 7, -2, -5 ],
1254
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -2, -4, -7 ],
1255
+ [ 5, 7, -5 ], [ -3 ], [ -6, -8 ]>,
1256
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -2, -4, -7 ], [ 2, 4, 7, -5 ], [ -3 ],
1257
+ [ -6, -8 ]>,
1258
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -5 ], [ 7, 8, -1, -2, -4, -7 ], [ -3 ],
1259
+ [ -6, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -5 ], [ 2, -1, -2, -4, -7 ],
1260
+ [ 6 ], [ 8 ], [ -3 ], [ -6, -8 ]>,
1261
+ <bipartition: [ 1, 6, 7, 8, -5 ], [ 2, 3, 5, -1, -2, -4, -7 ], [ 4 ],
1262
+ [ -3 ], [ -6, -8 ]>,
1263
+ <bipartition: [ 1, 3, 5, 6, 8, -5 ], [ 2 ], [ 4, 7, -1, -2, -4, -7 ],
1264
+ [ -3 ], [ -6, -8 ]>,
1265
+ <bipartition: [ 1, 3, 4, 5, 8, -7 ], [ 2, 7 ], [ 6 ], [ -1, -2 ],
1266
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1267
+ <bipartition: [ 1, 2, 3, 4, 6, 8 ], [ 5, 7, -7 ], [ -1, -2 ],
1268
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1269
+ <bipartition: [ 1, 2, 3, 4, 8 ], [ 5, -7 ], [ 6, 7 ], [ -1, -2 ],
1270
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1271
+ <bipartition: [ 1, 2, 3, 4, 5 ], [ 6, 7 ], [ 8, -7 ], [ -1, -2 ],
1272
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1273
+ <bipartition: [ 1, 2, 4, 7 ], [ 3, 5, -7 ], [ 6, 8 ], [ -1, -2 ],
1274
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1275
+ <bipartition: [ 1, 2, 6, 7, 8 ], [ 3, 4, 5, -7 ], [ -1, -2 ],
1276
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1277
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -2, -4, -7 ], [ 2, 7, -5 ], [ 6 ],
1278
+ [ -3 ], [ -6, -8 ]>,
1279
+ <bipartition: [ 1, 3, 4, -1, -2, -4, -7 ], [ 2, 6, 8 ], [ 5, 7, -5 ],
1280
+ [ -3 ], [ -6, -8 ]>,
1281
+ <bipartition: [ 1, 5, 8 ], [ 2, 3, 4, 6, 7 ], [ -1, -2, -3, -6 ],
1282
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1283
+ <bipartition: [ 1, 5, 8, -7 ], [ 2, 3, 4 ], [ 6, 7 ], [ -1, -2 ],
1284
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1285
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4, -8 ], [ 7, 8, -1, -2, -3, -5, -6 ],
1286
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -5 ], [ 2, 6, 8, -1, -2, -4, -7 ]
1287
+ , [ -3 ], [ -6, -8 ]>,
1288
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -5 ], [ 2, -1, -2, -4, -7 ], [ -3 ],
1289
+ [ -6, -8 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -2, -4 ], [ 6 ],
1290
+ [ 7, -1, -6 ], [ -3, -5, -7 ], [ -8 ]>,
1291
+ <bipartition: [ 1, 4, -1, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -4 ],
1292
+ [ -3, -5, -7 ], [ -8 ]>,
1293
+ <bipartition: [ 1, 2, 4, 5, 7, -7 ], [ 3 ], [ 6, 8 ], [ -1, -2 ],
1294
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1295
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -7 ], [ 5, 7 ], [ -1, -2 ],
1296
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1297
+ <bipartition: [ 1, 3, 4, 6, 7, -2, -4 ], [ 2, 5, 8, -1, -6 ],
1298
+ [ -3, -5, -7 ], [ -8 ]>,
1299
+ <bipartition: [ 1, 8, -1, -6 ], [ 2, 3, 4, 5, -2, -4 ], [ 6, 7 ],
1300
+ [ -3, -5, -7 ], [ -8 ]>,
1301
+ <bipartition: [ 1, 3, 4, 5, 7, -7 ], [ 2, 6, 8 ], [ -1, -2 ],
1302
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1303
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2, 7, -2, -4 ],
1304
+ [ -3, -5, -7 ], [ -8 ]>,
1305
+ <bipartition: [ 1, 3, 4, 5, 7, -2, -4 ], [ 2, 6, 8, -1, -6 ],
1306
+ [ -3, -5, -7 ], [ -8 ]>,
1307
+ <bipartition: [ 1, 2, 4, 7, -7 ], [ 3, 5 ], [ 6, 8 ], [ -1, -2 ],
1308
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1309
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -4, -7 ], [ 2 ], [ 7, -5 ],
1310
+ [ -3 ], [ -6, -8 ]>, <bipartition: [ 1, 4 ], [ 2, 3, 5, 6, 7, 8, -7 ],
1311
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1312
+ <bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2 ], [ 7, -7 ], [ -1, -2 ],
1313
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1314
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -5 ], [ 6, 8 ], [ -1, -2, -3, -6 ]
1315
+ , [ -7 ], [ -8 ]>, <bipartition: [ 1, 2, 8 ], [ 3, 4, 5, 6, 7, -7 ],
1316
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1317
+ <bipartition: [ 1, 2, 3, 4, 8, -7 ], [ 5 ], [ 6, 7 ], [ -1, -2 ],
1318
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1319
+ <bipartition: [ 1, 5, 8 ], [ 2, 4, 7 ], [ 3, 6 ], [ -1, -2, -3, -6 ],
1320
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1321
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
1322
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1323
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -7 ], [ 2, 7 ], [ -1, -2 ],
1324
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1325
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -7 ], [ 5, 7 ], [ -1, -2 ],
1326
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1327
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -4, -5 ], [ 6 ], [ 7, -3, -8 ],
1328
+ [ -2, -6, -7 ]>,
1329
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, 8, -1, -3, -5, -8 ],
1330
+ [ -2, -6, -7 ]>,
1331
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -3, -5, -8 ],
1332
+ [ -2, -6, -7 ]>,
1333
+ <bipartition: [ 1, 8, -1, -3, -5, -8 ], [ 2, 3, 4, 5, -4 ], [ 6, 7 ],
1334
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -5, -8 ],
1335
+ [ 5, 6, -4 ], [ -2, -6, -7 ]>,
1336
+ <bipartition: [ 1, 2, 3, 4, 7, -1, -3, -5, -8 ], [ 5, -4 ], [ 6, 8 ],
1337
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 6, 7, 8, -1, -3, -5, -8 ],
1338
+ [ 3, 4, 5, -4 ], [ -2, -6, -7 ]>,
1339
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -8 ], [ 3, 8, -4 ], [ 4 ],
1340
+ [ -2, -6, -7 ]>,
1341
+ <bipartition: [ 1, 7, 8, -4 ], [ 2, 3, 5, 6, -1, -3, -5, -8 ], [ 4 ],
1342
+ [ -2, -6, -7 ]>,
1343
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4 ], [ 5, 7, 8, -1, -3, -5, -8 ],
1344
+ [ -2, -6, -7 ]>,
1345
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8 ], [ 5, 7, -1, -3, -5, -8 ],
1346
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -5, -8 ],
1347
+ [ 3, 5, 6, -4 ], [ -2, -6, -7 ]>,
1348
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -5, -8 ],
1349
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, -7 ], [ 2, 7, 8 ],
1350
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1351
+ <bipartition: [ 1, 5, 6, 7, -7 ], [ 2, 3, 4 ], [ 8 ], [ -1, -2 ],
1352
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1353
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8 ], [ 5, 7, -7 ], [ -1, -2 ],
1354
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1355
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -6, -7 ],
1356
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8 ], [ 5, 7, -7 ],
1357
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1358
+ <bipartition: [ 1, 4, 5, 8, -7 ], [ 2, 3, 6 ], [ 7 ], [ -1, -2 ],
1359
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1360
+ <bipartition: [ 1, 3, 5, 6, 8, -7 ], [ 2 ], [ 4, 7 ], [ -1, -2 ],
1361
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1362
+ <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -6, -7 ], [ 2, 5, 8, -4 ],
1363
+ [ -2, -5, -8 ]>,
1364
+ <bipartition: [ 1, 8, -4 ], [ 2, 3, 4, 5, -1, -3, -6, -7 ], [ 6, 7 ],
1365
+ [ -2, -5, -8 ]>,
1366
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -6, -7 ],
1367
+ [ -2, -5, -8 ], [ -3 ]>,
1368
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -6, -7 ], [ 2, 6, 8, -4 ],
1369
+ [ -2, -5, -8 ], [ -3 ]>,
1370
+ <bipartition: [ 1, -1, -7 ], [ 2, 3, 4, 5, 6, 7, -3, -4, -5, -6, -8 ],
1371
+ [ 8 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -7 ], [ 4 ],
1372
+ [ 6, -3, -4, -5, -6, -8 ], [ -2 ]>,
1373
+ <bipartition: [ 1, 2, 3, 4, 5, 8 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
1374
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1375
+ <bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
1376
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1377
+ <bipartition: [ 1, 2, 3, 4, 5, 7 ], [ 6, 8 ], [ -1, -2, -3, -6 ],
1378
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1379
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ], [ -4, -5 ],
1380
+ [ -7 ], [ -8 ]>,
1381
+ <bipartition: [ 1, 2, 3, 5, 6, 7, 8 ], [ 4 ], [ -1, -2, -3, -6 ],
1382
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1383
+ <bipartition: [ 1, 2, 3, 4, 5, 7, 8 ], [ 6 ], [ -1, -2, -3, -6 ],
1384
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1385
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 8 ], [ 7 ], [ -1, -2, -3, -6 ],
1386
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1387
+ <bipartition: [ 1, 2, 3, 4, 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1388
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1389
+ <bipartition: [ 1, 5, 7, 8 ], [ 2, 3, 4 ], [ 6 ], [ -1, -2, -3, -6 ],
1390
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1391
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
1392
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1393
+ <bipartition: [ 1, 2, 3, 4, 7, -3, -4, -5, -6, -8 ], [ 5, -1, -7 ],
1394
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -7 ], [ 6 ], [ 7 ],
1395
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1396
+ <bipartition: [ 1, 4, 5, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 6, -1, -7 ],
1397
+ [ 7 ], [ -2 ]>,
1398
+ <bipartition: [ 1, 8, -1, -7 ], [ 2, 3, 4, 5, -3, -4, -5, -6, -8 ],
1399
+ [ 6, 7 ], [ -2 ]>,
1400
+ <bipartition: [ 1, 5, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 6, 7 ],
1401
+ [ 8, -1, -7 ], [ -2 ]>,
1402
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2 ],
1403
+ [ 7, -1, -7 ], [ -2 ]>,
1404
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -5, -7 ], [ 5, 7, -4, -6, -8 ],
1405
+ [ -2 ]>,
1406
+ <bipartition: [ 1, 3, 4, 6, 7, -1, -7 ], [ 2, 5, 8, -3, -4, -5, -6, -8 ],
1407
+ [ -2 ]>,
1408
+ <bipartition: [ 1, 5, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 4, -1, -7 ],
1409
+ [ 6, 7 ], [ -2 ]>,
1410
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -7 ], [ 3, 8, -3, -4, -5, -6, -8 ],
1411
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -3, -4, -5, -6, -8 ],
1412
+ [ 2, 7, -1, -7 ], [ 6 ], [ -2 ]>,
1413
+ <bipartition: [ 1, 5, 6, 7, -1, -7 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
1414
+ [ 8 ], [ -2 ]>,
1415
+ <bipartition: [ 1, 7, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 5, 6, -1, -7 ],
1416
+ [ 4 ], [ -2 ]>,
1417
+ <bipartition: [ 1, 2, 4, 7, 8, -1, -7 ], [ 3, 5, 6, -3, -4, -5, -6, -8 ],
1418
+ [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -3, -4, -5, -6, -8 ],
1419
+ [ 5, 7, 8, -1, -7 ], [ -2 ]>,
1420
+ <bipartition: [ 1, 2, 5, 6, 7, -7 ], [ 3, 8 ], [ 4 ], [ -1, -2 ],
1421
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1422
+ <bipartition: [ 1, 4, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -4, -7 ], [ -3 ],
1423
+ [ -6, -8 ]>, <bipartition: [ 1, 8 ], [ 2, 3, 4, 5, -7 ], [ 6, 7 ],
1424
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1425
+ <bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2, 7, -7 ], [ -1, -2 ],
1426
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1427
+ <bipartition: [ 1, -2, -5 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -4, -6 ], [ 8 ],
1428
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -2, -5 ], [ 4 ],
1429
+ [ 6, -1, -3, -4, -6 ], [ -7, -8 ]>,
1430
+ <bipartition: [ 1, 7, 8, -2, -5 ], [ 2, 3, 5, 6, -1, -3, -4, -6 ], [ 4 ],
1431
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -2, -5 ],
1432
+ [ 5, 7, 8, -1, -3, -4, -6 ], [ -7, -8 ]>,
1433
+ <bipartition: [ 1, 5, -1, -3, -4, -6 ], [ 2, 3, 4, 6, 7 ], [ 8, -2, -5 ],
