passagemath-flint 10.6.1rc10__cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (360) hide show
  1. passagemath_flint-10.6.1rc10.dist-info/METADATA +122 -0
  2. passagemath_flint-10.6.1rc10.dist-info/RECORD +360 -0
  3. passagemath_flint-10.6.1rc10.dist-info/WHEEL +6 -0
  4. passagemath_flint-10.6.1rc10.dist-info/top_level.txt +2 -0
  5. passagemath_flint.libs/libflint-3701249d.so.21.0.0 +0 -0
  6. passagemath_flint.libs/libgf2x-fbd36f80.so.3.0.0 +0 -0
  7. passagemath_flint.libs/libgfortran-8a9a71bc.so.5.0.0 +0 -0
  8. passagemath_flint.libs/libgmp-93ebf16a.so.10.5.0 +0 -0
  9. passagemath_flint.libs/libgsl-e3525837.so.28.0.0 +0 -0
  10. passagemath_flint.libs/libmpfi-ad12a86d.so.0.0.0 +0 -0
  11. passagemath_flint.libs/libmpfr-e0f11cf3.so.6.2.1 +0 -0
  12. passagemath_flint.libs/libntl-1004113e.so.44.0.1 +0 -0
  13. passagemath_flint.libs/libopenblasp-r0-4c5b64b1.3.29.so +0 -0
  14. sage/all__sagemath_flint.py +29 -0
  15. sage/combinat/all__sagemath_flint.py +1 -0
  16. sage/combinat/posets/all__sagemath_flint.py +1 -0
  17. sage/combinat/posets/hasse_cython_flint.cpython-311-aarch64-linux-gnu.so +0 -0
  18. sage/combinat/posets/hasse_cython_flint.pyx +194 -0
  19. sage/data_structures/all__sagemath_flint.py +1 -0
  20. sage/data_structures/bounded_integer_sequences.cpython-311-aarch64-linux-gnu.so +0 -0
  21. sage/data_structures/bounded_integer_sequences.pxd +62 -0
  22. sage/data_structures/bounded_integer_sequences.pyx +1418 -0
  23. sage/graphs/all__sagemath_flint.py +1 -0
  24. sage/graphs/chrompoly.cpython-311-aarch64-linux-gnu.so +0 -0
  25. sage/graphs/chrompoly.pyx +555 -0
  26. sage/graphs/matchpoly.cpython-311-aarch64-linux-gnu.so +0 -0
  27. sage/graphs/matchpoly.pyx +412 -0
  28. sage/libs/all__sagemath_flint.py +17 -0
  29. sage/libs/arb/__init__.py +1 -0
  30. sage/libs/arb/acb.pxd +154 -0
  31. sage/libs/arb/acb_calc.pxd +9 -0
  32. sage/libs/arb/acb_elliptic.pxd +25 -0
  33. sage/libs/arb/acb_hypgeom.pxd +74 -0
  34. sage/libs/arb/acb_mat.pxd +62 -0
  35. sage/libs/arb/acb_modular.pxd +17 -0
  36. sage/libs/arb/acb_poly.pxd +216 -0
  37. sage/libs/arb/arb.pxd +240 -0
  38. sage/libs/arb/arb_fmpz_poly.pxd +21 -0
  39. sage/libs/arb/arb_hypgeom.pxd +83 -0
  40. sage/libs/arb/arb_wrap.h +34 -0
  41. sage/libs/arb/arf.pxd +131 -0
  42. sage/libs/arb/arith.cpython-311-aarch64-linux-gnu.so +0 -0
  43. sage/libs/arb/arith.pyx +87 -0
  44. sage/libs/arb/bernoulli.pxd +6 -0
  45. sage/libs/arb/mag.pxd +77 -0
  46. sage/libs/arb/types.pxd +37 -0
  47. sage/libs/flint/__init__.py +1 -0
  48. sage/libs/flint/acb.pxd +270 -0
  49. sage/libs/flint/acb_calc.pxd +22 -0
  50. sage/libs/flint/acb_dft.pxd +51 -0
  51. sage/libs/flint/acb_dirichlet.pxd +112 -0
  52. sage/libs/flint/acb_elliptic.pxd +42 -0
  53. sage/libs/flint/acb_hypgeom.pxd +169 -0
  54. sage/libs/flint/acb_macros.pxd +9 -0
  55. sage/libs/flint/acb_mat.pxd +136 -0
  56. sage/libs/flint/acb_mat_macros.pxd +10 -0
  57. sage/libs/flint/acb_modular.pxd +62 -0
  58. sage/libs/flint/acb_poly.pxd +251 -0
  59. sage/libs/flint/acb_poly_macros.pxd +8 -0
  60. sage/libs/flint/acb_theta.pxd +124 -0
  61. sage/libs/flint/acf.pxd +32 -0
  62. sage/libs/flint/aprcl.pxd +84 -0
  63. sage/libs/flint/arb.pxd +382 -0
  64. sage/libs/flint/arb_calc.pxd +31 -0
  65. sage/libs/flint/arb_fmpz_poly.pxd +34 -0
  66. sage/libs/flint/arb_fpwrap.pxd +215 -0
  67. sage/libs/flint/arb_hypgeom.pxd +147 -0
  68. sage/libs/flint/arb_macros.pxd +9 -0
  69. sage/libs/flint/arb_mat.pxd +140 -0
  70. sage/libs/flint/arb_mat_macros.pxd +10 -0
  71. sage/libs/flint/arb_poly.pxd +237 -0
  72. sage/libs/flint/arf.pxd +167 -0
  73. sage/libs/flint/arith.cpython-311-aarch64-linux-gnu.so +0 -0
  74. sage/libs/flint/arith.pxd +76 -0
  75. sage/libs/flint/arith.pyx +77 -0
  76. sage/libs/flint/arith_sage.cpython-311-aarch64-linux-gnu.so +0 -0
  77. sage/libs/flint/arith_sage.pyx +308 -0
  78. sage/libs/flint/bernoulli.pxd +28 -0
  79. sage/libs/flint/bool_mat.pxd +52 -0
  80. sage/libs/flint/ca.pxd +203 -0
  81. sage/libs/flint/ca_ext.pxd +34 -0
  82. sage/libs/flint/ca_field.pxd +32 -0
  83. sage/libs/flint/ca_mat.pxd +117 -0
  84. sage/libs/flint/ca_poly.pxd +104 -0
  85. sage/libs/flint/ca_vec.pxd +46 -0
  86. sage/libs/flint/calcium.pxd +27 -0
  87. sage/libs/flint/d_mat.pxd +39 -0
  88. sage/libs/flint/d_vec.pxd +32 -0
  89. sage/libs/flint/dirichlet.pxd +57 -0
  90. sage/libs/flint/dlog.pxd +53 -0
  91. sage/libs/flint/double_extras.pxd +24 -0
  92. sage/libs/flint/double_interval.pxd +36 -0
  93. sage/libs/flint/fexpr.pxd +104 -0
  94. sage/libs/flint/fexpr_builtin.pxd +20 -0
  95. sage/libs/flint/fft.pxd +66 -0
  96. sage/libs/flint/flint.pxd +36 -0
  97. sage/libs/flint/flint_ntl_wrap.h +35 -0
  98. sage/libs/flint/flint_sage.cpython-311-aarch64-linux-gnu.so +0 -0
  99. sage/libs/flint/flint_sage.pyx +163 -0
  100. sage/libs/flint/flint_wrap.h +190 -0
  101. sage/libs/flint/fmpq.pxd +137 -0
  102. sage/libs/flint/fmpq_mat.pxd +105 -0
  103. sage/libs/flint/fmpq_mat_macros.pxd +10 -0
