orca-sdk 0.1.3__py3-none-any.whl → 0.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
orca_sdk/client.py CHANGED
@@ -133,6 +133,10 @@ class ClassificationEvaluationRequest(TypedDict):
133
133
  datasource_value_column: str
134
134
  record_telemetry: NotRequired[bool]
135
135
  telemetry_tags: NotRequired[list[str] | None]
136
+ subsample: NotRequired[int | float | None]
137
+ ignore_unlabeled: NotRequired[bool]
138
+ datasource_partition_column: NotRequired[str | None]
139
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
136
140
 
137
141
 
138
142
  class CleanupResponse(TypedDict):
@@ -161,6 +165,7 @@ class CountPredictionsRequest(TypedDict):
161
165
  prediction_ids: NotRequired[list[str] | None]
162
166
  start_timestamp: NotRequired[str | None]
163
167
  end_timestamp: NotRequired[str | None]
168
+ memory_id: NotRequired[str | None]
164
169
 
165
170
 
166
171
  class CreateApiKeyRequest(TypedDict):
@@ -191,6 +196,12 @@ class CreateOrgPlanRequest(TypedDict):
191
196
  tier: Literal["FREE", "PRO", "ENTERPRISE", "CANCELLED"]
192
197
 
193
198
 
199
+ class DatasetFilterItem(TypedDict):
200
+ field: str
201
+ op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
202
+ value: Any
203
+
204
+
194
205
  class DeleteMemoriesRequest(TypedDict):
195
206
  memory_ids: list[str]
196
207
 
@@ -208,7 +219,7 @@ class EmbedRequest(TypedDict):
208
219
  class EmbeddingEvaluationRequest(TypedDict):
209
220
  datasource_name_or_id: str
210
221
  eval_datasource_name_or_id: NotRequired[str | None]
211
- subsample: NotRequired[int | None]
222
+ subsample: NotRequired[int | float | None]
212
223
  datasource_value_column: NotRequired[str]
213
224
  datasource_label_column: NotRequired[str | None]
214
225
  datasource_score_column: NotRequired[str | None]
@@ -217,7 +228,7 @@ class EmbeddingEvaluationRequest(TypedDict):
217
228
  weigh_memories: NotRequired[bool]
218
229
 
219
230
 
220
- EmbeddingFinetuningMethod = Literal["classification", "batch_triplet_loss"]
231
+ EmbeddingFinetuningMethod = Literal["classification", "regression", "batch_triplet_loss"]
221
232
 
222
233
 
223
234
  class FeedbackMetrics(TypedDict):
@@ -231,7 +242,19 @@ FeedbackType = Literal["CONTINUOUS", "BINARY"]
231
242
  class FilterItem(TypedDict):
232
243
  field: list
233
244
  op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
234
- value: str | int | float | bool | list[str] | list[int] | list[float] | list[bool] | None
245
+ value: str | int | float | bool | list[str | None] | list[int] | list[float] | list[bool] | None
246
+
247
+
248
+ class GetDatasourceRowCountRequest(TypedDict):
249
+ filters: NotRequired[list[DatasetFilterItem]]
250
+
251
+
252
+ class GetDatasourceRowsRequest(TypedDict):
253
+ filters: NotRequired[list[DatasetFilterItem]]
254
+ limit: NotRequired[int]
255
+ offset: NotRequired[int]
256
+ shuffle: NotRequired[bool]
257
+ shuffle_seed: NotRequired[int | None]
235
258
 
236
259
 
237
260
  class GetMemoriesRequest(TypedDict):
@@ -252,6 +275,18 @@ class InternalServerErrorResponse(TypedDict):
252
275
  request_id: str
253
276
 
254
277
 
278
+ JobStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
279
+
280
+
281
+ class JobStatusInfo(TypedDict):
282
+ status: JobStatus
283
+ steps_total: int | None
284
+ steps_completed: int | None
285
+ exception: str | None
286
+ updated_at: str
287
+ created_at: str
288
+
289
+
255
290
  class LabelClassMetrics(TypedDict):
256
291
  label: int | None
257
292
  label_name: NotRequired[str | None]
@@ -274,6 +309,7 @@ class LabeledMemoryInsert(TypedDict):
274
309
  value: str | bytes
275
310
  metadata: NotRequired[dict[str, str | int | float | bool | None]]
276
311
  source_id: NotRequired[str | None]
312
+ partition_id: NotRequired[str | None]
277
313
  label: int | None
278
314
 
279
315
 
@@ -281,12 +317,16 @@ class ListMemoriesRequest(TypedDict):
281
317
  offset: NotRequired[int]
282
318
  limit: NotRequired[int]
283
319
  filters: NotRequired[list[FilterItem]]
320
+ partition_id: NotRequired[str | None]
321
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
284
322
 
285
323
 
286
324
  class LookupRequest(TypedDict):
287
325
  query: list[str]
288
326
  count: NotRequired[int]
289
327
  prompt: NotRequired[str | None]
328
+ partition_id: NotRequired[str | list[str | None] | None]
329
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
290
330
 
291
331
 
292
332
  class LookupScoreMetrics(TypedDict):
@@ -338,8 +378,6 @@ class MemorysetClassPatternsMetrics(TypedDict):
338
378
  class MemorysetClusterAnalysisConfig(TypedDict):
339
379
  min_cluster_size: NotRequired[int | None]
340
380
  max_cluster_size: NotRequired[int | None]
341
- clustering_method: NotRequired[Literal["density", "graph"]]
342
- min_cluster_distance: NotRequired[float]
343
381
  partitioning_method: NotRequired[Literal["ng", "rb", "cpm"]]
344
382
  resolution: NotRequired[float | None]
345
383
  num_iterations: NotRequired[int]
@@ -368,6 +406,7 @@ class MemorysetConceptAnalysisConfig(TypedDict):
368
406
  use_generative_naming: NotRequired[bool]
369
407
  naming_examples_count: NotRequired[int]
370
408
  naming_counterexample_count: NotRequired[int]
409
+ primary_label_pct_threshold: NotRequired[float]
371
410
  seed: NotRequired[int]
372
411
 