1434
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ], [ 2 ],
1435
+ [ 7, -2, -5 ], [ -7, -8 ]>,
1436
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -2, -5 ], [ 7, 8, -1, -3, -4, -6 ],
1437
+ [ -7, -8 ]>,
1438
+ <bipartition: [ 1, 3, 4, 5, 7, -2, -5 ], [ 2, -1, -3, -4, -6 ], [ 6 ],
1439
+ [ 8 ], [ -7, -8 ]>,
1440
+ <bipartition: [ 1, 3, 4, 6, 7, -2, -5 ], [ 2, 5, 8, -1, -3, -4, -6 ],
1441
+ [ -7, -8 ]>,
1442
+ <bipartition: [ 1, -1, -3, -4, -6 ], [ 2, 3, 4, 5, 6, 7, -2, -5 ], [ 8 ],
1443
+ [ -7, -8 ]>,
1444
+ <bipartition: [ 1, 5, 8, -1, -3, -4, -6 ], [ 2, 3, 4, -2, -5 ], [ 6, 7 ],
1445
+ [ -7, -8 ]>,
1446
+ <bipartition: [ 1, 6, 7, 8, -2, -5 ], [ 2, 3, 5, -1, -3, -4, -6 ], [ 4 ],
1447
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8 ], [ 2, 7, -7 ], [ 6 ],
1448
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1449
+ <bipartition: [ 1, 7, 8 ], [ 2, 3, 5, 6, -7 ], [ 4 ], [ -1, -2 ],
1450
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1451
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6 ], [ 5, 7, 8, -7 ], [ -1, -2 ],
1452
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1453
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -3, -4, -6 ], [ 5, -2, -5 ], [ 6, 7 ],
1454
+ [ -7, -8 ]>, <bipartition: [ 1, 4, -5 ], [ 2, 7, 8, -1, -2, -4, -7 ],
1455
+ [ 3, 5, 6 ], [ -3 ], [ -6, -8 ]>,
1456
+ <bipartition: [ 1, 2, 3, 4, 7, 8 ], [ 5, 6, -7 ], [ -1, -2 ],
1457
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1458
+ <bipartition: [ 1, 2, 3, 4, 7 ], [ 5, -7 ], [ 6, 8 ], [ -1, -2 ],
1459
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1460
+ <bipartition: [ 1, 7, 8, -7 ], [ 2, 3, 5, 6 ], [ 4 ], [ -1, -2 ],
1461
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1462
+ <bipartition: [ 1, 2, 4, 5, 7 ], [ 3, -7 ], [ 6, 8 ], [ -1, -2 ],
1463
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1464
+ <bipartition: [ 1, 3, 4, -7 ], [ 2, 5, 6, 7, 8 ], [ -1, -2 ],
1465
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1466
+ <bipartition: [ 1, 2, 4, 7, 8 ], [ 3, 5, 6, -7 ], [ -1, -2 ],
1467
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1468
+ <bipartition: [ 1, 5, -7 ], [ 2, 3, 4, 6, 7, 8 ], [ -1, -2 ],
1469
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1470
+ <bipartition: [ 1, 4, 5, 8 ], [ 2, 3, 6, -7 ], [ 7 ], [ -1, -2 ],
1471
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1472
+ <bipartition: [ 1, 8, -7 ], [ 2, 3, 4, 5 ], [ 6, 7 ], [ -1, -2 ],
1473
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1474
+ <bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7 ], [ 8, -7 ], [ -1, -2 ],
1475
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1476
+ <bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7, -7 ], [ 8 ], [ -1, -2 ],
1477
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1478
+ <bipartition: [ 1, 4, -7 ], [ 2, 3, 5, 6, 7, 8 ], [ -1, -2 ],
1479
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1480
+ <bipartition: [ 1, 2, 3, 4, 6, 8 ], [ 5, 7 ], [ -1, -2, -3, -6 ],
1481
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1482
+ <bipartition: [ 1, 5, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 6, 7, 8, -4, -8 ],
1483
+ [ -7 ]>, <bipartition: [ 1, 5, 6, 7, -2, -4 ], [ 2, 3, 4, -1, -6 ],
1484
+ [ 8 ], [ -3, -5, -7 ], [ -8 ]>,
1485
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -6 ], [ 5, 7, -2, -4 ],
1486
+ [ -3, -5, -7 ], [ -8 ]>,
1487
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -6 ], [ 5, 7, -2, -4 ],
1488
+ [ -3, -5, -7 ], [ -8 ]>,
1489
+ <bipartition: [ 1, 5, 8, -2, -4 ], [ 2, 3, 4, -1, -6 ], [ 6, 7 ],
1490
+ [ -3, -5, -7 ], [ -8 ]>,
1491
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -6 ], [ 2, 4, 7, -2, -4 ],
1492
+ [ -3, -5, -7 ], [ -8 ]>,
1493
+ <bipartition: [ 1, 2, 3, 4, -1, -6 ], [ 5, 6, 7, -2, -4 ], [ 8 ],
1494
+ [ -3, -5, -7 ], [ -8 ]>,
1495
+ <bipartition: [ 1, 4, -2, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6 ],
1496
+ [ -3, -5, -7 ], [ -8 ]>,
1497
+ <bipartition: [ 1, 2, 3, 4, 7, -7 ], [ 5 ], [ 6, 8 ], [ -1, -2 ],
1498
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1499
+ <bipartition: [ 1, 2, 6, 7, 8, -7 ], [ 3, 4, 5 ], [ -1, -2 ],
1500
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1501
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -2, -4, -7 ], [ 3, -5 ], [ 6, 8 ],
1502
+ [ -3 ], [ -6, -8 ]>,
1503
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -5 ], [ -1, -2, -3, -6 ]
1504
+ , [ -7 ], [ -8 ]>, <bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7, 8, -7 ],
1505
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1506
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -7 ], [ 5, 6 ], [ -1, -2 ],
1507
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1508
+ <bipartition: [ 1, 3, 4, 5, 8 ], [ 2, 7 ], [ 6 ], [ -1, -2, -3, -6 ],
1509
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1510
+ <bipartition: [ 1, 2, 3, 4, 8 ], [ 5 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
1511
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1512
+ <bipartition: [ 1, 2, 3, 4, -7 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2 ],
1513
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1514
+ <bipartition: [ 1, 2, 4, 7, -4 ], [ 3, 5, -1, -3, -5, -8 ], [ 6, 8 ],
1515
+ [ -2, -6, -7 ]>,
1516
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ],
1517
+ [ -2, -6, -7 ]>,
1518
+ <bipartition: [ 1, 3, 4, -1, -3, -5, -8 ], [ 2, 6, 8, -4 ], [ 5, 7 ],
1519
+ [ -2, -6, -7 ]>,
1520
+ <bipartition: [ 1, 2, 4, 7, 8, -4 ], [ 3, 5, 6, -1, -3, -5, -8 ],
1521
+ [ -2, -6, -7 ]>,
1522
+ <bipartition: [ 1, 5, -1, -3, -5, -8 ], [ 2, 3, 4, 6, 7, 8, -4 ],
1523
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -5, -8 ],
1524
+ [ 5, 7, -4 ], [ -2, -6, -7 ]>,
1525
+ <bipartition: [ 1, 5, 8, -4 ], [ 2, 3, 4, -1, -3, -5, -8 ], [ 6, 7 ],
1526
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -8 ],
1527
+ [ 2, 4, 7, -4 ], [ -2, -6, -7 ]>,
1528
+ <bipartition: [ 1, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -5, -8 ], [ 8 ],
1529
+ [ -2, -6, -7 ]>,
1530
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -4 ], [ 4 ], [ 6, -1, -3, -5, -8 ],
1531
+ [ -2, -6, -7 ]>,
1532
+ <bipartition: [ 1, 5, -1, -3, -5, -8 ], [ 2, 3, 4, 6, 7 ], [ 8, -4 ],
1533
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
1534
+ [ 2 ], [ 7, -4 ], [ -2, -6, -7 ]>,
1535
+ <bipartition: [ 1, 3, 4, 6, 7, -4 ], [ 2, 5, 8, -1, -3, -5, -8 ],
1536
+ [ -2, -6, -7 ]>,
1537
+ <bipartition: [ 1, 5, 8, -1, -3, -5, -8 ], [ 2, 3, 4, -4 ], [ 6, 7 ],
1538
+ [ -2, -6, -7 ]>,
1539
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -5, -8 ], [ 4 ],
1540
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -8 ],
1541
+ [ 2, 7, -4 ], [ 6 ], [ -2, -6, -7 ]>,
1542
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -5, -8 ], [ 8 ],
1543
+ [ -2, -6, -7 ]>,
1544
+ <bipartition: [ 1, 7, 8, -1, -3, -5, -8 ], [ 2, 3, 5, 6, -4 ], [ 4 ],
1545
+ [ -2, -6, -7 ]>,
1546
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -5, -8 ], [ 5, 7, 8, -4 ],
1547
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -5, -8 ],
1548
+ [ 2, 5, 8, -4 ], [ -2, -6, -7 ]>,
1549
+ <bipartition: [ 1, 8, -4 ], [ 2, 3, 4, 5, -1, -3, -5, -8 ], [ 6, 7 ],
1550
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -8 ],
1551
+ [ 2, 6, 8, -4 ], [ -2, -6, -7 ]>,
1552
+ <bipartition: [ 1, 4 ], [ 2, 3, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
1553
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1554
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
1555
+ [ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4 ],
1556
+ [ 5, 7, -1, -3, -6, -7 ], [ -2, -5, -8 ]>,
1557
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -4 ], [ 5, 7, -1, -3, -6, -7 ],
1558
+ [ -2, -5, -8 ]>,
1559
+ <bipartition: [ 1, 5, 8, -1, -3, -6, -7 ], [ 2, 3, 4, -4 ], [ 6, 7 ],
1560
+ [ -2, -5, -8 ]>,
1561
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2, 4, 7, -1, -3, -6, -7 ],
1562
+ [ -2, -5, -8 ]>,
1563
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, -1, -6, -7 ], [ 8 ],
1564
+ [ -2, -5, -8 ], [ -3 ]>,
1565
+ <bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
1566
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -7 ],
1567
+ [ 5, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
1568
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -7 ], [ 7, 8, -3, -4, -5, -6, -8 ],
1569
+ [ -2 ]>,
1570
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -7 ], [ 2, -3, -4, -5, -6, -8 ], [ 6 ],
1571
+ [ 8 ], [ -2 ]>,
1572
+ <bipartition: [ 1, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 5, 6, 7, -1, -7 ],
1573
+ [ 8 ], [ -2 ]>,
1574
+ <bipartition: [ 1, 6, 7, 8, -1, -7 ], [ 2, 3, 5, -3, -4, -5, -6, -8 ],
1575
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 2, 4, 7 ], [ 3, 5 ], [ 6, 8 ],
1576
+ [ -1, -2, -3, -6 ], [ -4, -5 ], [ -7 ], [ -8 ]>,
1577
+ <bipartition: [ 1, 3, 4 ], [ 2, 5, 6, 7, 8 ], [ -1, -2, -3, -6 ],
1578
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1579
+ <bipartition: [ 1, 2, 5, 6, 7 ], [ 3, 8 ], [ 4 ], [ -1, -2, -3, -6 ],
1580
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1581
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8 ], [ 2 ], [ -1, -2, -3, -6 ],
1582
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1583
+ <bipartition: [ 1, 2, 3, 4, 5, 7 ], [ 6 ], [ 8 ], [ -1, -2, -3, -6 ],
1584
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1585
+ <bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1586
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1587
+ <bipartition: [ 1, 3, 4, 5, 7, 8 ], [ 2 ], [ 6 ], [ -1, -2, -3, -6 ],
1588
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1589
+ <bipartition: [ 1, 3, 4, 6, 7 ], [ 2, 5, 8 ], [ -1, -2, -3, -6 ],
1590
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1591
+ <bipartition: [ 1 ], [ 2, 3, 4, 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1592
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1593
+ <bipartition: [ 1, 6, 7, 8 ], [ 2, 3, 5 ], [ 4 ], [ -1, -2, -3, -6 ],
1594
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1595
+ <bipartition: [ 1, 2, 4, 5, 7 ], [ 3 ], [ 6, 8 ], [ -1, -2, -3, -6 ],
1596
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1597
+ <bipartition: [ 1, 2, 4, 7, 8 ], [ 3, 5, 6 ], [ -1, -2, -3, -6 ],
1598
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1599
+ <bipartition: [ 1, 5 ], [ 2, 3, 4, 6, 7, 8 ], [ -1, -2, -3, -6 ],
1600
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1601
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6 ], [ 5, 7, 8 ], [ -1, -2, -3, -6 ],
1602
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1603
+ <bipartition: [ 1, 2, 3, 4, 5 ], [ 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1604
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1605
+ <bipartition: [ 1, 2, 6, 7, 8 ], [ 3, 4, 5 ], [ -1, -2, -3, -6 ],
1606
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1607
+ <bipartition: [ 1, 3, 4, 5, 7 ], [ 2, 6, 8 ], [ -1, -2, -3, -6 ],
1608
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1609
+ <bipartition: [ 1, 5, 8 ], [ 2, 3, 4 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
1610
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1611
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -7 ], [ 5, 7, -3, -4, -5, -6, -8 ],
1612
+ [ -2 ]>,
1613
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -7 ], [ 2, 4, 7, -3, -4, -5, -6, -8 ],
1614
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -3, -4, -5, -6, -8 ],
1615