  104. sage/libs/flint/fmpq_mpoly.pxd +165 -0
  105. sage/libs/flint/fmpq_mpoly_factor.pxd +30 -0
  106. sage/libs/flint/fmpq_poly.pxd +241 -0
  107. sage/libs/flint/fmpq_poly_macros.pxd +9 -0
  108. sage/libs/flint/fmpq_poly_sage.cpython-311-aarch64-linux-gnu.so +0 -0
  109. sage/libs/flint/fmpq_poly_sage.pxd +31 -0
  110. sage/libs/flint/fmpq_poly_sage.pyx +48 -0
  111. sage/libs/flint/fmpq_vec.pxd +27 -0
  112. sage/libs/flint/fmpz.pxd +256 -0
  113. sage/libs/flint/fmpz_extras.pxd +32 -0
  114. sage/libs/flint/fmpz_factor.pxd +42 -0
  115. sage/libs/flint/fmpz_factor_sage.cpython-311-aarch64-linux-gnu.so +0 -0
  116. sage/libs/flint/fmpz_factor_sage.pxd +4 -0
  117. sage/libs/flint/fmpz_factor_sage.pyx +29 -0
  118. sage/libs/flint/fmpz_lll.pxd +49 -0
  119. sage/libs/flint/fmpz_macros.pxd +8 -0
  120. sage/libs/flint/fmpz_mat.pxd +184 -0
  121. sage/libs/flint/fmpz_mat_macros.pxd +10 -0
  122. sage/libs/flint/fmpz_mod.pxd +46 -0
  123. sage/libs/flint/fmpz_mod_mat.pxd +71 -0
  124. sage/libs/flint/fmpz_mod_mpoly.pxd +161 -0
  125. sage/libs/flint/fmpz_mod_mpoly_factor.pxd +28 -0
  126. sage/libs/flint/fmpz_mod_poly.pxd +249 -0
  127. sage/libs/flint/fmpz_mod_poly_factor.pxd +46 -0
  128. sage/libs/flint/fmpz_mod_vec.pxd +27 -0
  129. sage/libs/flint/fmpz_mpoly.pxd +224 -0
  130. sage/libs/flint/fmpz_mpoly_factor.pxd +29 -0
  131. sage/libs/flint/fmpz_mpoly_q.pxd +57 -0
  132. sage/libs/flint/fmpz_poly.cpython-311-aarch64-linux-gnu.so +0 -0
  133. sage/libs/flint/fmpz_poly.pxd +407 -0
  134. sage/libs/flint/fmpz_poly.pyx +19 -0
  135. sage/libs/flint/fmpz_poly_factor.pxd +33 -0
  136. sage/libs/flint/fmpz_poly_macros.pxd +8 -0
  137. sage/libs/flint/fmpz_poly_mat.pxd +71 -0
  138. sage/libs/flint/fmpz_poly_q.pxd +55 -0
  139. sage/libs/flint/fmpz_poly_sage.cpython-311-aarch64-linux-gnu.so +0 -0
  140. sage/libs/flint/fmpz_poly_sage.pxd +20 -0
  141. sage/libs/flint/fmpz_poly_sage.pyx +500 -0
  142. sage/libs/flint/fmpz_vec.pxd +80 -0
  143. sage/libs/flint/fmpzi.pxd +52 -0
  144. sage/libs/flint/fq.pxd +97 -0
  145. sage/libs/flint/fq_default.pxd +84 -0
  146. sage/libs/flint/fq_default_mat.pxd +70 -0
  147. sage/libs/flint/fq_default_poly.pxd +97 -0
  148. sage/libs/flint/fq_default_poly_factor.pxd +39 -0
  149. sage/libs/flint/fq_embed.pxd +28 -0
  150. sage/libs/flint/fq_mat.pxd +83 -0
  151. sage/libs/flint/fq_nmod.pxd +95 -0
  152. sage/libs/flint/fq_nmod_embed.pxd +28 -0
  153. sage/libs/flint/fq_nmod_mat.pxd +83 -0
  154. sage/libs/flint/fq_nmod_mpoly.pxd +130 -0
  155. sage/libs/flint/fq_nmod_mpoly_factor.pxd +28 -0
  156. sage/libs/flint/fq_nmod_poly.pxd +202 -0
  157. sage/libs/flint/fq_nmod_poly_factor.pxd +47 -0
  158. sage/libs/flint/fq_nmod_vec.pxd +33 -0
  159. sage/libs/flint/fq_poly.pxd +204 -0
  160. sage/libs/flint/fq_poly_factor.pxd +47 -0
  161. sage/libs/flint/fq_vec.pxd +33 -0
  162. sage/libs/flint/fq_zech.pxd +99 -0
  163. sage/libs/flint/fq_zech_embed.pxd +28 -0
  164. sage/libs/flint/fq_zech_mat.pxd +78 -0
  165. sage/libs/flint/fq_zech_poly.pxd +198 -0
  166. sage/libs/flint/fq_zech_poly_factor.pxd +47 -0
  167. sage/libs/flint/fq_zech_vec.pxd +33 -0
  168. sage/libs/flint/gr.pxd +174 -0
  169. sage/libs/flint/gr_generic.pxd +215 -0
  170. sage/libs/flint/gr_mat.pxd +161 -0
  171. sage/libs/flint/gr_mpoly.pxd +68 -0
  172. sage/libs/flint/gr_poly.pxd +276 -0
  173. sage/libs/flint/gr_special.pxd +237 -0
  174. sage/libs/flint/gr_vec.pxd +120 -0
  175. sage/libs/flint/hypgeom.pxd +24 -0
  176. sage/libs/flint/long_extras.pxd +23 -0
  177. sage/libs/flint/mag.pxd +131 -0
  178. sage/libs/flint/mag_macros.pxd +8 -0
  179. sage/libs/flint/mpf_mat.pxd +36 -0
  180. sage/libs/flint/mpf_vec.pxd +34 -0
  181. sage/libs/flint/mpfr_mat.pxd +27 -0
  182. sage/libs/flint/mpfr_vec.pxd +25 -0
  183. sage/libs/flint/mpn_extras.pxd +41 -0
  184. sage/libs/flint/mpoly.pxd +72 -0
  185. sage/libs/flint/nf.pxd +19 -0
  186. sage/libs/flint/nf_elem.pxd +74 -0
  187. sage/libs/flint/nmod.pxd +35 -0
  188. sage/libs/flint/nmod_mat.pxd +104 -0
  189. sage/libs/flint/nmod_mpoly.pxd +144 -0
  190. sage/libs/flint/nmod_mpoly_factor.pxd +28 -0
  191. sage/libs/flint/nmod_poly.pxd +339 -0
  192. sage/libs/flint/nmod_poly_factor.pxd +44 -0
  193. sage/libs/flint/nmod_poly_linkage.pxi +710 -0
  194. sage/libs/flint/nmod_poly_mat.pxd +76 -0
  195. sage/libs/flint/nmod_vec.pxd +40 -0
  196. sage/libs/flint/ntl_interface.pxd +17 -0
  197. sage/libs/flint/padic.pxd +93 -0
  198. sage/libs/flint/padic_mat.pxd +64 -0
  199. sage/libs/flint/padic_poly.pxd +88 -0
  200. sage/libs/flint/partitions.pxd +23 -0
  201. sage/libs/flint/perm.pxd +26 -0
  202. sage/libs/flint/profiler.pxd +24 -0
  203. sage/libs/flint/qadic.pxd +77 -0
  204. sage/libs/flint/qfb.pxd +44 -0
  205. sage/libs/flint/qqbar.pxd +172 -0
  206. sage/libs/flint/qsieve.cpython-311-aarch64-linux-gnu.so +0 -0
  207. sage/libs/flint/qsieve.pxd +41 -0
  208. sage/libs/flint/qsieve.pyx +21 -0
  209. sage/libs/flint/qsieve_sage.cpython-311-aarch64-linux-gnu.so +0 -0