+ [ 2, 7, -1, -7 ], [ -2 ]>,
1616
+ <bipartition: [ 1, 3, 4, -1, -7 ], [ 2, 6, 8, -3, -4, -5, -6, -8 ],
1617
+ [ 5, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 4, 7, 8, -3, -4, -5, -6, -8 ],
1618
+ [ 3, 5, 6, -1, -7 ], [ -2 ]>,
1619
+ <bipartition: [ 1, 5, -1, -7 ], [ 2, 3, 4, 6, 7, 8, -3, -4, -5, -6, -8 ],
1620
+ [ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -3, -4, -5, -6, -8 ],
1621
+ [ 3, -1, -7 ], [ 6, 8 ], [ -2 ]>,
1622
+ <bipartition: [ 1, 2, 4, 7, -1, -3, -5, -7 ], [ 3, 5, -4, -6, -8 ],
1623
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -5, -7 ],
1624
+ [ 3, 8, -4, -6, -8 ], [ 4 ], [ -2 ]>,
1625
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -3, -4, -5, -6, -8 ],
1626
+ [ 5, 7, -1, -7 ], [ -2 ]>,
1627
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -3, -4, -5, -6, -8 ], [ 5, 7, -1, -7 ],
1628
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2 ],
1629
+ [ 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
1630
+ <bipartition: [ 1, 3, 4, 6, 7, -3, -4, -5, -6, -8 ], [ 2, 5, 8, -1, -7 ],
1631
+ [ -2 ]>,
1632
+ <bipartition: [ 1, 5, 8, -1, -7 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
1633
+ [ 6, 7 ], [ -2 ]>,
1634
+ <bipartition: [ 1, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 5, -1, -7 ],
1635
+ [ 6, 7 ], [ -2 ]>,
1636
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
1637
+ [ 6 ], [ -2 ]>, <bipartition: [ 1, 5, 6, 7, -3, -4, -5, -6, -8 ],
1638
+ [ 2, 3, 4, -1, -7 ], [ 8 ], [ -2 ]>,
1639
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -7 ], [ 2 ], [ 7 ], [ -1, -2 ],
1640
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1641
+ <bipartition: [ 1, 3, 5, 6, 8 ], [ 2, 4, 7, -7 ], [ -1, -2 ],
1642
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1643
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -2, -5 ], [ 5, 7, -1, -3, -4, -6 ],
1644
+ [ -7, -8 ]>,
1645
+ <bipartition: [ 1, 2, 5, 6, 7, -2, -5 ], [ 3, 8, -1, -3, -4, -6 ], [ 4 ],
1646
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -4, -6 ],
1647
+ [ 2, 7, -2, -5 ], [ 6 ], [ -7, -8 ]>,
1648
+ <bipartition: [ 1, 5, 6, 7, -2, -5 ], [ 2, 3, 4, -1, -3, -4, -6 ], [ 8 ],
1649
+ [ -7, -8 ]>,
1650
+ <bipartition: [ 1, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 5, 6, -2, -5 ], [ 4 ],
1651
+ [ -7, -8 ]>,
1652
+ <bipartition: [ 1, 2, 4, 7, 8, -2, -5 ], [ 3, 5, 6, -1, -3, -4, -6 ],
1653
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -4, -6 ],
1654
+ [ 5, 7, 8, -2, -5 ], [ -7, -8 ]>,
1655
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -4, -6 ], [ 2, 7, -2, -5 ],
1656
+ [ -7, -8 ]>,
1657
+ <bipartition: [ 1, 3, 4, -2, -5 ], [ 2, 6, 8, -1, -3, -4, -6 ], [ 5, 7 ],
1658
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -4, -6 ],
1659
+ [ 3, 5, 6, -2, -5 ], [ -7, -8 ]>,
1660
+ <bipartition: [ 1, 5, -2, -5 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -4, -6 ],
1661
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -4, -6 ],
1662
+ [ 3, -2, -5 ], [ 6, 8 ], [ -7, -8 ]>,
1663
+ <bipartition: [ 1, 5, -1, -3, -4, -6 ], [ 2, 3, 4, 6, 7, 8, -2, -5 ],
1664
+ [ -7, -8 ]>,
1665
+ <bipartition: [ 1, 2, 8, -1, -3, -4, -6 ], [ 3, 4, 5, 6, 7, -2, -5 ],
1666
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -4, -6 ],
1667
+ [ 5, 6, 7, -2, -5 ], [ 8 ], [ -7, -8 ]>,
1668
+ <bipartition: [ 1, 2, 3, 4, 8, -2, -5 ], [ 5, -1, -3, -4, -6 ], [ 6, 7 ],
1669
+ [ -7, -8 ]>,
1670
+ <bipartition: [ 1, 4, -2, -5 ], [ 2, 7, 8, -1, -3, -4, -6 ], [ 3, 5, 6 ],
1671
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -2, -5 ],
1672
+ [ 8, -1, -3, -4, -6 ], [ -7, -8 ]>,
1673
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -4, -6 ], [ 5, 7, -2, -5 ]
1674
+ , [ -7, -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -4, -6 ],
1675
+ [ 5, 7, -2, -5 ], [ -7, -8 ]>,
1676
+ <bipartition: [ 1, 5, 8, -2, -5 ], [ 2, 3, 4, -1, -3, -4, -6 ], [ 6, 7 ],
1677
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -4, -6 ],
1678
+ [ 5, 7, -2, -5 ], [ -7, -8 ]>,
1679
+ <bipartition: [ 1, 4, 5, 8, -2, -5 ], [ 2, 3, 6, -1, -3, -4, -6 ], [ 7 ],
1680
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -2, -5 ], [ 2 ],
1681
+ [ 4, 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
1682
+ <bipartition: [ 1, 3, 4, 6, 7 ], [ 2, 5, 8, -7 ], [ -1, -2 ],
1683
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1684
+ <bipartition: [ 1, 5, 6, 7 ], [ 2, 3, 4, -7 ], [ 8 ], [ -1, -2 ],
1685
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1686
+ <bipartition: [ 1, -7 ], [ 2, 3, 4, 5, 6, 7 ], [ 8 ], [ -1, -2 ],
1687
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1688
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -7 ], [ 4 ], [ 6 ], [ -1, -2 ],
1689
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1690
+ <bipartition: [ 1, 5, 8 ], [ 2, 3, 4, -7 ], [ 6, 7 ], [ -1, -2 ],
1691
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1692
+ <bipartition: [ 1, 2, 3, 4, 5, 8 ], [ 6 ], [ 7, -7 ], [ -1, -2 ],
1693
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1694
+ <bipartition: [ 1, 3, 4, 5, 7 ], [ 2, 6, 8, -7 ], [ -1, -2 ],
1695
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1696
+ <bipartition: [ 1, 3, 5, 6, 8, -7 ], [ 2, 4, 7 ], [ -1, -2 ],
1697
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1698
+ <bipartition: [ 1, 3, 4, -7 ], [ 2, 6, 8 ], [ 5, 7 ], [ -1, -2 ],
1699
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1700
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2, 7, -4, -8 ],
1701
+ [ -7 ]>,
1702
+ <bipartition: [ 1, 3, 4, 5, 7, -4, -8 ], [ 2, 6, 8, -1, -2, -3, -5, -6 ],
1703
+ [ -7 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -6 ], [ 3, 8, -2, -4 ],
1704
+ [ 4 ], [ -3, -5, -7 ], [ -8 ]>,
1705
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -2, -4 ], [ 5, 7, 8, -1, -6 ],
1706
+ [ -3, -5, -7 ], [ -8 ]>,
1707
+ <bipartition: [ 1, 2, 4, 7, -1, -6 ], [ 3, 5, -2, -4 ], [ 6, 8 ],
1708
+ [ -3, -5, -7 ], [ -8 ]>,
1709
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -2, -4 ], [ 5, 7, -1, -6 ],
1710
+ [ -3, -5, -7 ], [ -8 ]>,
1711
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -6 ], [ 5, -2, -4 ], [ 6, 7 ],
1712
+ [ -3, -5, -7 ], [ -8 ]>,
1713
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -2, -4, -7 ], [ 6 ], [ 7, -5 ],
1714
+ [ -3 ], [ -6, -8 ]>,
1715
+ <bipartition: [ 1, 2, 3, 5, 7, 8 ], [ 4 ], [ 6, -7 ], [ -1, -2 ],
1716
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1717
+ <bipartition: [ 1, 2, 3, 4, 7, 8 ], [ 5, 6 ], [ -1, -2, -3, -6 ],
1718
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1719
+ <bipartition: [ 1, 2, 3, 4, 7 ], [ 5 ], [ 6, 8 ], [ -1, -2, -3, -6 ],
1720
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1721
+ <bipartition: [ 1, 7, 8 ], [ 2, 3, 5, 6 ], [ 4 ], [ -1, -2, -3, -6 ],
1722
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1723
+ <bipartition: [ 1, 2, 3, 4, 7, -4 ], [ 5, -1, -3, -5, -8 ], [ 6, 8 ],
1724
+ [ -2, -6, -7 ]>,
1725
+ <bipartition: [ 1, 2, 6, 7, 8, -4 ], [ 3, 4, 5, -1, -3, -5, -8 ],
1726
+ [ -2, -6, -7 ]>,
1727
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -5, -8 ], [ 7 ],
1728
+ [ -2, -6, -7 ]>,
1729
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -5, -8 ], [ 8 ],
1730
+ [ -2, -6, -7 ]>,
1731
+ <bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 3, 5, 6, 7, 8, -4 ],
1732
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -8 ],
1733
+ [ 2, 7, -4 ], [ -2, -6, -7 ]>,
1734
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, 6, 8, -1, -3, -5, -8 ],
1735
+ [ -2, -6, -7 ]>,
1736
+ <bipartition: [ 1, 2, 4, 7, -1, -3, -5, -8 ], [ 3, 5, -4 ], [ 6, 8 ],
1737
+ [ -2, -6, -7 ]>,
1738
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -4 ], [ 5, 7, -1, -3, -5, -8 ],
1739
+ [ -2, -6, -7 ]>,
1740
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4 ], [ 5, 7, -1, -3, -5, -8 ],
1741
+ [ -2, -6, -7 ]>,
1742
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4 ], [ 7, 8, -1, -3, -5, -8 ],
1743
+ [ -2, -6, -7 ]>,
1744
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, -1, -3, -5, -8 ], [ 6 ], [ 8 ],
1745
+ [ -2, -6, -7 ]>,
1746
+ <bipartition: [ 1, -1, -3, -5, -8 ], [ 2, 3, 4, 5, 6, 7, -4 ], [ 8 ],
1747
+ [ -2, -6, -7 ]>,
1748
+ <bipartition: [ 1, 6, 7, 8, -4 ], [ 2, 3, 5, -1, -3, -5, -8 ], [ 4 ],
1749
+ [ -2, -6, -7 ]>,
1750
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8, -1, -3, -5, -8 ], [ 5, 7 ],
1751
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -8 ],
1752
+ [ 3, -4 ], [ 6, 8 ], [ -2, -6, -7 ]>,
1753
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -8 ], [ 5, 7, -4 ],
1754
+ [ -2, -6, -7 ]>,
1755
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -5, -8 ],
1756
+ [ -2, -6, -7 ]>,
1757
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -5, -8 ], [ 6 ],
1758
+ [ -2, -6, -7 ]>,
1759
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -5, -8 ], [ 2, 3, 4, -4 ], [ 8 ],
1760
+ [ -2, -6, -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4 ],
1761
+ [ 5, 7, -1, -3, -5, -8 ], [ -2, -6, -7 ]>,
1762
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2, 4, 7, -1, -3, -5, -8 ],
1763
+ [ -2, -6, -7 ]>,
1764
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -3, -6, -7 ], [ 4 ],
1765
+ [ -2, -5, -8 ]>,
1766
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -6, -7 ], [ 5, 7, 8, -4 ],
1767
+ [ -2, -5, -8 ]>,
1768
+ <bipartition: [ 1, 2, 4, 7, -4 ], [ 3, 5, -1, -3, -6, -7 ], [ 6, 8 ],
1769
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -3, -6, -7 ],
1770
+ [ 5, 7, -4 ], [ -2, -5, -8 ]>,
1771
+ <bipartition: [ 1, 2, 3, 4, 8, -4 ], [ 5, -1, -3, -6, -7 ], [ 6, 7 ],
1772
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 7, -4 ], [ 3, 5, -1, -6, -7 ],
1773
+ [ 6, 8 ], [ -2, -5, -8 ], [ -3 ]>,
1774
+ <bipartition: [ 1, 2, 4, 7, -1, -7 ], [ 3, 5, -3, -4, -5, -6, -8 ],
1775
+ [ 6, 8 ], [ -2 ]>,
1776
+ <bipartition: [ 1, 2, 3, 4, -1, -7 ], [ 5, 6, 7, -3, -4, -5, -6, -8 ],
1777
+ [ 8 ], [ -2 ]>,
1778
+ <bipartition: [ 1, 5, -3, -4, -5, -6, -8 ], [ 2, 3, 4, 6, 7, 8, -1, -7 ],
1779
+ [ -2 ]>,
1780
+ <bipartition: [ 1, 2, 8, -3, -4, -5, -6, -8 ], [ 3, 4, 5, 6, 7, -1, -7 ],
1781
+ [ -2 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -3, -4, -5, -6, -8 ],
1782
+ [ 5, 6, 7, -1, -7 ], [ 8 ], [ -2 ]>,
1783
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -7 ], [ 5, -3, -4, -5, -6, -8 ],
1784
+ [ 6, 7 ], [ -2 ]>,
1785
+ <bipartition: [ 1, 4, -1, -7 ], [ 2, 7, 8, -3, -4, -5, -6, -8 ],
1786
+ [ 3, 5, 6 ], [ -2 ]>,
1787
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -7 ],
1788
+ [ 8, -3, -4, -5, -6, -8 ], [ -2 ]>,
1789
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -3, -4, -5, -6, -8 ], [ 5, 7, -1, -7 ]
1790
+ , [ -2 ]>,
1791
+ <bipartition: [ 1, 4, 5, 8, -1, -7 ], [ 2, 3, 6, -3, -4, -5, -6, -8 ],
1792
+ [ 7 ], [ -2 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -7 ], [ 2 ],
1793
+ [ 4, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
1794
+ <bipartition: [ 1, 4, 5, 8 ], [ 2, 3, 6 ], [ 7 ], [ -1, -2, -3, -6 ],
1795
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1796
+ <bipartition: [ 1, 8 ], [ 2, 3, 4, 5 ], [ 6, 7 ], [ -1, -2, -3, -6 ],
1797
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1798
+ <bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2 ], [ 7 ], [ -1, -2, -3, -6 ],
1799
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1800
+ <bipartition: [ 1, 2, 8 ], [ 3, 4, 5, 6, 7 ], [ -1, -2, -3, -6 ],
1801
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1802
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1803
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1804