  210. sage/libs/flint/qsieve_sage.pyx +67 -0
  211. sage/libs/flint/thread_pool.pxd +25 -0
  212. sage/libs/flint/types.pxd +2076 -0
  213. sage/libs/flint/ulong_extras.cpython-311-aarch64-linux-gnu.so +0 -0
  214. sage/libs/flint/ulong_extras.pxd +141 -0
  215. sage/libs/flint/ulong_extras.pyx +21 -0
  216. sage/libs/flint/ulong_extras_sage.cpython-311-aarch64-linux-gnu.so +0 -0
  217. sage/libs/flint/ulong_extras_sage.pyx +21 -0
  218. sage/matrix/all__sagemath_flint.py +1 -0
  219. sage/matrix/change_ring.cpython-311-aarch64-linux-gnu.so +0 -0
  220. sage/matrix/change_ring.pyx +43 -0
  221. sage/matrix/matrix_complex_ball_dense.cpython-311-aarch64-linux-gnu.so +0 -0
  222. sage/matrix/matrix_complex_ball_dense.pxd +14 -0
  223. sage/matrix/matrix_complex_ball_dense.pyx +973 -0
  224. sage/matrix/matrix_cyclo_dense.cpython-311-aarch64-linux-gnu.so +0 -0
  225. sage/matrix/matrix_cyclo_dense.pxd +16 -0
  226. sage/matrix/matrix_cyclo_dense.pyx +1761 -0
  227. sage/matrix/matrix_integer_dense.cpython-311-aarch64-linux-gnu.so +0 -0
  228. sage/matrix/matrix_integer_dense.pxd +32 -0
  229. sage/matrix/matrix_integer_dense.pyx +5801 -0
  230. sage/matrix/matrix_integer_dense_hnf.py +1294 -0
  231. sage/matrix/matrix_integer_dense_saturation.py +346 -0
  232. sage/matrix/matrix_integer_sparse.cpython-311-aarch64-linux-gnu.so +0 -0
  233. sage/matrix/matrix_integer_sparse.pxd +9 -0
  234. sage/matrix/matrix_integer_sparse.pyx +1090 -0
  235. sage/matrix/matrix_rational_dense.cpython-311-aarch64-linux-gnu.so +0 -0
  236. sage/matrix/matrix_rational_dense.pxd +23 -0
  237. sage/matrix/matrix_rational_dense.pyx +2995 -0
  238. sage/matrix/matrix_rational_sparse.cpython-311-aarch64-linux-gnu.so +0 -0
  239. sage/matrix/matrix_rational_sparse.pxd +11 -0
  240. sage/matrix/matrix_rational_sparse.pyx +789 -0
  241. sage/matrix/misc_flint.cpython-311-aarch64-linux-gnu.so +0 -0
  242. sage/matrix/misc_flint.pyx +109 -0
  243. sage/modular/all__sagemath_flint.py +1 -0
  244. sage/modular/modform/all__sagemath_flint.py +1 -0
  245. sage/modular/modform/eis_series_cython.cpython-311-aarch64-linux-gnu.so +0 -0
  246. sage/modular/modform/eis_series_cython.pyx +226 -0
  247. sage/modular/modsym/all__sagemath_flint.py +1 -0
  248. sage/modular/modsym/apply.cpython-311-aarch64-linux-gnu.so +0 -0
  249. sage/modular/modsym/apply.pxd +6 -0
  250. sage/modular/modsym/apply.pyx +113 -0
  251. sage/modular/modsym/heilbronn.cpython-311-aarch64-linux-gnu.so +0 -0
  252. sage/modular/modsym/heilbronn.pyx +966 -0
  253. sage/modular/pollack_stevens/all__sagemath_flint.py +1 -0
  254. sage/modular/pollack_stevens/dist.cpython-311-aarch64-linux-gnu.so +0 -0
  255. sage/modular/pollack_stevens/dist.pxd +38 -0
  256. sage/modular/pollack_stevens/dist.pyx +1439 -0
  257. sage/quivers/algebra.py +691 -0
  258. sage/quivers/algebra_elements.cpython-311-aarch64-linux-gnu.so +0 -0
  259. sage/quivers/algebra_elements.pxd +97 -0
  260. sage/quivers/algebra_elements.pxi +1324 -0
  261. sage/quivers/algebra_elements.pyx +1424 -0
  262. sage/quivers/all.py +1 -0
  263. sage/quivers/ar_quiver.py +917 -0
  264. sage/quivers/homspace.py +640 -0
  265. sage/quivers/morphism.py +1282 -0
  266. sage/quivers/path_semigroup.py +1155 -0
  267. sage/quivers/paths.cpython-311-aarch64-linux-gnu.so +0 -0
  268. sage/quivers/paths.pxd +13 -0
  269. sage/quivers/paths.pyx +809 -0
  270. sage/quivers/representation.py +2975 -0
  271. sage/rings/all__sagemath_flint.py +37 -0
  272. sage/rings/cif.py +4 -0
  273. sage/rings/complex_arb.cpython-311-aarch64-linux-gnu.so +0 -0
  274. sage/rings/complex_arb.pxd +29 -0
  275. sage/rings/complex_arb.pyx +5176 -0
  276. sage/rings/complex_interval.cpython-311-aarch64-linux-gnu.so +0 -0
  277. sage/rings/complex_interval.pxd +30 -0
  278. sage/rings/complex_interval.pyx +2475 -0
  279. sage/rings/complex_interval_field.py +711 -0
  280. sage/rings/convert/all.py +1 -0
  281. sage/rings/convert/mpfi.cpython-311-aarch64-linux-gnu.so +0 -0
  282. sage/rings/convert/mpfi.pxd +6 -0
  283. sage/rings/convert/mpfi.pyx +576 -0
  284. sage/rings/factorint_flint.cpython-311-aarch64-linux-gnu.so +0 -0
  285. sage/rings/factorint_flint.pyx +99 -0
  286. sage/rings/fraction_field_FpT.cpython-311-aarch64-linux-gnu.so +0 -0
  287. sage/rings/fraction_field_FpT.pxd +28 -0
  288. sage/rings/fraction_field_FpT.pyx +2043 -0
  289. sage/rings/imaginary_unit.py +5 -0
  290. sage/rings/monomials.py +73 -0
  291. sage/rings/number_field/S_unit_solver.py +2870 -0
  292. sage/rings/number_field/all__sagemath_flint.py +7 -0
  293. sage/rings/number_field/bdd_height.py +664 -0
  294. sage/rings/number_field/class_group.py +762 -0
  295. sage/rings/number_field/galois_group.py +1307 -0
  296. sage/rings/number_field/homset.py +612 -0
  297. sage/rings/number_field/maps.py +687 -0
  298. sage/rings/number_field/morphism.py +272 -0
  299. sage/rings/number_field/number_field.py +12820 -0
  300. sage/rings/number_field/number_field_element.cpython-311-aarch64-linux-gnu.so +0 -0