+ <bipartition: [ 1, 3, 4, 5, 6, 8 ], [ 2, 7 ], [ -1, -2, -3, -6 ],
1805
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1806
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8 ], [ 5, 7 ], [ -1, -2, -3, -6 ],
1807
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1808
+ <bipartition: [ 1, 3, 4, 5, 6 ], [ 2, 7, 8 ], [ -1, -2, -3, -6 ],
1809
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1810
+ <bipartition: [ 1, 5, 6, 7 ], [ 2, 3, 4 ], [ 8 ], [ -1, -2, -3, -6 ],
1811
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1812
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8 ], [ 5, 7 ], [ -1, -2, -3, -6 ],
1813
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1814
+ <bipartition: [ 1, 3, 5, 6, 8 ], [ 2 ], [ 4, 7 ], [ -1, -2, -3, -6 ],
1815
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1816
+ <bipartition: [ 1, 2, 3, 4, 5, 8 ], [ 6 ], [ 7 ], [ -1, -2, -3, -6 ],
1817
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1818
+ <bipartition: [ 1, 2, 3, 4 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
1819
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1820
+ <bipartition: [ 1, 2, 3, 4, -3, -4, -5, -6, -8 ], [ 5, 6, 7, -1, -7 ],
1821
+ [ 8 ], [ -2 ]>,
1822
+ <bipartition: [ 1, 4, -1, -7 ], [ 2, 3, 5, 6, 7, 8, -3, -4, -5, -6, -8 ],
1823
+ [ -2 ]>,
1824
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -7 ], [ 2, 7, -3, -4, -5, -6, -8 ],
1825
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 7, -3, -4, -5, -6, -8 ],
1826
+ [ 2, 6, 8, -1, -7 ], [ -2 ]>,
1827
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -3, -4, -5, -6, -8 ], [ 6 ],
1828
+ [ 7, -1, -7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 7, -1, -3, -5, -7 ],
1829
+ [ 5, -4, -6, -8 ], [ 6, 8 ], [ -2 ]>,
1830
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -3, -5, -7 ], [ 3, 4, 5, -4, -6, -8 ],
1831
+ [ -2 ]>,
1832
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -5, -7 ], [ 2, 3, 6, -4, -6, -8 ],
1833
+ [ 7 ], [ -2 ]>,
1834
+ <bipartition: [ 1, 8, -4, -6, -8 ], [ 2, 3, 4, 5, -1, -3, -5, -7 ],
1835
+ [ 6, 7 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ],
1836
+ [ 2 ], [ 7, -4, -6, -8 ], [ -2 ]>,
1837
+ <bipartition: [ 1, 2, 4, 7, -3, -4, -5, -6, -8 ], [ 3, 5, -1, -7 ],
1838
+ [ 6, 8 ], [ -2 ]>,
1839
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -7 ], [ 3, -3, -4, -5, -6, -8 ],
1840
+ [ 6, 8 ], [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -7 ],
1841
+ [ 5, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
1842
+ <bipartition: [ 1, 3, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2, 4, 7, -1, -7 ],
1843
+ [ -2 ]>, <bipartition: [ 1, 2, 4, 7, -2, -5 ], [ 3, 5, -1, -3, -4, -6 ],
1844
+ [ 6, 8 ], [ -7, -8 ]>,
1845
+ <bipartition: [ 1, 2, 3, 4, -2, -5 ], [ 5, 6, 7, -1, -3, -4, -6 ], [ 8 ],
1846
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2 ],
1847
+ [ 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
1848
+ <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -4, -6 ], [ 2, 5, 8, -2, -5 ],
1849
+ [ -7, -8 ]>,
1850
+ <bipartition: [ 1, 8, -1, -3, -4, -6 ], [ 2, 3, 4, 5, -2, -5 ], [ 6, 7 ],
1851
+ [ -7, -8 ]>,
1852
+ <bipartition: [ 1, 3, 4, 5, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ], [ 6 ],
1853
+ [ -7, -8 ]>,
1854
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -4, -6 ], [ 2, 3, 4, -2, -5 ], [ 8 ],
1855
+ [ -7, -8 ]>,
1856
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -4, -6 ], [ 5, 6, 7, -2, -5 ], [ 8 ],
1857
+ [ -7, -8 ]>,
1858
+ <bipartition: [ 1, 4, -2, -5 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -4, -6 ],
1859
+ [ -7, -8 ]>,
1860
+ <bipartition: [ 1, 8, -2, -5 ], [ 2, 3, 4, 5, -1, -3, -4, -6 ], [ 6, 7 ],
1861
+ [ -7, -8 ]>,
1862
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -5 ], [ 2, 7, -1, -3, -4, -6 ],
1863
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -4, -6 ],
1864
+ [ 2, 6, 8, -2, -5 ], [ -7, -8 ]>,
1865
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -4, -6 ], [ 6 ], [ 7, -2, -5 ],
1866
+ [ -7, -8 ]>,
1867
+ <bipartition: [ 1, 3, 4, 5, 7, -2, -5 ], [ 2, 6, 8, -1, -3, -4, -6 ],
1868
+ [ -7, -8 ]>,
1869
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -4, -6 ], [ 5, 6, 7, 8, -2, -5 ],
1870
+ [ -7, -8 ]>,
1871
+ <bipartition: [ 1, 2, 4, 7, -1, -3, -4, -6 ], [ 3, 5, -2, -5 ], [ 6, 8 ],
1872
+ [ -7, -8 ]>,
1873
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -2, -5 ], [ 5, 6, -1, -3, -4, -6 ],
1874
+ [ -7, -8 ]>,
1875
+ <bipartition: [ 1, 2, 3, 4, 7, -2, -5 ], [ 5, -1, -3, -4, -6 ], [ 6, 8 ],
1876
+ [ -7, -8 ]>,
1877
+ <bipartition: [ 1, 2, 6, 7, 8, -2, -5 ], [ 3, 4, 5, -1, -3, -4, -6 ],
1878
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, -1, -3, -4, -6 ], [ 2, 6, 8 ],
1879
+ [ 5, 7, -2, -5 ], [ -7, -8 ]>,
1880
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -2, -5 ], [ 5, 7, -1, -3, -4, -6 ],
1881
+ [ -7, -8 ]>, <bipartition: [ 1, 5, -2, -5 ], [ 2, 3, 4, 6, 7 ],
1882
+ [ 8, -1, -3, -4, -6 ], [ -7, -8 ]>,
1883
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -2, -5 ], [ 2, -1, -3, -4, -6 ],
1884
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -7 ], [ 5, 7 ],
1885
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1886
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -7 ], [ 7, 8 ], [ -1, -2 ],
1887
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1888
+ <bipartition: [ 1, 3, 4, 5, 7, -7 ], [ 2 ], [ 6 ], [ 8 ], [ -1, -2 ],
1889
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1890
+ <bipartition: [ 1, 2, 3, 4, -1, -2, -3, -5, -6 ], [ 5, 6, 7, -4, -8 ],
1891
+ [ 8 ], [ -7 ]>,
1892
+ <bipartition: [ 1, 4, -4, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -2, -3, -5, -6 ],
1893
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6 ], [ 2 ],
1894
+ [ 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
1895
+ <bipartition: [ 1, 2, 5, 6, 7, -2, -4 ], [ 3, 8, -1, -6 ], [ 4 ],
1896
+ [ -3, -5, -7 ], [ -8 ]>,
1897
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -6 ], [ 2, 7, -2, -4 ], [ 6 ],
1898
+ [ -3, -5, -7 ], [ -8 ]>,
1899
+ <bipartition: [ 1, 7, 8, -1, -6 ], [ 2, 3, 5, 6, -2, -4 ], [ 4 ],
1900
+ [ -3, -5, -7 ], [ -8 ]>,
1901
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -6 ], [ 5, 7, 8, -2, -4 ],
1902
+ [ -3, -5, -7 ], [ -8 ]>,
1903
+ <bipartition: [ 1, 2, 3, 4, 7, -1, -6 ], [ 5, -2, -4 ], [ 6, 8 ],
1904
+ [ -3, -5, -7 ], [ -8 ]>,
1905
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -6 ], [ 3, 4, 5, -2, -4 ],
1906
+ [ -3, -5, -7 ], [ -8 ]>,
1907
+ <bipartition: [ 1, 4, 5, 8, -1, -6 ], [ 2, 3, 6, -2, -4 ], [ 7 ],
1908
+ [ -3, -5, -7 ], [ -8 ]>,
1909
+ <bipartition: [ 1, 8, -2, -4 ], [ 2, 3, 4, 5, -1, -6 ], [ 6, 7 ],
1910
+ [ -3, -5, -7 ], [ -8 ]>,
1911
+ <bipartition: [ 1, 2, 4, 7, -2, -4 ], [ 3, 5, -1, -6 ], [ 6, 8 ],
1912
+ [ -3, -5, -7 ], [ -8 ]>,
1913
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -6 ], [ 5, 6, -2, -4 ],
1914
+ [ -3, -5, -7 ], [ -8 ]>,
1915
+ <bipartition: [ 1, 7, 8, -2, -4 ], [ 2, 3, 5, 6, -1, -6 ], [ 4 ],
1916
+ [ -3, -5, -7 ], [ -8 ]>,
1917
+ <bipartition: [ 1, 2, 3, 4, 5, 6 ], [ 7, 8, -7 ], [ -1, -2 ],
1918
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1919
+ <bipartition: [ 1, 3, 4, 5, 7 ], [ 2, -7 ], [ 6 ], [ 8 ], [ -1, -2 ],
1920
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1921
+ <bipartition: [ 1, 6, 7, 8 ], [ 2, 3, 5, -7 ], [ 4 ], [ -1, -2 ],
1922
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
1923
+ <bipartition: [ 1, 2, 3, 5, 7, 8 ], [ 4 ], [ 6 ], [ -1, -2, -3, -6 ],
1924
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
1925
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -4 ], [ 5, 6, -1, -3, -5, -8 ],
1926
+ [ -2, -6, -7 ]>,
1927
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -5, -8 ], [ 5, 6, 7, -4 ], [ 8 ],
1928
+ [ -2, -6, -7 ]>,
1929
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -8 ],
1930
+ [ -2, -6, -7 ]>,
1931
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -5, -8 ], [ 2, 3, 6, -4 ], [ 7 ],
1932
+ [ -2, -6, -7 ]>,
1933
+ <bipartition: [ 1, 2, 8, -1, -3, -5, -8 ], [ 3, 4, 5, 6, 7, -4 ],
1934
+ [ -2, -6, -7 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -5, -8 ],
1935
+ [ 5, 6, 7, -4 ], [ 8 ], [ -2, -6, -7 ]>,
1936
+ <bipartition: [ 1, 2, 3, 4, 8, -4 ], [ 5, -1, -3, -5, -8 ], [ 6, 7 ],
1937
+ [ -2, -6, -7 ]>,
1938
+ <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -5, -8 ], [ 3, 5, 6 ],
1939
+ [ -2, -6, -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4 ],
1940
+ [ 8, -1, -3, -5, -8 ], [ -2, -6, -7 ]>,
1941
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -5, -8 ], [ 5, 7, -4 ],
1942
+ [ -2, -6, -7 ]>,
1943
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2 ], [ 4, 7, -1, -3, -5, -8 ],
1944
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -5, -8 ],
1945
+ [ 6 ], [ 7, -4 ], [ -2, -6, -7 ]>,
1946
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -5, -8 ], [ 6, 8 ],
1947
+ [ -2, -6, -7 ]>,
1948
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -3, -6, -7 ],
1949
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 5, 6, 7, -1, -3, -6, -7 ],
1950
+ [ 3, 8, -4 ], [ 4 ], [ -2, -5, -8 ]>,
1951
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ], [ 6 ],
1952
+ [ -2, -5, -8 ]>,
1953
+ <bipartition: [ 1, 7, 8, -4 ], [ 2, 3, 5, 6, -1, -3, -6, -7 ], [ 4 ],
1954
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -6, -7 ],
1955
+ [ 3, 5, 6, -4 ], [ -2, -5, -8 ]>,
1956
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4 ], [ 5, 7, 8, -1, -3, -6, -7 ],
1957
+ [ -2, -5, -8 ]>,
1958
+ <bipartition: [ 1, 2, 3, 4, 7, -4 ], [ 5, -1, -3, -6, -7 ], [ 6, 8 ],
1959
+ [ -2, -5, -8 ]>,
1960
+ <bipartition: [ 1, 2, 6, 7, 8, -4 ], [ 3, 4, 5, -1, -3, -6, -7 ],
1961
+ [ -2, -5, -8 ]>,
1962
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -3, -6, -7 ], [ 7 ],
1963
+ [ -2, -5, -8 ]>,
1964
+ <bipartition: [ 1, 8, -1, -3, -6, -7 ], [ 2, 3, 4, 5, -4 ], [ 6, 7 ],
1965
+ [ -2, -5, -8 ]>,
1966
+ <bipartition: [ 1, 2, 4, 7, -1, -3, -6, -7 ], [ 3, 5, -4 ], [ 6, 8 ],
1967
+ [ -2, -5, -8 ]>,
1968
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -4 ], [ 5, 6, -1, -3, -6, -7 ],
1969
+ [ -2, -5, -8 ]>,
1970
+ <bipartition: [ 1, 7, 8, -1, -3, -6, -7 ], [ 2, 3, 5, 6, -4 ], [ 4 ],
1971
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -4 ], [ 5, -1, -6, -7 ],
1972
+ [ 6, 8 ], [ -2, -5, -8 ], [ -3 ]>,
1973
+ <bipartition: [ 1, 2, 6, 7, 8, -4 ], [ 3, 4, 5, -1, -6, -7 ],
1974
+ [ -2, -5, -8 ], [ -3 ]>,
1975
+ <bipartition: [ 1, 4, 5, 8, -4 ], [ 2, 3, 6, -1, -6, -7 ], [ 7 ],
1976
+ [ -2, -5, -8 ], [ -3 ]>,
1977
+ <bipartition: [ 1, 8, -1, -6, -7 ], [ 2, 3, 4, 5, -4 ], [ 6, 7 ],
1978
+ [ -2, -5, -8 ], [ -3 ]>,
1979
+ <bipartition: [ 1, 2, 3, 4, 7, -1, -7 ], [ 5, -3, -4, -5, -6, -8 ],
1980
+ [ 6, 8 ], [ -2 ]>,
1981
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -7 ], [ 3, 4, 5, -3, -4, -5, -6, -8 ],
1982
+ [ -2 ]>,
1983
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -7 ], [ 2, 6, 8, -3, -4, -5, -6, -8 ],
1984
+ [ -2 ]>, <bipartition: [ 1, 2, 3, 4, -3, -4, -5, -6, -8 ],
1985
+ [ 5, 6, 7, 8, -1, -7 ], [ -2 ]>,
1986
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -7 ], [ 5, 6, -3, -4, -5, -6, -8 ],
1987
+ [ -2 ]>, <bipartition: [ 1, 3, 4, -3, -4, -5, -6, -8 ], [ 2, 6, 8 ],
1988
+ [ 5, 7, -1, -7 ], [ -2 ]>,
1989
+ <bipartition: [ 1, 5, -1, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -3, -4, -5, -6, -8 ]
1990
+ , [ -2 ]>,
1991
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -7 ], [ 2, -3, -4, -5, -6, -8 ],
1992