  301. sage/rings/number_field/number_field_element.pxd +59 -0
  302. sage/rings/number_field/number_field_element.pyx +5735 -0
  303. sage/rings/number_field/number_field_element_quadratic.cpython-311-aarch64-linux-gnu.so +0 -0
  304. sage/rings/number_field/number_field_element_quadratic.pxd +34 -0
  305. sage/rings/number_field/number_field_element_quadratic.pyx +3185 -0
  306. sage/rings/number_field/number_field_ideal_rel.py +925 -0
  307. sage/rings/number_field/number_field_morphisms.cpython-311-aarch64-linux-gnu.so +0 -0
  308. sage/rings/number_field/number_field_morphisms.pyx +781 -0
  309. sage/rings/number_field/number_field_rel.py +2734 -0
  310. sage/rings/number_field/order.py +2981 -0
  311. sage/rings/number_field/order_ideal.py +804 -0
  312. sage/rings/number_field/selmer_group.py +715 -0
  313. sage/rings/number_field/small_primes_of_degree_one.py +242 -0
  314. sage/rings/number_field/splitting_field.py +606 -0
  315. sage/rings/number_field/structure.py +380 -0
  316. sage/rings/number_field/unit_group.py +721 -0
  317. sage/rings/padics/all__sagemath_flint.py +3 -0
  318. sage/rings/polynomial/all__sagemath_flint.py +1 -0
  319. sage/rings/polynomial/complex_roots.py +312 -0
  320. sage/rings/polynomial/evaluation_flint.cpython-311-aarch64-linux-gnu.so +0 -0
  321. sage/rings/polynomial/evaluation_flint.pxd +7 -0
  322. sage/rings/polynomial/evaluation_flint.pyx +68 -0
  323. sage/rings/polynomial/hilbert.cpython-311-aarch64-linux-gnu.so +0 -0
  324. sage/rings/polynomial/hilbert.pyx +602 -0
  325. sage/rings/polynomial/polynomial_complex_arb.cpython-311-aarch64-linux-gnu.so +0 -0
  326. sage/rings/polynomial/polynomial_complex_arb.pxd +7 -0
  327. sage/rings/polynomial/polynomial_complex_arb.pyx +963 -0
  328. sage/rings/polynomial/polynomial_integer_dense_flint.cpython-311-aarch64-linux-gnu.so +0 -0
  329. sage/rings/polynomial/polynomial_integer_dense_flint.pxd +13 -0
  330. sage/rings/polynomial/polynomial_integer_dense_flint.pyx +1881 -0
  331. sage/rings/polynomial/polynomial_number_field.cpython-311-aarch64-linux-gnu.so +0 -0
  332. sage/rings/polynomial/polynomial_number_field.pyx +345 -0
  333. sage/rings/polynomial/polynomial_rational_flint.cpython-311-aarch64-linux-gnu.so +0 -0
  334. sage/rings/polynomial/polynomial_rational_flint.pxd +20 -0
  335. sage/rings/polynomial/polynomial_rational_flint.pyx +2598 -0
  336. sage/rings/polynomial/polynomial_zmod_flint.cpython-311-aarch64-linux-gnu.so +0 -0
  337. sage/rings/polynomial/polynomial_zmod_flint.pxd +20 -0
  338. sage/rings/polynomial/polynomial_zmod_flint.pyx +1063 -0
  339. sage/rings/polynomial/real_roots.cpython-311-aarch64-linux-gnu.so +0 -0
  340. sage/rings/polynomial/real_roots.pxd +81 -0
  341. sage/rings/polynomial/real_roots.pyx +4704 -0
  342. sage/rings/polynomial/refine_root.cpython-311-aarch64-linux-gnu.so +0 -0
  343. sage/rings/polynomial/refine_root.pyx +142 -0
  344. sage/rings/polynomial/weil/all.py +4 -0
  345. sage/rings/polynomial/weil/power_sums.h +46 -0
  346. sage/rings/polynomial/weil/weil_polynomials.cpython-311-aarch64-linux-gnu.so +0 -0
  347. sage/rings/polynomial/weil/weil_polynomials.pyx +596 -0
  348. sage/rings/qqbar.py +9025 -0
  349. sage/rings/real_arb.cpython-311-aarch64-linux-gnu.so +0 -0
  350. sage/rings/real_arb.pxd +21 -0
  351. sage/rings/real_arb.pyx +4065 -0
  352. sage/rings/real_interval_absolute.cpython-311-aarch64-linux-gnu.so +0 -0
  353. sage/rings/real_interval_absolute.pyx +1073 -0
  354. sage/rings/real_mpfi.cpython-311-aarch64-linux-gnu.so +0 -0
  355. sage/rings/real_mpfi.pyx +5428 -0
  356. sage/schemes/all__sagemath_flint.py +1 -0
  357. sage/schemes/elliptic_curves/all__sagemath_flint.py +1 -0
  358. sage/schemes/elliptic_curves/descent_two_isogeny.cpython-311-aarch64-linux-gnu.so +0 -0
  359. sage/schemes/elliptic_curves/descent_two_isogeny.pyx +1387 -0
  360. sage/schemes/elliptic_curves/descent_two_isogeny_pari.pxd +5 -0
@@ -0,0 +1,640 @@
1
+ # sage_setup: distribution = sagemath-flint
2
+ # sage.doctest: needs sage.graphs sage.modules
3
+ """
4
+ Quiver Homspace
5
+ """
6
+
7
+ # ****************************************************************************
8
+ # Copyright (C) 2012 Jim Stark <jstarx@gmail.com>
9
+ # 2013 Simon King <simon.king@uni-jena.de>
10
+ #
11
+ # Distributed under the terms of the GNU General Public License (GPL)
12
+ #
13
+ # This code is distributed in the hope that it will be useful,
14
+ # but WITHOUT ANY WARRANTY; without even the implied warranty
15
+ # of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16
+ #
17
+ # See the GNU General Public License for more details; the full text
18
+ # is available at:
19
+ #
20
+ # https://www.gnu.org/licenses/
21
+ # ****************************************************************************
22
+ from __future__ import annotations
23
+
24
+ from sage.categories.homset import Homset
25
+ from sage.misc.cachefunc import cached_method
26
+ from sage.quivers.morphism import QuiverRepHom
27
+
28
+
29
+ class QuiverHomSpace(Homset):
30
+ r"""
31
+ A homomorphism of quiver representations (of one and the same quiver)
32
+ is given by specifying, for each vertex of the quiver, a homomorphism
33
+ of the spaces assigned to this vertex such that these homomorphisms
34
+ commute with the edge maps. This class handles the set of all
35
+ such maps, `Hom_Q(M, N)`.
36
+
37
+ INPUT:
38
+
39
+ - ``domain`` -- the domain of the homomorphism space
40
+
41
+ - ``codomain`` -- the codomain of the homomorphism space
42
+
43
+ OUTPUT:
44
+
45
+ - :class:`QuiverHomSpace`, the homomorphism space
46
+ ``Hom_Q(domain, codomain)``
47
+
48
+ .. NOTE::
49
+
50
+ The quivers of the domain and codomain must be equal or a
51
+ :exc:`ValueError` is raised.
52
+
53
+ EXAMPLES::
54
+
55
+ sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
56
+ sage: H = Q.S(QQ, 2).Hom(Q.P(QQ, 1))
57
+ sage: H.dimension()
58
+ 2
59
+ sage: H.gens()
60
+ (Homomorphism of representations of Multi-digraph on 2 vertices,
61
+ Homomorphism of representations of Multi-digraph on 2 vertices)
62
+ """
63
+ Element = QuiverRepHom
64
+
65
+ ###########################################################################
66
+ # #
67
+ # PRIVATE FUNCTIONS #
68
+ # These functions are not meant to be seen by the end user. #
69
+ # #
70
+ ###########################################################################
71
+
72
+ def __init__(self, domain, codomain, category=None):
73
+ """
74
+ Initialize ``self``. Type ``QuiverHomSpace?`` for more information.
75
+
76
+ TESTS::
77
+
78
+ sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
79
+ sage: H = Q.S(QQ, 2).Hom(Q.P(QQ, 1))
80
+ sage: TestSuite(H).run()
81
+ """
82
+ # The data in the class is stored in the following private variables:
83
+ #
84
+ # * _base
85
+ # The base ring of the representations M and N.
86
+ # * _codomain
87
+ # The QuiverRep object of the codomain N.
88
+ # * _domain
89
+ # The QuiverRep object of the domain M.
90
+ # * _quiver
91
+ # The quiver of the representations M and N.
92
+ # * _space
93
+ # A free module with ambient space.
94
+ #
95
+ # The free module _space is the homomorphism space. The ambient space
96
+ # is k^n where k is the base ring and n is the sum of the dimensions of
97
+ # the spaces of homomorphisms between the free modules attached in M
98
+ # and N to the vertices of the quiver. Each coordinate represents a
99
+ # single entry in one of those matrices.
100
+
101
+ # Get the quiver and base ring and check that they are the same for
102
+ # both modules
103
+ if domain._semigroup != codomain._semigroup:
104
+ raise ValueError("representations are not over the same quiver")
105
+ self._quiver = domain._quiver
106
+ self._semigroup = domain._semigroup
107
+
108
+ # Check that the bases are compatible, and then initialise the homset:
109
+ if codomain.base_ring() != domain.base_ring():
110
+ raise ValueError("representations are not over the same base ring")
111
+ Homset.__init__(self, domain, codomain, category=category,
112
+ base=domain.base_ring())
113
+
114
+ # To compute the Hom Space we set up a 'generic' homomorphism where the
115
+ # maps at each vertex are described by matrices whose entries are
116
+ # variables. Then the commutativity of edge diagrams gives us a
117
+ # system of equations whose solution space is the Hom Space we're
118
+ # looking for. The variables will be numbered consecutively starting
119
+ # at 0, ordered first by the vertex the matrix occurs at, then by row
120
+ # then by column. We'll have to keep track of which variables
121
+ # correspond to which matrices.
122
+
123
+ # eqs will count the number of equations in our system of equations,
124
+ # varstart will be a list whose ith entry is the number of the
125
+ # variable located at (0, 0) in the matrix assigned to the
126
+ # ith vertex. (So varstart[0] will be 0.)
127
+ eqs = 0
128
+ verts = domain._quiver.vertices(sort=True)
129
+ varstart = [0] * (len(verts) + 1)
130
+
131
+ # First assign to varstart the dimension of the matrix assigned to the
132
+ # previous vertex.
133
+ for v in verts:
134
+ varstart[verts.index(v) + 1] = domain._spaces[v].dimension() * codomain._spaces[v].dimension()
135
+ for e in domain._semigroup._sorted_edges:
136
+ eqs += domain._spaces[e[0]].dimension() * codomain._spaces[e[1]].dimension()
137
+
138
+ # After this cascading sum varstart[v] will be the sum of the
139
+ # dimensions of the matrices assigned to vertices ordered before v.
140
+ # This is equal to the number of the first variable assigned to v.
141
+ for i in range(2, len(varstart)):
142
+ varstart[i] += varstart[i - 1]
143
+
144
+ # This will be the coefficient matrix for the system of equations. We
145
+ # start with all zeros and will fill in as we go. We think of this
146
+ # matrix as acting on the right so the columns correspond to equations,
147
+ # the rows correspond to variables, and .kernel() will give a right
148
+ # kernel as is needed.