+ [ -2 ]>, <bipartition: [ 1, 3, 5, 6, 8 ], [ 2, 4, 7 ], [ -1, -2, -3, -6 ]
1993
+ , [ -4, -5 ], [ -7 ], [ -8 ]>,
1994
+ <bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -7 ],
1995
+ [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -5, -7 ],
1996
+ [ 5, 6, -4, -6, -8 ], [ -2 ]>,
1997
+ <bipartition: [ 1, 7, 8, -4, -6, -8 ], [ 2, 3, 5, 6, -1, -3, -5, -7 ],
1998
+ [ 4 ], [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4, -6, -8 ],
1999
+ [ 5, 7, 8, -1, -3, -5, -7 ], [ -2 ]>,
2000
+ <bipartition: [ 1, 5, -1, -3, -5, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -4, -6, -8 ]
2001
+ , [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -4, -6, -8 ],
2002
+ [ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
2003
+ <bipartition: [ 1, 3, 5, 6, 8, -4, -6, -8 ], [ 2, 4, 7, -1, -3, -5, -7 ],
2004
+ [ -2 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -5, -7 ],
2005
+ [ 3, -4, -6, -8 ], [ 6, 8 ], [ -2 ]>,
2006
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -7 ], [ 6 ], [ 7, -3, -4, -5, -6, -8 ]
2007
+ , [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 8, -3, -4, -5, -6, -8 ],
2008
+ [ 5, -1, -7 ], [ 6, 7 ], [ -2 ]>,
2009
+ <bipartition: [ 1, 2, 4, 5, 7, -2, -5 ], [ 3, -1, -3, -4, -6 ], [ 6, 8 ],
2010
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -2, -5 ],
2011
+ [ 5, 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
2012
+ <bipartition: [ 1, 3, 5, 6, 8, -2, -5 ], [ 2, 4, 7, -1, -3, -4, -6 ],
2013
+ [ -7, -8 ]>,
2014
+ <bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 3, 5, 6, 7, 8, -2, -5 ],
2015
+ [ -7, -8 ]>,
2016
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -4, -6 ], [ 2, 3, 6, -2, -5 ], [ 7 ],
2017
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -4, -6 ], [ 4 ],
2018
+ [ 6, -2, -5 ], [ -7, -8 ]>,
2019
+ <bipartition: [ 1, 3, 4, -1, -3, -4, -6 ], [ 2, 6, 8, -2, -5 ], [ 5, 7 ],
2020
+ [ -7, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4 ], [ 5, 6, 7, -7 ], [ 8 ],
2021
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2022
+ <bipartition: [ 1, 4, -7 ], [ 2, 7, 8 ], [ 3, 5, 6 ], [ -1, -2 ],
2023
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2024
+ <bipartition: [ 1, 2, 4, 7, -1, -2, -3, -5, -6 ], [ 3, 5, -4, -8 ],
2025
+ [ 6, 8 ], [ -7 ]>,
2026
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -6 ], [ 3, -2, -4 ], [ 6, 8 ],
2027
+ [ -3, -5, -7 ], [ -8 ]>,
2028
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2 ], [ 7, -1, -6 ],
2029
+ [ -3, -5, -7 ], [ -8 ]>,
2030
+ <bipartition: [ 1, 3, 4, 6, 7, -1, -6 ], [ 2, 5, 8, -2, -4 ],
2031
+ [ -3, -5, -7 ], [ -8 ]>,
2032
+ <bipartition: [ 1, 3, 4, 5, 8, -2, -4 ], [ 2, 7, -1, -6 ], [ 6 ],
2033
+ [ -3, -5, -7 ], [ -8 ]>,
2034
+ <bipartition: [ 1, 5, 6, 7, -1, -6 ], [ 2, 3, 4, -2, -4 ], [ 8 ],
2035
+ [ -3, -5, -7 ], [ -8 ]>,
2036
+ <bipartition: [ 1, 2, 4, 7, 8, -1, -6 ], [ 3, 5, 6, -2, -4 ],
2037
+ [ -3, -5, -7 ], [ -8 ]>,
2038
+ <bipartition: [ 1, 5, -1, -6 ], [ 2, 3, 4, 6, 7 ], [ 8, -2, -4 ],
2039
+ [ -3, -5, -7 ], [ -8 ]>,
2040
+ <bipartition: [ 1, 5, 8, -1, -6 ], [ 2, 3, 4, -2, -4 ], [ 6, 7 ],
2041
+ [ -3, -5, -7 ], [ -8 ]>,
2042
+ <bipartition: [ 1, 3, 5, 6, 8, -2, -4 ], [ 2, 4, 7, -1, -6 ],
2043
+ [ -3, -5, -7 ], [ -8 ]>,
2044
+ <bipartition: [ 1, 2, 3, 4, 7, -2, -4 ], [ 5, -1, -6 ], [ 6, 8 ],
2045
+ [ -3, -5, -7 ], [ -8 ]>,
2046
+ <bipartition: [ 1, 2, 6, 7, 8, -2, -4 ], [ 3, 4, 5, -1, -6 ],
2047
+ [ -3, -5, -7 ], [ -8 ]>,
2048
+ <bipartition: [ 1, 4, 5, 8, -2, -4 ], [ 2, 3, 6, -1, -6 ], [ 7 ],
2049
+ [ -3, -5, -7 ], [ -8 ]>,
2050
+ <bipartition: [ 1, -2, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -6 ], [ 8 ],
2051
+ [ -3, -5, -7 ], [ -8 ]>,
2052
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -2, -4 ], [ 4 ], [ 6, -1, -6 ],
2053
+ [ -3, -5, -7 ], [ -8 ]>,
2054
+ <bipartition: [ 1, 2, 8, -7 ], [ 3, 4, 5, 6, 7 ], [ -1, -2 ],
2055
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2056
+ <bipartition: [ 1 ], [ 2, 3, 4, -7 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2 ],
2057
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2058
+ <bipartition: [ 1, 4 ], [ 2, 7, 8, -7 ], [ 3, 5, 6 ], [ -1, -2 ],
2059
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2060
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7 ], [ 8, -7 ], [ -1, -2 ],
2061
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2062
+ <bipartition: [ 1, 3, 5, 6, 8 ], [ 2 ], [ 4, 7, -7 ], [ -1, -2 ],
2063
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2064
+ <bipartition: [ 1, 2, 3, 4, 5, 6 ], [ 7, 8 ], [ -1, -2, -3, -6 ],
2065
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
2066
+ <bipartition: [ 1, 3, 4, 5, 7 ], [ 2 ], [ 6 ], [ 8 ], [ -1, -2, -3, -6 ],
2067
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
2068
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -5, -8 ], [ 4 ], [ 6, -4 ],
2069
+ [ -2, -6, -7 ]>,
2070
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -5, -8 ], [ 5, 6, 7, 8, -4 ],
2071
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, -1, -3, -5, -8 ], [ 2, 6, 8 ],
2072
+ [ 5, 7, -4 ], [ -2, -6, -7 ]>,
2073
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4 ], [ 2, -1, -3, -5, -8 ],
2074
+ [ -2, -6, -7 ]>,
2075
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -1, -3, -5, -8 ],
2076
+ [ -2, -6, -7 ]>,
2077
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -3, -6, -7 ], [ 6, 8 ],
2078
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
2079
+ [ 2 ], [ 7, -4 ], [ -2, -5, -8 ]>,
2080
+ <bipartition: [ 1, 3, 4, 6, 7, -4 ], [ 2, 5, 8, -1, -3, -6, -7 ],
2081
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -6, -7 ],
2082
+ [ 2, 7, -4 ], [ 6 ], [ -2, -5, -8 ]>,
2083
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -3, -6, -7 ], [ 8 ],
2084
+ [ -2, -5, -8 ]>,
2085
+ <bipartition: [ 1, 2, 4, 7, 8, -4 ], [ 3, 5, 6, -1, -3, -6, -7 ],
2086
+ [ -2, -5, -8 ]>,
2087
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -3, -6, -7 ],
2088
+ [ -2, -5, -8 ]>,
2089
+ <bipartition: [ 1, 5, 8, -4 ], [ 2, 3, 4, -1, -3, -6, -7 ], [ 6, 7 ],
2090
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -6, -7 ],
2091
+ [ 2, 4, 7, -4 ], [ -2, -5, -8 ]>,
2092
+ <bipartition: [ 1, 2, 3, 4, 7, -1, -3, -6, -7 ], [ 5, -4 ], [ 6, 8 ],
2093
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 6, 7, 8, -1, -3, -6, -7 ],
2094
+ [ 3, 4, 5, -4 ], [ -2, -5, -8 ]>,
2095
+ <bipartition: [ 1, 4, 5, 8, -1, -3, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
2096
+ [ -2, -5, -8 ]>,
2097
+ <bipartition: [ 1, -1, -3, -6, -7 ], [ 2, 3, 4, 5, 6, 7, -4 ], [ 8 ],
2098
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -6, -7 ],
2099
+ [ 4 ], [ 6, -4 ], [ -2, -5, -8 ]>,
2100
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -4 ], [ 5, 6, -1, -6, -7 ],
2101
+ [ -2, -5, -8 ], [ -3 ]>,
2102
+ <bipartition: [ 1, 2, 5, 6, 7, -4 ], [ 3, 8, -1, -6, -7 ], [ 4 ],
2103
+ [ -2, -5, -8 ], [ -3 ]>,
2104
+ <bipartition: [ 1, 7, 8, -1, -6, -7 ], [ 2, 3, 5, 6, -4 ], [ 4 ],
2105
+ [ -2, -5, -8 ], [ -3 ]>,
2106
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -6, -7 ], [ 5, 7, 8, -4 ],
2107
+ [ -2, -5, -8 ], [ -3 ]>,
2108
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -6, -7 ],
2109
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -6, -7 ],
2110
+ [ 5, 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2111
+ <bipartition: [ 1, 5, 8, -4 ], [ 2, 3, 4, -1, -6, -7 ], [ 6, 7 ],
2112
+ [ -2, -5, -8 ], [ -3 ]>,
2113
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -6, -7 ], [ 2, 4, 7, -4 ],
2114
+ [ -2, -5, -8 ], [ -3 ]>,
2115
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -3, -4, -5, -6, -8 ], [ 4 ],
2116
+ [ 6, -1, -7 ], [ -2 ]>,
2117
+ <bipartition: [ 1, 3, 4, -3, -4, -5, -6, -8 ], [ 2, 6, 8, -1, -7 ],
2118
+ [ 5, 7 ], [ -2 ]>,
2119
+ <bipartition: [ 1, -4, -6, -8 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -5, -7 ],
2120
+ [ 8 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -4, -6, -8 ], [ 4 ],
2121
+ [ 6, -1, -3, -5, -7 ], [ -2 ]>,
2122
+ <bipartition: [ 1, 3, 4, 6, 7, -4, -6, -8 ], [ 2, 5, 8, -1, -3, -5, -7 ],
2123
+ [ -2 ]>,
2124
+ <bipartition: [ 1, 2, 5, 6, 7, -4, -6, -8 ], [ 3, 8, -1, -3, -5, -7 ],
2125
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -3, -5, -7 ],
2126
+ [ 2, 7, -4, -6, -8 ], [ 6 ], [ -2 ]>,
2127
+ <bipartition: [ 1, 5, 6, 7, -4, -6, -8 ], [ 2, 3, 4, -1, -3, -5, -7 ],
2128
+ [ 8 ], [ -2 ]>,
2129
+ <bipartition: [ 1, 7, 8, -1, -3, -5, -7 ], [ 2, 3, 5, 6, -4, -6, -8 ],
2130
+ [ 4 ], [ -2 ]>,
2131
+ <bipartition: [ 1, 2, 4, 7, 8, -4, -6, -8 ], [ 3, 5, 6, -1, -3, -5, -7 ],
2132
+ [ -2 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -3, -5, -7 ],
2133
+ [ 5, 7, 8, -4, -6, -8 ], [ -2 ]>,
2134
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -5, -7 ], [ 2, 7, -4, -6, -8 ],
2135
+ [ -2 ]>,
2136
+ <bipartition: [ 1, 3, 4, -4, -6, -8 ], [ 2, 6, 8, -1, -3, -5, -7 ],
2137
+ [ 5, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -3, -5, -7 ],
2138
+ [ 3, 5, 6, -4, -6, -8 ], [ -2 ]>,
2139
+ <bipartition: [ 1, 5, -4, -6, -8 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -5, -7 ],
2140
+ [ -2 ]>,
2141
+ <bipartition: [ 1, 2, 4, 7, -4, -6, -8 ], [ 3, 5, -1, -3, -5, -7 ],
2142
+ [ 6, 8 ], [ -2 ]>,
2143
+ <bipartition: [ 1, 2, 3, 4, 8, -4, -6, -8 ], [ 5, -1, -3, -5, -7 ],
2144
+ [ 6, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -5, -7 ],
2145
+ [ 6 ], [ 7, -4, -6, -8 ], [ -2 ]>,
2146
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -2, -5 ], [ 6 ], [ 7, -1, -3, -4, -6 ],
2147
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -4, -6 ],
2148
+ [ 7, 8, -2, -5 ], [ -7, -8 ]>,
2149
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -4, -6 ], [ 2, -2, -5 ], [ 6 ],
2150
+ [ 8 ], [ -7, -8 ]>,
2151
+ <bipartition: [ 1, 6, 7, 8, -1, -3, -4, -6 ], [ 2, 3, 5, -2, -5 ], [ 4 ],
2152
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, -1, -2, -3, -5, -6 ],
2153
+ [ 5, -4, -8 ], [ 6, 8 ], [ -7 ]>,
2154
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -2, -3, -5, -6 ], [ 3, 4, 5, -4, -8 ],
2155
+ [ -7 ]>, <bipartition: [ 1, 4, 5, 8, -1, -2, -3, -5, -6 ],
2156
+ [ 2, 3, 6, -4, -8 ], [ 7 ], [ -7 ]>,
2157
+ <bipartition: [ 1, 8, -4, -8 ], [ 2, 3, 4, 5, -1, -2, -3, -5, -6 ],
2158
+ [ 6, 7 ], [ -7 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6 ], [ 6 ],
2159
+ [ 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
2160
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -2, -4 ], [ 5, 7, -1, -6 ],
2161
+ [ -3, -5, -7 ], [ -8 ]>,
2162
+ <bipartition: [ 1, 3, 4, -2, -4 ], [ 2, 6, 8, -1, -6 ], [ 5, 7 ],
2163
+ [ -3, -5, -7 ], [ -8 ]>,
2164
+ <bipartition: [ 1, 5, -2, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -6 ],
2165
+ [ -3, -5, -7 ], [ -8 ]>,
2166
+ <bipartition: [ 1, 2, 3, 4, 8, -2, -4 ], [ 5, -1, -6 ], [ 6, 7 ],
2167
+ [ -3, -5, -7 ], [ -8 ]>,
2168
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -2, -4 ], [ 5, 6, -1, -6 ],
2169
+ [ -3, -5, -7 ], [ -8 ]>,
2170
+ <bipartition: [ 1, 5, -2, -4 ], [ 2, 3, 4, 6, 7 ], [ 8, -1, -6 ],
2171
+ [ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -2, -4 ],
2172
+ [ 5, 7, -1, -6 ], [ -3, -5, -7 ], [ -8 ]>,
2173
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -2, -4 ], [ 7, 8, -1, -6 ],
2174
+ [ -3, -5, -7 ], [ -8 ]>,
2175
+ <bipartition: [ 1, 3, 4, 5, 7, -2, -4 ], [ 2, -1, -6 ], [ 6 ], [ 8 ],
2176
+ [ -3, -5, -7 ], [ -8 ]>,
2177
+ <bipartition: [ 1, -1, -6 ], [ 2, 3, 4, 5, 6, 7, -2, -4 ], [ 8 ],
2178
+ [ -3, -5, -7 ], [ -8 ]>,
2179
+ <bipartition: [ 1, 6, 7, 8, -2, -4 ], [ 2, 3, 5, -1, -6 ], [ 4 ],