149
+ from sage.matrix.constructor import Matrix
150
+ coef_mat = Matrix(codomain.base_ring(), varstart[-1], eqs)
151
+
152
+ # eqn keeps track of what equation we are on. If the maps X and Y are
153
+ # assigned to an edge e and A and B are the matrices of variables that
154
+ # describe the generic maps at the initial and final vertices of e
155
+ # then commutativity of the edge diagram is described by the equation
156
+ # AY = XB, or
157
+ #
158
+ # Sum_k A_ik*Y_kj - Sum_k X_ik*B_kj == 0 for all i and j.
159
+ #
160
+ # Below we loop through these values of i,j,k and write the
161
+ # coefficients of the equation above into the coefficient matrix.
162
+ eqn = 0
163
+ for e in domain._semigroup._sorted_edges:
164
+ X = domain._maps[e].matrix()
165
+ Y = codomain._maps[e].matrix()
166
+ for i in range(X.nrows()):
167
+ for j in range(Y.ncols()):
168
+ for k in range(Y.nrows()):
169
+ coef_mat[varstart[verts.index(e[0])] + i * Y.nrows() + k, eqn] = Y[k, j]
170
+ for k in range(X.ncols()):
171
+ coef_mat[varstart[verts.index(e[1])] + k * Y.ncols() + j, eqn] = -X[i, k]
172
+ eqn += 1
173
+
174
+ # Now we can create the hom space
175
+ self._space = coef_mat.kernel()
176
+
177
+ # Bind identity if domain = codomain
178
+ if domain is codomain:
179
+ self.identity = self._identity
180
+
181
+ @cached_method
182
+ def zero(self):
183
+ """
184
+ Return the zero morphism.
185
+
186
+ .. NOTE::
187
+
188
+ It is needed to override the method inherited from
189
+ the category of modules, because it would create
190
+ a morphism that is of the wrong type and does not
191
+ comply with :class:`~sage.quivers.morphism.QuiverRepHom`.
192
+
193
+ EXAMPLES::
194
+
195
+ sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
196
+ sage: H = Q.S(QQ, 2).Hom(Q.P(QQ, 1))
197
+ sage: H.zero() + H.an_element() == H.an_element()
198
+ True
199
+ sage: isinstance(H.zero(), H.element_class)
200
+ True
201
+ """
202
+ return self()
203
+
204
+ def _coerce_map_from_(self, other):
205
+ r"""
206
+ A coercion exists if and only if ``other`` is also a
207
+ :class:`QuiverHomSpace` and there is a coercion from the
208
+ domain of ``self`` to the domain of ``other`` and from the
209
+ codomain of ``other`` to the codomain of ``self``.
210
+
211
+ EXAMPLES::
212
+
213
+ sage: Q = DiGraph({1:{2:['a']}}).path_semigroup()
214
+ sage: P = Q.P(QQ, 1)
215
+ sage: S = Q.S(QQ, 1)
216
+ sage: H1 = P.Hom(S)
217
+ sage: H2 = (P/P.radical()).Hom(S)
218
+ sage: H1.coerce_map_from(H2) # indirect doctest
219
+ Coercion map:
220
+ From: Dimension 1 QuiverHomSpace
221
+ To: Dimension 1 QuiverHomSpace
222
+ """
223
+
224
+ if not isinstance(other, QuiverHomSpace):
225
+ return False
226
+ if not other._domain.has_coerce_map_from(self._domain):
227
+ return False
228
+ if not self._codomain.has_coerce_map_from(other._codomain):
229
+ return False
230
+ return True
231
+
232
+ def __call__(self, *data, **kwds):
233
+ r"""
234
+ A homomorphism of quiver representations (of one and the same
235
+ quiver) is given by specifying, for each vertex of the quiver, a
236
+ homomorphism of the spaces assigned to this vertex such that these
237
+ homomorphisms commute with the edge maps. The domain and codomain
238
+ of the homomorphism are required to be representations over the
239
+ same quiver with the same base ring.
240
+
241
+ INPUT:
242
+
243
+ Usually, one would provide a single dict, list,
244
+ :class:`QuiverRepElement` or :class:`QuiverRepHom` as arguments.
245
+ The semantics is as follows:
246
+
247
+ - list: ``data`` can be a list of images for the generators of
248
+ the domain. "Generators" means the output of the ``gens()``
249
+ method. An error will be generated if the map so defined
250
+ is not equivariant with respect to the action of the quiver.
251
+ - dictionary: ``data`` can be a dictionary associating to each
252
+ vertex of the quiver either a homomorphism with domain and
253
+ codomain the spaces associated to this vertex in the domain
254
+ and codomain modules respectively, or a matrix defining such
255
+ a homomorphism, or an object that sage can construct such a
256
+ matrix from. Not all vertices must be specified, unspecified
257
+ vertices are assigned the zero map, and keys not corresponding
258
+ to vertices of the quiver are ignored. An error will be
259
+ generated if these maps do not commute with the edge maps of
260
+ the domain and codomain.
261
+ - :class:`QuiverRepElement`: if the domain is a
262
+ :class:`QuiverRep_with_path_basis` then ``data`` can be a single
263
+ :class:`QuiverRepElement` belonging to the codomain. The map
264
+ is then defined by sending each path, ``p``, in the basis
265
+ to ``data*p``. If ``data`` is not an element of the codomain or
266
+ the domain is not a :class:`QuiverRep_with_path_basis` then
267
+ an error will be generated.
268
+ - :class:`QuiverRepHom`: the input can also be a map `f : D \to C`
269
+ such that there is a coercion from the domain of ``self`` to ``D``
270
+ and from ``C`` to the codomain of ``self``. The composition
271
+ of these maps is the result.
272
+
273
+ If there additionally are keyword arguments or if a
274
+ :class:`QuiverRepHom` can not be created from the data, then the
275
+ default call method of :class:`~sage.categories.homset.Homset`
276
+ is called instead.