2180
+ [ -3, -5, -7 ], [ -8 ]>,
2181
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8 ], [ 2, -7 ], [ -1, -2 ],
2182
+ [ -3, -6, -8 ], [ -4 ], [ -5 ]>,
2183
+ <bipartition: [ 1 ], [ 2, 3, 4 ], [ 5, 6, 7 ], [ 8 ], [ -1, -2, -3, -6 ],
2184
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
2185
+ <bipartition: [ 1, 4 ], [ 2, 7, 8 ], [ 3, 5, 6 ], [ -1, -2, -3, -6 ],
2186
+ [ -4, -5 ], [ -7 ], [ -8 ]>,
2187
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -5, -8 ], [ 7, 8, -4 ],
2188
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -8 ],
2189
+ [ 2, -4 ], [ 6 ], [ 8 ], [ -2, -6, -7 ]>,
2190
+ <bipartition: [ 1, 6, 7, 8, -1, -3, -5, -8 ], [ 2, 3, 5, -4 ], [ 4 ],
2191
+ [ -2, -6, -7 ]>,
2192
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -1, -3, -6, -7 ],
2193
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -3, -6, -7 ],
2194
+ [ 3, -4 ], [ 6, 8 ], [ -2, -5, -8 ]>,
2195
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -6, -7 ], [ 5, 7, -4 ],
2196
+ [ -2, -5, -8 ]>,
2197
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2, 7, -1, -3, -6, -7 ],
2198
+ [ -2, -5, -8 ]>,
2199
+ <bipartition: [ 1, 3, 4, -1, -3, -6, -7 ], [ 2, 6, 8, -4 ], [ 5, 7 ],
2200
+ [ -2, -5, -8 ]>,
2201
+ <bipartition: [ 1, 5, -1, -3, -6, -7 ], [ 2, 3, 4, 6, 7, 8, -4 ],
2202
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 2, 3, 4, 8, -1, -3, -6, -7 ],
2203
+ [ 5, -4 ], [ 6, 7 ], [ -2, -5, -8 ]>,
2204
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -3, -6, -7 ], [ 5, 6, -4 ],
2205
+ [ -2, -5, -8 ]>,
2206
+ <bipartition: [ 1, 5, -1, -3, -6, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -4 ],
2207
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -6, -7 ],
2208
+ [ 5, 7, -4 ], [ -2, -5, -8 ]>,
2209
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -6, -7 ], [ 7, 8, -4 ],
2210
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -6, -7 ],
2211
+ [ 2, -4 ], [ 6 ], [ 8 ], [ -2, -5, -8 ]>,
2212
+ <bipartition: [ 1, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -3, -6, -7 ], [ 8 ],
2213
+ [ -2, -5, -8 ]>,
2214
+ <bipartition: [ 1, 6, 7, 8, -1, -3, -6, -7 ], [ 2, 3, 5, -4 ], [ 4 ],
2215
+ [ -2, -5, -8 ]>,
2216
+ <bipartition: [ 1, -1, -6, -7 ], [ 2, 3, 4, 5, 6, 7, -4 ], [ 8 ],
2217
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -6, -7 ],
2218
+ [ 4 ], [ 6, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2219
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4 ], [ 2 ], [ 7, -1, -6, -7 ],
2220
+ [ -2, -5, -8 ], [ -3 ]>,
2221
+ <bipartition: [ 1, 3, 4, 6, 7, -1, -6, -7 ], [ 2, 5, 8, -4 ],
2222
+ [ -2, -5, -8 ], [ -3 ]>,
2223
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -6, -7 ], [ 3, 8, -4 ], [ 4 ],
2224
+ [ -2, -5, -8 ], [ -3 ]>,
2225
+ <bipartition: [ 1, 3, 4, 5, 8, -4 ], [ 2, 7, -1, -6, -7 ], [ 6 ],
2226
+ [ -2, -5, -8 ], [ -3 ]>,
2227
+ <bipartition: [ 1, 5, 6, 7, -1, -6, -7 ], [ 2, 3, 4, -4 ], [ 8 ],
2228
+ [ -2, -5, -8 ], [ -3 ]>,
2229
+ <bipartition: [ 1, 7, 8, -4 ], [ 2, 3, 5, 6, -1, -6, -7 ], [ 4 ],
2230
+ [ -2, -5, -8 ], [ -3 ]>,
2231
+ <bipartition: [ 1, 2, 4, 7, 8, -1, -6, -7 ], [ 3, 5, 6, -4 ],
2232
+ [ -2, -5, -8 ], [ -3 ]>,
2233
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4 ], [ 5, 7, 8, -1, -6, -7 ],
2234
+ [ -2, -5, -8 ], [ -3 ]>,
2235
+ <bipartition: [ 1, 3, 4, -1, -6, -7 ], [ 2, 6, 8, -4 ], [ 5, 7 ],
2236
+ [ -2, -5, -8 ], [ -3 ]>,
2237
+ <bipartition: [ 1, 2, 4, 7, 8, -4 ], [ 3, 5, 6, -1, -6, -7 ],
2238
+ [ -2, -5, -8 ], [ -3 ]>,
2239
+ <bipartition: [ 1, 5, -1, -6, -7 ], [ 2, 3, 4, 6, 7, 8, -4 ],
2240
+ [ -2, -5, -8 ], [ -3 ]>,
2241
+ <bipartition: [ 1, 2, 4, 7, -1, -6, -7 ], [ 3, 5, -4 ], [ 6, 8 ],
2242
+ [ -2, -5, -8 ], [ -3 ]>,
2243
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -4 ], [ 5, 7, -1, -6, -7 ],
2244
+ [ -2, -5, -8 ], [ -3 ]>,
2245
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -6, -7 ], [ 5, -4 ], [ 6, 7 ],
2246
+ [ -2, -5, -8 ], [ -3 ]>,
2247
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -3, -4, -5, -6, -8 ], [ 7, 8, -1, -7 ],
2248
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 7, -3, -4, -5, -6, -8 ],
2249
+ [ 2, -1, -7 ], [ 6 ], [ 8 ], [ -2 ]>,
2250
+ <bipartition: [ 1, 6, 7, 8, -3, -4, -5, -6, -8 ], [ 2, 3, 5, -1, -7 ],
2251
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4, -6, -8 ],
2252
+ [ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
2253
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4, -6, -8 ], [ 7, 8, -1, -3, -5, -7 ],
2254
+ [ -2 ]>,
2255
+ <bipartition: [ 1, 3, 4, 5, 7, -4, -6, -8 ], [ 2, -1, -3, -5, -7 ], [ 6 ],
2256
+ [ 8 ], [ -2 ]>,
2257
+ <bipartition: [ 1, -1, -3, -5, -7 ], [ 2, 3, 4, 5, 6, 7, -4, -6, -8 ],
2258
+ [ 8 ], [ -2 ]>,
2259
+ <bipartition: [ 1, 6, 7, 8, -4, -6, -8 ], [ 2, 3, 5, -1, -3, -5, -7 ],
2260
+ [ 4 ], [ -2 ]>,
2261
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -7 ],
2262
+ [ 5, 7, -4, -6, -8 ], [ -2 ]>,
2263
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ], [ 2 ], [ 7, -1, -3, -5, -7 ]
2264
+ , [ -2 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -3, -5, -7 ],
2265
+ [ 2, 5, 8, -4, -6, -8 ], [ -2 ]>,
2266
+ <bipartition: [ 1, 5, 8, -4, -6, -8 ], [ 2, 3, 4, -1, -3, -5, -7 ],
2267
+ [ 6, 7 ], [ -2 ]>,
2268
+ <bipartition: [ 1, 8, -1, -3, -5, -7 ], [ 2, 3, 4, 5, -4, -6, -8 ],
2269
+ [ 6, 7 ], [ -2 ]>,
2270
+ <bipartition: [ 1, 3, 4, 5, 8, -4, -6, -8 ], [ 2, 7, -1, -3, -5, -7 ],
2271
+ [ 6 ], [ -2 ]>,
2272
+ <bipartition: [ 1, 5, 6, 7, -1, -3, -5, -7 ], [ 2, 3, 4, -4, -6, -8 ],
2273
+ [ 8 ], [ -2 ]>,
2274
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -5, -7 ], [ 5, 6, 7, -4, -6, -8 ],
2275
+ [ 8 ], [ -2 ]>,
2276
+ <bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 3, 5, 6, 7, 8, -1, -3, -5, -7 ],
2277
+ [ -2 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -6, -8 ],
2278
+ [ 2, 7, -1, -3, -5, -7 ], [ -2 ]>,
2279
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -7 ], [ 2, 6, 8, -4, -6, -8 ],
2280
+ [ -2 ]>,
2281
+ <bipartition: [ 1, 2, 3, 4, 7, -4, -6, -8 ], [ 5, -1, -3, -5, -7 ],
2282
+ [ 6, 8 ], [ -2 ]>,
2283
+ <bipartition: [ 1, 2, 6, 7, 8, -4, -6, -8 ], [ 3, 4, 5, -1, -3, -5, -7 ],
2284
+ [ -2 ]>,
2285
+ <bipartition: [ 1, 4, 5, 8, -4, -6, -8 ], [ 2, 3, 6, -1, -3, -5, -7 ],
2286
+ [ 7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -4, -6, -8 ],
2287
+ [ 5, 6, -1, -3, -5, -7 ], [ -2 ]>,
2288
+ <bipartition: [ 1, 2, 8, -2, -5 ], [ 3, 4, 5, 6, 7, -1, -3, -4, -6 ],
2289
+ [ -7, -8 ]>,
2290
+ <bipartition: [ 1 ], [ 2, 3, 4, -2, -5 ], [ 5, 6, 7, -1, -3, -4, -6 ],
2291
+ [ 8 ], [ -7, -8 ]>,
2292
+ <bipartition: [ 1, 4, -1, -3, -4, -6 ], [ 2, 7, 8, -2, -5 ], [ 3, 5, 6 ],
2293
+ [ -7, -8 ]>,
2294
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -4, -6 ],
2295
+ [ 8, -2, -5 ], [ -7, -8 ]>,
2296
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -4, -6 ], [ 2 ], [ 4, 7, -2, -5 ],
2297
+ [ -7, -8 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -2, -3, -5, -6 ],
2298
+ [ 5, 6, -4, -8 ], [ -7 ]>,
2299
+ <bipartition: [ 1, 2, 5, 6, 7, -1, -2, -3, -5, -6 ], [ 3, 8, -4, -8 ],
2300
+ [ 4 ], [ -7 ]>,
2301
+ <bipartition: [ 1, 7, 8, -4, -8 ], [ 2, 3, 5, 6, -1, -2, -3, -5, -6 ],
2302
+ [ 4 ], [ -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -4, -8 ],
2303
+ [ 5, 7, 8, -1, -2, -3, -5, -6 ], [ -7 ]>,
2304
+ <bipartition: [ 1, 5, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 6, 7 ],
2305
+ [ 8, -4, -8 ], [ -7 ]>,
2306
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -4, -8 ], [ 5, 7, -1, -2, -3, -5, -6 ],
2307
+ [ -7 ]>,
2308
+ <bipartition: [ 1, 5, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 4, -4, -8 ],
2309
+ [ 6, 7 ], [ -7 ]>,
2310
+ <bipartition: [ 1, 3, 5, 6, 8, -4, -8 ], [ 2, 4, 7, -1, -2, -3, -5, -6 ],
2311
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -2, -4 ], [ 2, 7, -1, -6 ],
2312
+ [ -3, -5, -7 ], [ -8 ]>,
2313
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -6 ], [ 2, 6, 8, -2, -4 ],
2314
+ [ -3, -5, -7 ], [ -8 ]>,
2315
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -6 ], [ 4 ], [ 6, -2, -4 ],
2316
+ [ -3, -5, -7 ], [ -8 ]>,
2317
+ <bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 6, 8, -2, -4 ], [ 5, 7 ],
2318
+ [ -3, -5, -7 ], [ -8 ]>,
2319
+ <bipartition: [ 1, 2, 3, 4, -2, -4 ], [ 5, 6, 7, -1, -6 ], [ 8 ],
2320
+ [ -3, -5, -7 ], [ -8 ]>,
2321
+ <bipartition: [ 1, 2, 8, -1, -6 ], [ 3, 4, 5, 6, 7, -2, -4 ],
2322
+ [ -3, -5, -7 ], [ -8 ]>,
2323
+ <bipartition: [ 1 ], [ 2, 3, 4, -1, -6 ], [ 5, 6, 7, -2, -4 ], [ 8 ],
2324
+ [ -3, -5, -7 ], [ -8 ]>,
2325
+ <bipartition: [ 1, 4, -2, -4 ], [ 2, 7, 8, -1, -6 ], [ 3, 5, 6 ],
2326
+ [ -3, -5, -7 ], [ -8 ]>,
2327
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -2, -4 ], [ 8, -1, -6 ],
2328
+ [ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -6 ],
2329
+ [ 5, 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
2330
+ <bipartition: [ 1, 3, 5, 6, 8, -2, -4 ], [ 2 ], [ 4, 7, -1, -6 ],
2331
+ [ -3, -5, -7 ], [ -8 ]>,
2332
+ <bipartition: [ 1 ], [ 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -5, -8 ], [ 8 ],
2333
+ [ -2, -6, -7 ]>,
2334
+ <bipartition: [ 1, 4, -1, -3, -5, -8 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
2335
+ [ -2, -6, -7 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -8 ], [ 2 ],
2336
+ [ 4, 7, -4 ], [ -2, -6, -7 ]>,
2337
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -3, -6, -7 ], [ 6 ], [ 7, -4 ],
2338
+ [ -2, -5, -8 ]>,
2339
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -6, -7 ], [ 8 ],
2340
+ [ -2, -5, -8 ]>,
2341
+ <bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 3, 5, 6, 7, 8, -4 ],
2342
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -3, -6, -7 ],
2343
+ [ 2, 7, -4 ], [ -2, -5, -8 ]>,
2344
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, 6, 8, -1, -3, -6, -7 ],
2345
+ [ -2, -5, -8 ]>,
2346
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -4 ], [ 4 ], [ 6, -1, -3, -6, -7 ],
2347
+ [ -2, -5, -8 ]>,
2348
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8, -1, -3, -6, -7 ], [ 5, 7 ],
2349
+ [ -2, -5, -8 ]>,
2350
+ <bipartition: [ 1, 5, -4 ], [ 2, 3, 4, 6, 7, 8, -1, -3, -6, -7 ],
2351
+ [ -2, -5, -8 ]>,
2352
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -6, -7 ], [ 5, 6, 7, -4 ], [ 8 ],
2353
+ [ -2, -5, -8 ]>,
2354
+ <bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -3, -6, -7 ],
2355
+ [ -2, -5, -8 ]>,
2356
+ <bipartition: [ 1 ], [ 2, 3, 4, -4 ], [ 5, 6, 7, -1, -3, -6, -7 ], [ 8 ],
2357
+ [ -2, -5, -8 ]>,
2358
+ <bipartition: [ 1, 4, -1, -3, -6, -7 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
2359
+ [ -2, -5, -8 ]>,
2360
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -6, -7 ], [ 8, -4 ],
2361
+ [ -2, -5, -8 ]>,
2362
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4 ], [ 5, 7, -1, -3, -6, -7 ],
2363
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -6, -7 ], [ 2 ],
2364
+ [ 4, 7, -4 ], [ -2, -5, -8 ]>,
2365
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -6, -7 ], [ 5, 7, -4 ],
2366
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -6, -7 ],
2367
+ [ 7, 8, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2368
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -6, -7 ], [ 2, -4 ], [ 6 ], [ 8 ],
2369
+ [ -2, -5, -8 ], [ -3 ]>,
2370
+ <bipartition: [ 1, -4 ], [ 2, 3, 4, 5, 6, 7, -1, -6, -7 ], [ 8 ],
2371
+ [ -2, -5, -8 ], [ -3 ]>,
2372
+ <bipartition: [ 1, 6, 7, 8, -1, -6, -7 ], [ 2, 3, 5, -4 ], [ 4 ],
2373
+ [ -2, -5, -8 ], [ -3 ]>,
2374
+ <bipartition: [ 1, 2, 4, 5, 7, -4 ], [ 3, -1, -6, -7 ], [ 6, 8 ],
2375
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4 ],
2376
+ [ 5, 7, -1, -6, -7 ], [ -2, -5, -8 ], [ -3 ]>,
2377
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ], [ 2 ], [ 7, -4 ],
2378
+ [ -2, -5, -8 ], [ -3 ]>,
2379
+ <bipartition: [ 1, 3, 4, 6, 7, -4 ], [ 2, 5, 8, -1, -6, -7 ],
2380
+ [ -2, -5, -8 ], [ -3 ]>,
2381
+ <bipartition: [ 1, 5, 8, -1, -6, -7 ], [ 2, 3, 4, -4 ], [ 6, 7 ],
2382
+ [ -2, -5, -8 ], [ -3 ]>,
2383
+ <bipartition: [ 1, 8, -4 ], [ 2, 3, 4, 5, -1, -6, -7 ], [ 6, 7 ],
2384
+ [ -2, -5, -8 ], [ -3 ]>,
2385
+ <bipartition: [ 1, 3, 4, 5, 8, -1, -6, -7 ], [ 2, 7, -4 ], [ 6 ],
2386
+ [ -2, -5, -8 ], [ -3 ]>,
2387
+ <bipartition: [ 1, 5, 6, 7, -4 ], [ 2, 3, 4, -1, -6, -7 ], [ 8 ],
2388
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -6, -7 ],
2389
+ [ 2, 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2390
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, 6, 8, -1, -6, -7 ],
2391
+ [ -2, -5, -8 ], [ -3 ]>,
2392
+ <bipartition: [ 1, 2, 3, 4, 7, -1, -6, -7 ], [ 5, -4 ], [ 6, 8 ],
2393
+ [ -2, -5, -8 ], [ -3 ]>,
2394
+ <bipartition: [ 1, 2, 6, 7, 8, -1, -6, -7 ], [ 3, 4, 5, -4 ],
2395
+ [ -2, -5, -8 ], [ -3 ]>,
2396
+ <bipartition: [ 1, 4, 5, 8, -1, -6, -7 ], [ 2, 3, 6, -4 ], [ 7 ],
2397
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 7, 8, -1, -6, -7 ],
2398
+ [ 5, 6, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2399
+ <bipartition: [ 1, 2, 8, -1, -7 ], [ 3, 4, 5, 6, 7, -3, -4, -5, -6, -8 ],
2400
+ [ -2 ]>,
2401
+ <bipartition: [ 1 ], [ 2, 3, 4, -1, -7 ], [ 5, 6, 7, -3, -4, -5, -6, -8 ],
2402
+ [ 8 ], [ -2 ]>,
2403
+ <bipartition: [ 1, 4, -3, -4, -5, -6, -8 ], [ 2, 7, 8, -1, -7 ],
2404
+ [ 3, 5, 6 ], [ -2 ]>,
2405
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -3, -4, -5, -6, -8 ],
2406
+ [ 8, -1, -7 ], [ -2 ]>,
2407
+ <bipartition: [ 1, 3, 5, 6, 8, -3, -4, -5, -6, -8 ], [ 2 ], [ 4, 7, -1, -7 ]
2408
+ , [ -2 ]>,
2409
+ <bipartition: [ 1, 2, 3, 4, -4, -6, -8 ], [ 5, 6, 7, -1, -3, -5, -7 ],
2410
+ [ 8 ], [ -2 ]>,
2411
+ <bipartition: [ 1, 5, -1, -3, -5, -7 ], [ 2, 3, 4, 6, 7, 8, -4, -6, -8 ],
2412
+ [ -2 ]>,
2413
+ <bipartition: [ 1, 2, 8, -1, -3, -5, -7 ], [ 3, 4, 5, 6, 7, -4, -6, -8 ],
2414
+ [ -2 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -5, -7 ],
2415
+ [ 5, 6, 7, -4, -6, -8 ], [ 8 ], [ -2 ]>,
2416
+ <bipartition: [ 1, 4, -4, -6, -8 ], [ 2, 7, 8, -1, -3, -5, -7 ],
2417
+ [ 3, 5, 6 ], [ -2 ]>,
2418
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4, -6, -8 ],
2419
+ [ 8, -1, -3, -5, -7 ], [ -2 ]>,
2420
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -3, -5, -7 ], [ 5, 7, -4, -6, -8 ]
2421
+ , [ -2 ]>, <bipartition: [ 1, 3, 5, 6, 8, -4, -6, -8 ], [ 2 ],
2422
+ [ 4, 7, -1, -3, -5, -7 ], [ -2 ]>,
2423
+ <bipartition: [ 1, 2, 4, 5, 7, -4, -6, -8 ], [ 3, -1, -3, -5, -7 ],
2424
+ [ 6, 8 ], [ -2 ]>,
2425
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4, -6, -8 ],
2426
+ [ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
2427
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -7 ], [ 2, 4, 7, -4, -6, -8 ],
2428
+ [ -2 ]>,
2429
+ <bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 3, 5, 6, 7, 8, -4, -6, -8 ],
2430
+ [ -2 ]>, <bipartition: [ 1, 5, -4, -6, -8 ], [ 2, 3, 4, 6, 7 ],
2431
+ [ 8, -1, -3, -5, -7 ], [ -2 ]>,
2432
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -3, -5, -7 ], [ 4 ], [ 6, -4, -6, -8 ]
2433
+ , [ -2 ]>,
2434
+ <bipartition: [ 1, 2, 3, 4, -2, -5 ], [ 5, 6, 7, 8, -1, -3, -4, -6 ],
2435
+ [ -7, -8 ]>, <bipartition: [ 1, 3, 4, -2, -5 ], [ 2, 6, 8 ],
2436
+ [ 5, 7, -1, -3, -4, -6 ], [ -7, -8 ]>,
2437
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -4, -6 ], [ 2, -2, -5 ],
2438
+ [ -7, -8 ]>,
2439
+ <bipartition: [ 1, -4, -8 ], [ 2, 3, 4, 5, 6, 7, -1, -2, -3, -5, -6 ],
2440
+ [ 8 ], [ -7 ]>, <bipartition: [ 1, 2, 3, 5, 7, 8, -4, -8 ], [ 4 ],
2441
+ [ 6, -1, -2, -3, -5, -6 ], [ -7 ]>,
2442
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2 ],
2443
+ [ 7, -4, -8 ], [ -7 ]>,
2444
+ <bipartition: [ 1, 3, 4, 6, 7, -4, -8 ], [ 2, 5, 8, -1, -2, -3, -5, -6 ],
2445
+ [ -7 ]>,
2446
+ <bipartition: [ 1, 2, 5, 6, 7, -4, -8 ], [ 3, 8, -1, -2, -3, -5, -6 ],
2447
+ [ 4 ], [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 8, -1, -2, -3, -5, -6 ],
2448
+ [ 2, 7, -4, -8 ], [ 6 ], [ -7 ]>,
2449
+ <bipartition: [ 1, 5, 6, 7, -4, -8 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
2450
+ [ 8 ], [ -7 ]>,
2451
+ <bipartition: [ 1, 7, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 5, 6, -4, -8 ],
2452
+ [ 4 ], [ -7 ]>,
2453
+ <bipartition: [ 1, 2, 4, 7, 8, -4, -8 ], [ 3, 5, 6, -1, -2, -3, -5, -6 ],
2454
+ [ -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -1, -2, -3, -5, -6 ],
2455
+ [ 5, 7, 8, -4, -8 ], [ -7 ]>,
2456
+ <bipartition: [ 1, 3, 4, -4, -8 ], [ 2, 6, 8, -1, -2, -3, -5, -6 ],
2457
+ [ 5, 7 ], [ -7 ]>, <bipartition: [ 1, 2, 4, 7, 8, -1, -2, -3, -5, -6 ],
2458
+ [ 3, 5, 6, -4, -8 ], [ -7 ]>,
2459
+ <bipartition: [ 1, 5, -4, -8 ], [ 2, 3, 4, 6, 7, 8, -1, -2, -3, -5, -6 ],
2460
+ [ -7 ]>,
2461
+ <bipartition: [ 1, 2, 4, 7, -4, -8 ], [ 3, 5, -1, -2, -3, -5, -6 ],
2462
+ [ 6, 8 ], [ -7 ]>,
2463
+ <bipartition: [ 1, 2, 3, 4, 6, 8, -1, -2, -3, -5, -6 ], [ 5, 7, -4, -8 ],
2464
+ [ -7 ]>,
2465
+ <bipartition: [ 1, 2, 3, 4, 8, -4, -8 ], [ 5, -1, -2, -3, -5, -6 ],
2466
+ [ 6, 7 ], [ -7 ]>,
2467
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -6 ], [ 7, 8, -2, -4 ],
2468
+ [ -3, -5, -7 ], [ -8 ]>,
2469
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -6 ], [ 2, -2, -4 ], [ 6 ], [ 8 ],
2470
+ [ -3, -5, -7 ], [ -8 ]>,
2471
+ <bipartition: [ 1, 6, 7, 8, -1, -6 ], [ 2, 3, 5, -2, -4 ], [ 4 ],
2472
+ [ -3, -5, -7 ], [ -8 ]>,
2473
+ <bipartition: [ 1, 2, 3, 4, -1, -6 ], [ 5, 6, 7, 8, -2, -4 ],
2474
+ [ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4, -1, -6 ], [ 2, 6, 8 ],
2475
+ [ 5, 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
2476
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -2, -4 ], [ 2, -1, -6 ],
2477
+ [ -3, -5, -7 ], [ -8 ]>,
2478
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -5, -8 ], [ 2, -4 ],
2479
+ [ -2, -6, -7 ]>,
2480
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4 ], [ 7, 8, -1, -3, -6, -7 ],
2481
+ [ -2, -5, -8 ]>,
2482
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, -1, -3, -6, -7 ], [ 6 ], [ 8 ],
2483
+ [ -2, -5, -8 ]>,
2484
+ <bipartition: [ 1, 6, 7, 8, -4 ], [ 2, 3, 5, -1, -3, -6, -7 ], [ 4 ],
2485
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -6, -7 ],
2486
+ [ 2, 6, 8, -4 ], [ -2, -5, -8 ]>,
2487
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, 8, -1, -3, -6, -7 ],
2488
+ [ -2, -5, -8 ]>,
2489
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8 ], [ 5, 7, -1, -3, -6, -7 ],
2490
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -6, -7 ],
2491
+ [ 2, -4 ], [ -2, -5, -8 ]>,
2492
+ <bipartition: [ 1, 2, 3, 4, -1, -6, -7 ], [ 5, 6, 7, -4 ], [ 8 ],
2493
+ [ -2, -5, -8 ], [ -3 ]>,
2494
+ <bipartition: [ 1, 2, 8, -4 ], [ 3, 4, 5, 6, 7, -1, -6, -7 ],
2495
+ [ -2, -5, -8 ], [ -3 ]>,
2496
+ <bipartition: [ 1 ], [ 2, 3, 4, -4 ], [ 5, 6, 7, -1, -6, -7 ], [ 8 ],
2497
+ [ -2, -5, -8 ], [ -3 ]>,
2498
+ <bipartition: [ 1, 4, -1, -6, -7 ], [ 2, 7, 8, -4 ], [ 3, 5, 6 ],
2499
+ [ -2, -5, -8 ], [ -3 ]>,
2500
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -6, -7 ], [ 8, -4 ],
2501
+ [ -2, -5, -8 ], [ -3 ]>,
2502
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4 ], [ 5, 7, -1, -6, -7 ],
2503
+ [ -2, -5, -8 ], [ -3 ]>,
2504
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -6, -7 ], [ 2 ], [ 4, 7, -4 ],
2505
+ [ -2, -5, -8 ], [ -3 ]>,
2506
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -4 ], [ 6 ], [ 7, -1, -6, -7 ],
2507
+ [ -2, -5, -8 ], [ -3 ]>,
2508
+ <bipartition: [ 1, 2, 4, 5, 7, -1, -6, -7 ], [ 3, -4 ], [ 6, 8 ],
2509
+ [ -2, -5, -8 ], [ -3 ]>,
2510
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -6, -7 ], [ 5, 7, -4 ],
2511
+ [ -2, -5, -8 ], [ -3 ]>,
2512
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2, 4, 7, -1, -6, -7 ],
2513
+ [ -2, -5, -8 ], [ -3 ]>,
2514
+ <bipartition: [ 1, 4, -4 ], [ 2, 3, 5, 6, 7, 8, -1, -6, -7 ],
2515
+ [ -2, -5, -8 ], [ -3 ]>,
2516
+ <bipartition: [ 1, 5, -1, -6, -7 ], [ 2, 3, 4, 6, 7 ], [ 8, -4 ],
2517
+ [ -2, -5, -8 ], [ -3 ]>,
2518
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -4 ], [ 4 ], [ 6, -1, -6, -7 ],
2519
+ [ -2, -5, -8 ], [ -3 ]>,
2520
+ <bipartition: [ 1, 2, 3, 4, -1, -7 ], [ 5, 6, 7, 8, -3, -4, -5, -6, -8 ],
2521
+ [ -2 ]>, <bipartition: [ 1, 3, 4, -1, -7 ], [ 2, 6, 8 ],
2522
+ [ 5, 7, -3, -4, -5, -6, -8 ], [ -2 ]>,
2523
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -3, -4, -5, -6, -8 ], [ 2, -1, -7 ],
2524
+ [ -2 ]>,
2525
+ <bipartition: [ 1, 3, 4, 5, 7, -4, -6, -8 ], [ 2, 6, 8, -1, -3, -5, -7 ],
2526
+ [ -2 ]>,
2527
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -5, -7 ], [ 5, 6, 7, 8, -4, -6, -8 ],
2528
+ [ -2 ]>, <bipartition: [ 1, 3, 4, -1, -3, -5, -7 ], [ 2, 6, 8 ],
2529
+ [ 5, 7, -4, -6, -8 ], [ -2 ]>,
2530
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4, -6, -8 ], [ 2, -1, -3, -5, -7 ],
2531
+ [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -4, -6, -8 ], [ 6 ],
2532
+ [ 7, -1, -3, -5, -7 ], [ -2 ]>,
2533
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -3, -5, -7 ], [ 5, -4, -6, -8 ],
2534
+ [ 6, 7 ], [ -2 ]>,
2535
+ <bipartition: [ 1, 3, 4, -1, -3, -5, -7 ], [ 2, 6, 8, -4, -6, -8 ],
2536
+ [ 5, 7 ], [ -2 ]>, <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -3, -5, -7 ],
2537
+ [ 7, 8, -4, -6, -8 ], [ -2 ]>,
2538
+ <bipartition: [ 1, 3, 4, 5, 7, -1, -3, -5, -7 ], [ 2, -4, -6, -8 ], [ 6 ],
2539
+ [ 8 ], [ -2 ]>,
2540
+ <bipartition: [ 1, 6, 7, 8, -1, -3, -5, -7 ], [ 2, 3, 5, -4, -6, -8 ],
2541
+ [ 4 ], [ -2 ]>, <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -4, -8 ],
2542
+ [ 5, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
2543
+ <bipartition: [ 1, 3, 4, 5, 7, -4, -8 ], [ 2, -1, -2, -3, -5, -6 ], [ 6 ],
2544
+ [ 8 ], [ -7 ]>,
2545
+ <bipartition: [ 1, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 5, 6, 7, -4, -8 ],
2546
+ [ 8 ], [ -7 ]>,
2547
+ <bipartition: [ 1, 6, 7, 8, -4, -8 ], [ 2, 3, 5, -1, -2, -3, -5, -6 ],
2548
+ [ 4 ], [ -7 ]>, <bipartition: [ 1, 2, 4, 5, 7, -1, -2, -3, -5, -6 ],
2549
+ [ 3, -4, -8 ], [ 6, 8 ], [ -7 ]>,
2550
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -2, -3, -5, -6 ],
2551
+ [ 5, 7, -4, -8 ], [ -7 ]>,
2552
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2 ], [ 7, -1, -2, -3, -5, -6 ]
2553
+ , [ -7 ]>, <bipartition: [ 1, 3, 4, 6, 7, -1, -2, -3, -5, -6 ],
2554
+ [ 2, 5, 8, -4, -8 ], [ -7 ]>,
2555
+ <bipartition: [ 1, 5, 8, -4, -8 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
2556
+ [ 6, 7 ], [ -7 ]>,
2557
+ <bipartition: [ 1, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 4, 5, -4, -8 ],
2558
+ [ 6, 7 ], [ -7 ]>,
2559
+ <bipartition: [ 1, 3, 4, 5, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
2560
+ [ 6 ], [ -7 ]>, <bipartition: [ 1, 5, 6, 7, -1, -2, -3, -5, -6 ],
2561
+ [ 2, 3, 4, -4, -8 ], [ 8 ], [ -7 ]>,
2562
+ <bipartition: [ 1, 3, 4, 5, 6, 8, -4, -8 ], [ 2, 7, -1, -2, -3, -5, -6 ],
2563
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -2, -3, -5, -6 ],
2564
+ [ 2, 6, 8, -4, -8 ], [ -7 ]>,
2565
+ <bipartition: [ 1, 2, 3, 4, 7, -4, -8 ], [ 5, -1, -2, -3, -5, -6 ],
2566
+ [ 6, 8 ], [ -7 ]>,
2567
+ <bipartition: [ 1, 2, 6, 7, 8, -4, -8 ], [ 3, 4, 5, -1, -2, -3, -5, -6 ],
2568
+ [ -7 ]>,
2569
+ <bipartition: [ 1, 4, 5, 8, -4, -8 ], [ 2, 3, 6, -1, -2, -3, -5, -6 ],
2570
+ [ 7 ], [ -7 ]>,