277
+
278
+ OUTPUT: :class:`QuiverRepHom`
279
+
280
+ EXAMPLES::
281
+
282
+ sage: Q = DiGraph({1:{2:['a', 'b']}, 2:{3:['c']}}).path_semigroup()
283
+ sage: spaces = {1: QQ^2, 2: QQ^2, 3:QQ^1}
284
+ sage: maps = {(1, 2, 'a'): [[1, 0], [0, 0]], (1, 2, 'b'): [[0, 0], [0, 1]], (2, 3, 'c'): [[1], [1]]}
285
+ sage: M = Q.representation(QQ, spaces, maps)
286
+ sage: spaces2 = {2: QQ^1, 3: QQ^1}
287
+ sage: S = Q.representation(QQ, spaces2)
288
+ sage: H = S.Hom(M)
289
+
290
+ With no additional data this creates the zero map::
291
+
292
+ sage: f = H() # indirect doctest
293
+ sage: f.is_zero()
294
+ True
295
+
296
+ We must specify maps at the vertices to get a nonzero
297
+ homomorphism. Note that if the dimensions of the spaces assigned
298
+ to the domain and codomain of a vertex are equal then Sage will
299
+ construct the identity matrix from ``1``::
300
+
301
+ sage: maps2 = {2:[1, -1], 3:1}
302
+ sage: g = H(maps2) # indirect doctest
303
+
304
+ Here we create the same map by specifying images for the generators::
305
+
306
+ sage: x = M({2: (1, -1)})
307
+ sage: y = M({3: (1,)})
308
+ sage: h = H([x, y]) # indirect doctest
309
+ sage: g == h
310
+ True
311
+
312
+ Here is an example of the same with a bigger identity matrix::
313
+
314
+ sage: spaces3 = {2: QQ^2, 3: QQ^2}
315
+ sage: maps3 = {(2, 3, 'c'): [[1, 0], [1, 0]]}
316
+ sage: S3 = Q.representation(QQ, spaces3, maps3)
317
+ sage: h3 = S3.Hom(M)({2: 1, 3: [[1], [0]]})
318
+ sage: h3.get_map(2)
319
+ Vector space morphism represented by the matrix:
320
+ [1 0]
321
+ [0 1]
322
+ Domain: Vector space of dimension 2 over Rational Field
323
+ Codomain: Vector space of dimension 2 over Rational Field
324
+
325
+ If the domain is a module of type :class:`QuiverRep_with_path_basis`
326
+ (for example, the indecomposable projectives) we can create maps by
327
+ specifying a single image::
328
+
329
+ sage: Proj = Q.P(GF(7), 3)
330
+ sage: Simp = Q.S(GF(7), 3)
331
+ sage: im = Simp({3: (1,)})
332
+ sage: H2 = Proj.Hom(Simp)
333
+ sage: H2(im).is_surjective() # indirect doctest
334
+ True
335
+ """
336
+ if kwds or len(data) > 1:
337
+ return super().__call__(*data, **kwds)
338
+
339
+ if not data:
340
+ return self.natural_map()
341
+
342
+ data0 = data[0]
343
+ if data0 is None or data0 == 0:
344
+ data0 = {}
345
+ try:
346
+ return self.element_class(self._domain, self._codomain, data0)
347
+ except (TypeError, ValueError):
348
+ return super().__call__(*data, **kwds)
349
+
350
+ def _repr_(self):
351
+ """
352
+ Default string representation.
353
+
354
+ TESTS::
355
+
356
+ sage: Q = DiGraph({1:{2:['a']}}).path_semigroup()
357
+ sage: Q.P(GF(3), 2).Hom(Q.S(GF(3), 2)) # indirect doctest
358
+ Dimension 1 QuiverHomSpace
359
+ """
360
+ return "Dimension {} QuiverHomSpace".format(self._space.dimension())
361
+
362
+ def natural_map(self):
363
+ """
364
+ The natural map from domain to codomain.
365
+
366
+ This is the zero map.
367
+
368
+ EXAMPLES::
369
+
370
+ sage: Q = DiGraph({1:{2:['a', 'b']}, 2:{3:['c']}}).path_semigroup()
371
+ sage: spaces = {1: QQ^2, 2: QQ^2, 3:QQ^1}
372
+ sage: maps = {(1, 2, 'a'): [[1, 0], [0, 0]], (1, 2, 'b'): [[0, 0], [0, 1]], (2, 3, 'c'): [[1], [1]]}
373
+ sage: M = Q.representation(QQ, spaces, maps)
374
+ sage: spaces2 = {2: QQ^1, 3: QQ^1}
375
+ sage: S = Q.representation(QQ, spaces2)
376
+ sage: S.hom(M) # indirect doctest
377
+ Homomorphism of representations of Multi-digraph on 3 vertices
378
+ sage: S.hom(M) == S.Hom(M).natural_map()
379
+ True
380
+ """
381
+ return self.element_class(self._domain, self._codomain, {})
382
+
383
+ def _identity(self):
384
+ """
385
+ Return the identity map.
386
+
387
+ OUTPUT: :class:`QuiverRepHom`
388
+
389
+ EXAMPLES::
390
+
391
+ sage: Q = DiGraph({1:{2:['a']}}).path_semigroup()
392
+ sage: P = Q.P(QQ, 1)
393
+ sage: H = P.Hom(P)
394
+ sage: f = H.identity() # indirect doctest
395
+ sage: f.is_isomorphism()
396
+ True
397
+ """
398
+ from sage.matrix.constructor import Matrix
399
+ maps = {v: Matrix(self._domain._spaces[v].dimension(),
400
+ self._domain._spaces[v].dimension(),
401
+ self._base.one())
402
+ for v in self._quiver}
403
+ return self.element_class(self._domain, self._codomain, maps)
404
+
405
+ ###########################################################################
406
+ # #
407
+ # ACCESS FUNCTIONS #
408
+ # These functions are used to view and modify the representation data. #
409
+ # #
410
+ ###########################################################################
411
+
412
+ def base_ring(self):
413
+ """
414
+ Return the base ring of the representations.
415
+
416
+ EXAMPLES::
417
+
418
+ sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
419
+ sage: H = Q.S(QQ, 2).Hom(Q.P(QQ, 1))
420
+ sage: H.base_ring()
421
+ Rational Field
422
+ """
423
+ return self._base
424
+
425
+ def quiver(self):
426
+ """
427
+ Return the quiver of the representations.
428
+
429
+ OUTPUT: :class:`DiGraph`; the quiver of the representations
430
+
431
+ EXAMPLES::
432
+
433
+ sage: P = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
434
+ sage: H = P.S(QQ, 2).Hom(P.P(QQ, 1))
435
+ sage: H.quiver() is P.quiver()
436
+ True
437
+ """
438
+ return self._quiver
439
+
440
+ def domain(self):
441
+ """
442
+ Return the domain of the hom space.
443
+
444
+ OUTPUT: :class:`QuiverRep`; the domain of the Hom space
445
+
446
+ EXAMPLES::
447
+
448
+ sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
449
+ sage: S = Q.S(QQ, 2)
450
+ sage: H = S.Hom(Q.P(QQ, 1))
451
+ sage: H.domain() is S
452
+ True
453
+ """
454
+ return self._domain
455
+
456
+ def codomain(self):
457
+ """
458
+ Return the codomain of the hom space.