2571
+ <bipartition: [ 1, 2, 3, 4, 7, 8, -4, -8 ], [ 5, 6, -1, -2, -3, -5, -6 ],
2572
+ [ -7 ]>, <bipartition: [ 1, 2, 8, -2, -4 ], [ 3, 4, 5, 6, 7, -1, -6 ],
2573
+ [ -3, -5, -7 ], [ -8 ]>,
2574
+ <bipartition: [ 1 ], [ 2, 3, 4, -2, -4 ], [ 5, 6, 7, -1, -6 ], [ 8 ],
2575
+ [ -3, -5, -7 ], [ -8 ]>,
2576
+ <bipartition: [ 1, 4, -1, -6 ], [ 2, 7, 8, -2, -4 ], [ 3, 5, 6 ],
2577
+ [ -3, -5, -7 ], [ -8 ]>,
2578
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -6 ], [ 8, -2, -4 ],
2579
+ [ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 5, 6, 8, -1, -6 ], [ 2 ],
2580
+ [ 4, 7, -2, -4 ], [ -3, -5, -7 ], [ -8 ]>,
2581
+ <bipartition: [ 1, 2, 8, -1, -3, -6, -7 ], [ 3, 4, 5, 6, 7, -4 ],
2582
+ [ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -3, -6, -7 ],
2583
+ [ 5, 6, 7, -4 ], [ 8 ], [ -2, -5, -8 ]>,
2584
+ <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -3, -6, -7 ], [ 3, 5, 6 ],
2585
+ [ -2, -5, -8 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4 ],
2586
+ [ 8, -1, -3, -6, -7 ], [ -2, -5, -8 ]>,
2587
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2 ], [ 4, 7, -1, -3, -6, -7 ],
2588
+ [ -2, -5, -8 ]>,
2589
+ <bipartition: [ 1, 2, 3, 4, -4 ], [ 5, 6, 7, 8, -1, -6, -7 ],
2590
+ [ -2, -5, -8 ], [ -3 ]>,
2591
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8 ], [ 5, 7, -1, -6, -7 ],
2592
+ [ -2, -5, -8 ], [ -3 ]>,
2593
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -6, -7 ], [ 2, -4 ],
2594
+ [ -2, -5, -8 ], [ -3 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -6, -7 ],
2595
+ [ 6 ], [ 7, -4 ], [ -2, -5, -8 ], [ -3 ]>,
2596
+ <bipartition: [ 1, 2, 3, 4, 8, -4 ], [ 5, -1, -6, -7 ], [ 6, 7 ],
2597
+ [ -2, -5, -8 ], [ -3 ]>,
2598
+ <bipartition: [ 1, 3, 4, -4 ], [ 2, 6, 8, -1, -6, -7 ], [ 5, 7 ],
2599
+ [ -2, -5, -8 ], [ -3 ]>,
2600
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -4 ], [ 7, 8, -1, -6, -7 ],
2601
+ [ -2, -5, -8 ], [ -3 ]>,
2602
+ <bipartition: [ 1, 3, 4, 5, 7, -4 ], [ 2, -1, -6, -7 ], [ 6 ], [ 8 ],
2603
+ [ -2, -5, -8 ], [ -3 ]>,
2604
+ <bipartition: [ 1, 6, 7, 8, -4 ], [ 2, 3, 5, -1, -6, -7 ], [ 4 ],
2605
+ [ -2, -5, -8 ], [ -3 ]>,
2606
+ <bipartition: [ 1, 2, 8, -4, -6, -8 ], [ 3, 4, 5, 6, 7, -1, -3, -5, -7 ],
2607
+ [ -2 ]>,
2608
+ <bipartition: [ 1 ], [ 2, 3, 4, -4, -6, -8 ], [ 5, 6, 7, -1, -3, -5, -7 ],
2609
+ [ 8 ], [ -2 ]>,
2610
+ <bipartition: [ 1, 4, -1, -3, -5, -7 ], [ 2, 7, 8, -4, -6, -8 ],
2611
+ [ 3, 5, 6 ], [ -2 ]>,
2612
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -3, -5, -7 ],
2613
+ [ 8, -4, -6, -8 ], [ -2 ]>,
2614
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -3, -5, -7 ], [ 2 ], [ 4, 7, -4, -6, -8 ]
2615
+ , [ -2 ]>,
2616
+ <bipartition: [ 1, 2, 3, 4, -4, -8 ], [ 5, 6, 7, -1, -2, -3, -5, -6 ],
2617
+ [ 8 ], [ -7 ]>,
2618
+ <bipartition: [ 1, 2, 8, -1, -2, -3, -5, -6 ], [ 3, 4, 5, 6, 7, -4, -8 ],
2619
+ [ -7 ]>, <bipartition: [ 1 ], [ 2, 3, 4, -1, -2, -3, -5, -6 ],
2620
+ [ 5, 6, 7, -4, -8 ], [ 8 ], [ -7 ]>,
2621
+ <bipartition: [ 1, 4, -4, -8 ], [ 2, 7, 8, -1, -2, -3, -5, -6 ],
2622
+ [ 3, 5, 6 ], [ -7 ]>,
2623
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4, -8 ],
2624
+ [ 8, -1, -2, -3, -5, -6 ], [ -7 ]>,
2625
+ <bipartition: [ 1, 3, 4 ], [ 2, 6, 8, -1, -2, -3, -5, -6 ], [ 5, 7, -4, -8 ]
2626
+ , [ -7 ]>, <bipartition: [ 1, 3, 5, 6, 8, -4, -8 ], [ 2 ],
2627
+ [ 4, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
2628
+ <bipartition: [ 1, 2, 3, 4, 5, 8, -1, -2, -3, -5, -6 ], [ 6 ],
2629
+ [ 7, -4, -8 ], [ -7 ]>,
2630
+ <bipartition: [ 1, 2, 4, 5, 7, -4, -8 ], [ 3, -1, -2, -3, -5, -6 ],
2631
+ [ 6, 8 ], [ -7 ]>, <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -4, -8 ],
2632
+ [ 5, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
2633
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2, 4, 7, -4, -8 ],
2634
+ [ -7 ]>,
2635
+ <bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 3, 5, 6, 7, 8, -4, -8 ],
2636
+ [ -7 ]>, <bipartition: [ 1, 5, -4, -8 ], [ 2, 3, 4, 6, 7 ],
2637
+ [ 8, -1, -2, -3, -5, -6 ], [ -7 ]>,
2638
+ <bipartition: [ 1, 2, 3, 5, 7, 8, -1, -2, -3, -5, -6 ], [ 4 ],
2639
+ [ 6, -4, -8 ], [ -7 ]>,
2640
+ <bipartition: [ 1, 2, 3, 4, -2, -4 ], [ 5, 6, 7, 8, -1, -6 ],
2641
+ [ -3, -5, -7 ], [ -8 ]>, <bipartition: [ 1, 3, 4, -2, -4 ], [ 2, 6, 8 ],
2642
+ [ 5, 7, -1, -6 ], [ -3, -5, -7 ], [ -8 ]>,
2643
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -6 ], [ 2, -2, -4 ],
2644
+ [ -3, -5, -7 ], [ -8 ]>,
2645
+ <bipartition: [ 1, 2, 3, 4, -1, -3, -6, -7 ], [ 5, 6, 7, 8, -4 ],
2646
+ [ -2, -5, -8 ]>, <bipartition: [ 1, 3, 4, -1, -3, -6, -7 ], [ 2, 6, 8 ],
2647
+ [ 5, 7, -4 ], [ -2, -5, -8 ]>,
2648
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4 ], [ 2, -1, -3, -6, -7 ],
2649
+ [ -2, -5, -8 ]>,
2650
+ <bipartition: [ 1, 2, 8, -1, -6, -7 ], [ 3, 4, 5, 6, 7, -4 ],
2651
+ [ -2, -5, -8 ], [ -3 ]>,
2652
+ <bipartition: [ 1 ], [ 2, 3, 4, -1, -6, -7 ], [ 5, 6, 7, -4 ], [ 8 ],
2653
+ [ -2, -5, -8 ], [ -3 ]>,
2654
+ <bipartition: [ 1, 4, -4 ], [ 2, 7, 8, -1, -6, -7 ], [ 3, 5, 6 ],
2655
+ [ -2, -5, -8 ], [ -3 ]>,
2656
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -4 ], [ 8, -1, -6, -7 ],
2657
+ [ -2, -5, -8 ], [ -3 ]>,
2658
+ <bipartition: [ 1, 3, 5, 6, 8, -4 ], [ 2 ], [ 4, 7, -1, -6, -7 ],
2659
+ [ -2, -5, -8 ], [ -3 ]>,
2660
+ <bipartition: [ 1, 2, 3, 4, -4, -6, -8 ], [ 5, 6, 7, 8, -1, -3, -5, -7 ],
2661
+ [ -2 ]>, <bipartition: [ 1, 3, 4, -4, -6, -8 ], [ 2, 6, 8 ],
2662
+ [ 5, 7, -1, -3, -5, -7 ], [ -2 ]>,
2663
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -3, -5, -7 ], [ 2, -4, -6, -8 ],
2664
+ [ -2 ]>, <bipartition: [ 1, 2, 3, 4, -1, -2, -3, -5, -6 ],
2665
+ [ 5, 6, 7, 8, -4, -8 ], [ -7 ]>,
2666
+ <bipartition: [ 1, 3, 4, -1, -2, -3, -5, -6 ], [ 2, 6, 8 ], [ 5, 7, -4, -8 ]
2667
+ , [ -7 ]>,
2668
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4, -8 ], [ 2, -1, -2, -3, -5, -6 ],
2669
+ [ -7 ]>, <bipartition: [ 1, 2, 3, 4, 5, 8, -4, -8 ], [ 6 ],
2670
+ [ 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
2671
+ <bipartition: [ 1, 2, 3, 4, 8, -1, -2, -3, -5, -6 ], [ 5, -4, -8 ],
2672
+ [ 6, 7 ], [ -7 ]>,
2673
+ <bipartition: [ 1, 3, 4, -1, -2, -3, -5, -6 ], [ 2, 6, 8, -4, -8 ],
2674
+ [ 5, 7 ], [ -7 ]>,
2675
+ <bipartition: [ 1, 2, 3, 4, 5, 6, -1, -2, -3, -5, -6 ], [ 7, 8, -4, -8 ],
2676
+ [ -7 ]>, <bipartition: [ 1, 3, 4, 5, 7, -1, -2, -3, -5, -6 ],
2677
+ [ 2, -4, -8 ], [ 6 ], [ 8 ], [ -7 ]>,
2678
+ <bipartition: [ 1, 6, 7, 8, -1, -2, -3, -5, -6 ], [ 2, 3, 5, -4, -8 ],
2679
+ [ 4 ], [ -7 ]>,
2680
+ <bipartition: [ 1, 2, 3, 4, -1, -6, -7 ], [ 5, 6, 7, 8, -4 ],
2681
+ [ -2, -5, -8 ], [ -3 ]>,
2682
+ <bipartition: [ 1, 3, 4, -1, -6, -7 ], [ 2, 6, 8 ], [ 5, 7, -4 ],
2683
+ [ -2, -5, -8 ], [ -3 ]>,
2684
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -4 ], [ 2, -1, -6, -7 ],
2685
+ [ -2, -5, -8 ], [ -3 ]>,
2686
+ <bipartition: [ 1, 2, 8, -4, -8 ], [ 3, 4, 5, 6, 7, -1, -2, -3, -5, -6 ],
2687
+ [ -7 ]>,
2688
+ <bipartition: [ 1 ], [ 2, 3, 4, -4, -8 ], [ 5, 6, 7, -1, -2, -3, -5, -6 ],
2689
+ [ 8 ], [ -7 ]>,
2690
+ <bipartition: [ 1, 4, -1, -2, -3, -5, -6 ], [ 2, 7, 8, -4, -8 ],
2691
+ [ 3, 5, 6 ], [ -7 ]>,
2692
+ <bipartition: [ 1 ], [ 2, 4 ], [ 3, 5, 6, 7, -1, -2, -3, -5, -6 ],
2693
+ [ 8, -4, -8 ], [ -7 ]>,
2694
+ <bipartition: [ 1, 3, 5, 6, 8, -1, -2, -3, -5, -6 ], [ 2 ], [ 4, 7, -4, -8 ]
2695
+ , [ -7 ]>,
2696
+ <bipartition: [ 1, 2, 3, 4, -4, -8 ], [ 5, 6, 7, 8, -1, -2, -3, -5, -6 ],
2697
+ [ -7 ]>, <bipartition: [ 1, 3, 4, -4, -8 ], [ 2, 6, 8 ],
2698
+ [ 5, 7, -1, -2, -3, -5, -6 ], [ -7 ]>,
2699
+ <bipartition: [ 1, 3, 4, 5, 6, 7, 8, -1, -2, -3, -5, -6 ], [ 2, -4, -8 ],
2700
+ [ -7 ]> ]
2701
+ gap> LClassReps(D);;
2702
+ gap> x := Bipartition([[1, 3, 4, 6, 7, -3, -4, -5, -6, -8],
2703
+ > [2, 5, 8, -1, -7], [-2]]);;
2704
+ gap> D := DClass(S, x);
2705
+ <Green's D-class: <bipartition: [ 1, 3, 4, 6, 7, -3, -4, -5, -6, -8 ],
2706
+ [ 2, 5, 8, -1, -7 ], [ -2 ]>>
2707
+ gap> LClassReps(D);
2708
+ [ <bipartition: [ 1, 2, 4, 7, 8, -3, -4, -5, -6, -8 ], [ 3, 5, 6, -1, -7 ],
2709
+ [ -2 ]> ]
2710
+ gap> L := LClass(S, Bipartition([[1], [2, 4], [3, 6, -3, -4, -5, -6, -8],
2711
+ > [5, 7, 8, -1, -7], [-2]]));
2712
+ <Green's L-class: <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, -3, -4, -5, -6, -8 ]
2713
+ , [ 5, 7, 8, -1, -7 ], [ -2 ]>>
2714
+ gap> LL := LClassNC(S, Bipartition([[1, 3, 4, 6, 7, -3, -4, -5, -6, -8], [2,
2715
+ > 5, 8, -1, -7], [-2]]));
2716
+ <Green's L-class: <bipartition: [ 1, 3, 4, 6, 7, -3, -4, -5, -6, -8 ],
2717
+ [ 2, 5, 8, -1, -7 ], [ -2 ]>>
2718
+ gap> LL = L;
2719
+ true
2720
+ gap> L = LL;
2721
+ true
2722
+ gap> Size(L);
2723
+ 64
2724
+ gap> Size(LL);
2725
+ 64
2726
+ gap> x := Bipartition([[1], [2, 4], [3, 6, 8, -1, -3, -5, -7],
2727
+ > [5, 7, -4, -6, -8], [-2]]);;
2728
+ gap> D := DClass(RClassNC(S, x));
2729
+ <Green's D-class: <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -7 ],
2730
+ [ 5, 7, -4, -6, -8 ], [ -2 ]>>
2731
+ gap> GroupHClass(D);
2732
+ fail
2733
+ gap> IsRegularDClass(D);
2734
+ false
2735
+ gap> D := DClass(S, x);
2736
+ <Green's D-class: <bipartition: [ 1 ], [ 2, 4 ], [ 3, 6, 8, -1, -3, -5, -7 ],
2737
+ [ 5, 7, -4, -6, -8 ], [ -2 ]>>
2738
+ gap> IsRegularDClass(D);
2739
+ false
2740
+ gap> x := Bipartition([[1, 7, 8, -2, -5], [2, 3, 5, 6, -1, -3, -4, -6],
2741
+ > [4], [-7, -8]]);;
2742
+ gap> IsRegularDClass(DClass(S, x));
2743
+ false
2744
+ gap> NrRegularDClasses(S);
2745
+ 4
2746
+ gap> First(DClasses(S), IsRegularDClass);
2747
+ <Green's D-class: <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
2748
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>>
2749
+ gap> Size(last);
2750
+ 12078
2751
+ gap> GroupHClass(last2);
2752
+ <Green's H-class: <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
2753
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>>
2754
+ gap> StructureDescription(last);
2755
+ "1"
2756
+ gap> D := First(DClasses(S), IsRegularDClass);
2757
+ <Green's D-class: <bipartition: [ 1, 2, 3, 7, -7 ], [ 4, 5, 6, 8 ],
2758
+ [ -1, -2 ], [ -3, -6, -8 ], [ -4 ], [ -5 ]>>
2759
+ gap> NrRClasses(D);
2760
+ 99
2761
+ gap> NrLClasses(D);
2762
+ 122
2763
+ gap> R := PrincipalFactor(D);
2764
+ <Rees 0-matrix semigroup 99x122 over 1>
2765
+ gap> Length(Idempotents(S, 1));
2766
+ 11209
2767
+ gap> Length(Idempotents(S, 0));
2768
+ 4218
2769
+ gap> NrIdempotents(S);
2770
+ 15529
2771
+ gap> last2 + last3;
2772
+ 15427
2773
+ gap> Length(Idempotents(S, 2));
2774
+ 102
2775
+ gap> NrRClasses(D);
2776
+ 99
2777
+ gap> NrDClasses(S);
2778
+ 190
2779
+ gap> PartialOrderOfDClasses(S);
2780
+ <immutable digraph with 190 vertices, 642 edges>
2781
+ gap> StructureDescriptionMaximalSubgroups(S);
2782
+ [ "1", "C2" ]
2783
+ gap> (IsActingSemigroup(S)
2784
+ > and StructureDescriptionSchutzenbergerGroups(S) = ["1", "C2"])
2785
+ > or not IsActingSemigroup(S);
2786
+ true
2787
+
2788
+ # BipartitionTest27: IsomorphismPermGroup for a block bijection group
2789
+ gap> S := Semigroup(
2790
+ > Bipartition([[1, 2, -3], [3, -4], [4, -8], [5, -1, -2],
2791
+ > [6, -5], [7, -6], [8, -7]]),
2792
+ > Bipartition([[1, 2, -7], [3, -1, -2], [4, -8], [5, -4],
2793
+ > [6, -5], [7, -3], [8, -6]]), rec(acting := true));;
2794
+ gap> iso := IsomorphismPermGroup(S);;
2795
+ gap> inv := InverseGeneralMapping(iso);;
2796
+ gap> ForAll(S, x -> x ^ iso in Range(iso));
2797
+ true
2798
+ gap> ForAll(S, x -> (x ^ iso) ^ inv = x);
2799
+ true
2800
+
2801
+ #
2802
+ gap> SEMIGROUPS.StopTest();
2803
+ gap> STOP_TEST("Semigroups package: extreme/bipart.tst");