459
+
460
+ OUTPUT: :class:`QuiverRep`; the codomain of the Hom space
461
+
462
+ EXAMPLES::
463
+
464
+ sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
465
+ sage: P = Q.P(QQ, 1)
466
+ sage: H = Q.S(QQ, 2).Hom(P)
467
+ sage: H.codomain() is P
468
+ True
469
+ """
470
+ return self._codomain
471
+
472
+ ###########################################################################
473
+ # #
474
+ # DATA FUNCTIONS #
475
+ # These functions return data collected from the representation. #
476
+ # #
477
+ ###########################################################################
478
+
479
+ def dimension(self):
480
+ """
481
+ Return the dimension of the hom space.
482
+
483
+ OUTPUT: integer; the dimension
484
+
485
+ EXAMPLES::
486
+
487
+ sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
488
+ sage: H = Q.S(QQ, 2).Hom(Q.P(QQ, 1))
489
+ sage: H.dimension()
490
+ 2
491
+ """
492
+ return self._space.dimension()
493
+
494
+ def gens(self) -> tuple:
495
+ """
496
+ Return a tuple of generators of the hom space (as a `k`-vector
497
+ space).
498
+
499
+ OUTPUT: tuple of :class:`QuiverRepHom` objects; the generators
500
+
501
+ EXAMPLES::
502
+
503
+ sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
504
+ sage: H = Q.S(QQ, 2).Hom(Q.P(QQ, 1))
505
+ sage: H.gens()
506
+ (Homomorphism of representations of Multi-digraph on 2 vertices,
507
+ Homomorphism of representations of Multi-digraph on 2 vertices)
508
+ """
509
+ return tuple([self.element_class(self._domain, self._codomain, f)
510
+ for f in self._space.gens()])
511
+
512
+ def coordinates(self, hom):
513
+ """
514
+ Return the coordinates of the map when expressed in terms of the
515
+ generators (i. e., the output of the ``gens`` method) of the
516
+ hom space.
517
+
518
+ INPUT:
519
+
520
+ - ``hom`` -- :class:`QuiverRepHom`
521
+
522
+ OUTPUT:
523
+
524
+ - list, the coordinates of the given map when written in terms of the
525
+ generators of the :class:`QuiverHomSpace`
526
+
527
+ EXAMPLES::
528
+
529
+ sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
530
+ sage: S = Q.S(QQ, 2)
531
+ sage: P = Q.P(QQ, 1)
532
+ sage: H = S.Hom(P)
533
+ sage: f = S.hom({2: [[1,-1]]}, P)
534
+ sage: H.coordinates(f)
535
+ [1, -1]
536
+ """
537
+ # Use the coordinates function on space
538
+ return self._space.coordinates(hom._vector)
539
+
540
+ ###########################################################################
541
+ # #
542
+ # CONSTRUCTION FUNCTIONS #
543
+ # These functions create and return modules and homomorphisms. #
544
+ # #
545
+ ###########################################################################
546
+
547
+ def _an_element_(self):
548
+ """
549
+ Return a homomorphism in the Hom space.
550
+
551
+ EXAMPLES::
552
+
553
+ sage: Q = DiGraph({1:{2:['a', 'b']}}).path_semigroup()
554
+ sage: S = Q.S(QQ, 2)
555
+ sage: P = Q.P(QQ, 1)
556
+ sage: H = S.Hom(P)
557
+ sage: H.an_element() in H # indirect doctest
558
+ True
559
+ """
560
+ return self.element_class(self._domain, self._codomain, self._space.an_element())
561
+
562
+ def left_module(self, basis=False):
563
+ """
564
+ Create the QuiverRep of ``self`` as a module over the opposite
565
+ quiver.
566
+
567
+ INPUT:
568
+
569
+ - ``basis`` -- boolean; if ``False``, then only the module is
570
+ returned. If ``True``, then a tuple is returned. The first
571
+ element is the QuiverRep and the second element is a
572
+ dictionary which associates to each vertex a list. The
573
+ elements of this list are the homomorphisms which correspond to
574
+ the basis elements of that vertex in the module.
575
+
576
+ OUTPUT: :class:`QuiverRep` or tuple
577
+
578
+ .. WARNING::
579
+
580
+ The codomain of the Hom space must be a left module.
581
+
582
+ .. NOTE::
583
+
584
+ The left action of a path `e` on a map `f` is given by
585
+ `(ef)(m) = ef(m)`. This gives the Hom space its structure as
586
+ a left module over the path algebra. This is then converted to
587
+ a right module over the path algebra of the opposite quiver
588
+ ``Q.reverse()`` and returned.
589
+
590
+ EXAMPLES::
591
+
592
+ sage: Q = DiGraph({1:{2:['a', 'b'], 3: ['c', 'd']}, 2:{3:['e']}}).path_semigroup()
593
+ sage: P = Q.P(GF(3), 3)
594
+ sage: A = Q.free_module(GF(3))
595
+ sage: H = P.Hom(A)
596
+ sage: H.dimension()
597
+ 6
598
+ sage: M, basis_dict = H.left_module(true)
599
+ sage: M.dimension_vector()
600
+ (4, 1, 1)
601
+ sage: Q.reverse().P(GF(3), 3).dimension_vector()
602
+ (4, 1, 1)
603
+
604
+ As lists start indexing at 0 the `i`-th vertex corresponds to the
605
+ `(i-1)`-th entry of the dimension vector::
606
+
607
+ sage: len(basis_dict[2]) == M.dimension_vector()[1]
608
+ True
609
+ """
610
+ from sage.quivers.representation import QuiverRep
611
+ if not self._codomain.is_left_module():
612
+ raise ValueError("the codomain must be a left module")
613
+
614
+ # Create the spaces
615
+ spaces = {}
616
+ for v in self._quiver:
617
+ im_gens = [self([self._codomain.left_edge_action((v, v), f(x))
618
+ for x in self._domain.gens()])._vector
619
+ for f in self.gens()]
620
+ spaces[v] = self._space.submodule(im_gens)
621
+
622
+ # Create the maps
623
+ maps = {}
624
+ for e in self._semigroup._sorted_edges:
625
+ e_op = (e[1], e[0], e[2])
626
+ maps[e_op] = []
627
+ for vec in spaces[e[1]].gens():
628
+ vec_im = spaces[e_op[1]].coordinate_vector(self([self._codomain.left_edge_action(e, self(vec)(x))
629
+ for x in self._domain.gens()])._vector)
630
+ maps[e_op].append(vec_im)
631
+
632
+ # Create and return the module (and the dict if desired)
633
+ if basis:
634
+ basis_dict = {}
635
+ for v in self._quiver:
636
+ basis_dict[v] = [self.element_class(self._domain, self._codomain, vec)
637
+ for vec in spaces[v].gens()]
638
+ return (QuiverRep(self._base, self._semigroup.reverse(), spaces, maps), basis_dict)
639
+ else:
640
+ return QuiverRep(self._base, self._semigroup.reverse(), spaces, maps)