373
412
 
@@ -437,7 +476,7 @@ class NotFoundErrorResponse(TypedDict):
437
476
  "memory",
438
477
  "evaluation",
439
478
  "analysis",
440
- "task",
479
+ "job",
441
480
  "pretrained_embedding_model",
442
481
  "finetuned_embedding_model",
443
482
  "feedback_category",
@@ -551,6 +590,10 @@ class RegressionEvaluationRequest(TypedDict):
551
590
  datasource_value_column: str
552
591
  record_telemetry: NotRequired[bool]
553
592
  telemetry_tags: NotRequired[list[str] | None]
593
+ subsample: NotRequired[int | float | None]
594
+ ignore_unlabeled: NotRequired[bool]
595
+ datasource_partition_column: NotRequired[str | None]
596
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
554
597
 
555
598
 
556
599
  class RegressionMetrics(TypedDict):
@@ -593,12 +636,16 @@ class RegressionPredictionRequest(TypedDict):
593
636
  prompt: NotRequired[str | None]
594
637
  use_lookup_cache: NotRequired[bool]
595
638
  consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
639
+ ignore_unlabeled: NotRequired[bool]
640
+ partition_ids: NotRequired[str | list[str | None] | None]
641
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
596
642
 
597
643
 
598
644
  class ScorePredictionMemoryLookup(TypedDict):
599
645
  value: str | bytes
600
646
  embedding: list[float]
601
647
  source_id: str | None
648
+ partition_id: str | None
602
649
  metadata: dict[str, str | int | float | bool | None]
603
650
  memory_id: str
604
651
  memory_version: int
@@ -636,6 +683,7 @@ class ScoredMemory(TypedDict):
636
683
  value: str | bytes
637
684
  embedding: list[float]
638
685
  source_id: str | None
686
+ partition_id: str | None
639
687
  metadata: dict[str, str | int | float | bool | None]
640
688
  memory_id: str
641
689
  memory_version: int
@@ -651,6 +699,7 @@ class ScoredMemoryInsert(TypedDict):
651
699
  value: str | bytes
652
700
  metadata: NotRequired[dict[str, str | int | float | bool | None]]
653
701
  source_id: NotRequired[str | None]
702
+ partition_id: NotRequired[str | None]
654
703
  score: float | None
655
704
 
656
705
 
@@ -658,6 +707,7 @@ class ScoredMemoryLookup(TypedDict):
658
707
  value: str | bytes
659
708
  embedding: list[float]
660
709
  source_id: str | None
710
+ partition_id: str | None
661
711
  metadata: dict[str, str | int | float | bool | None]
662
712
  memory_id: str
663
713
  memory_version: int
@@ -674,6 +724,7 @@ class ScoredMemoryUpdate(TypedDict):
674
724
  value: NotRequired[str | bytes]
675
725
  metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
676
726
  source_id: NotRequired[str | None]
727
+ partition_id: NotRequired[str | None]
677
728
  metrics: NotRequired[MemoryMetrics | None]
678
729
  score: NotRequired[float | None]
679
730
 
@@ -682,6 +733,7 @@ class ScoredMemoryWithFeedbackMetrics(TypedDict):
682
733
  value: str | bytes
683
734
  embedding: list[float]
684
735
  source_id: str | None
736
+ partition_id: str | None
685
737
  metadata: dict[str, str | int | float | bool | None]
686
738
  memory_id: str
687
739
  memory_version: int
@@ -707,18 +759,6 @@ class SubConceptMetrics(TypedDict):
707
759
  memory_count: int
708
760
 
709
761
 
710
- TaskStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
711
-
712
-
713
- class TaskStatusInfo(TypedDict):
714
- status: TaskStatus
715
- steps_total: int | None
716
- steps_completed: int | None
717
- exception: str | None
718
- updated_at: str
719
- created_at: str
720
-
721
-
722
762
  TelemetryField = list
723
763
 
724
764
 
@@ -791,6 +831,10 @@ class DeleteMemorysetByNameOrIdParams(TypedDict):
791
831
  name_or_id: str
792
832
 
793
833
 
834
+ class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
835
+ name_or_id: str
836
+
837
+
794
838
  class GetMemorysetByNameOrIdMemoryByMemoryIdParams(TypedDict):
795
839
  name_or_id: str
796
840
  memory_id: str
@@ -823,20 +867,35 @@ class PostMemorysetByNameOrIdMemoriesDeleteParams(TypedDict):
823
867
  name_or_id: str
824
868
 
825
869
 
870
+ class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
871
+ name_or_id: str
872
+
873
+
874
+ class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
875
+ name_or_id: str
876
+
877
+
878
+ PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
879
+
880
+
881
+ class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
882
+ name_or_id: str
883
+
884
+
826
885
  class PostMemorysetByNameOrIdAnalysisParams(TypedDict):
827
886
  name_or_id: str
828
887
 
829
888
 
830
889
  class GetMemorysetByNameOrIdAnalysisParams(TypedDict):
831
890
  name_or_id: str
832
- status: NotRequired[TaskStatus | None]
891
+ status: NotRequired[JobStatus | None]
833
892
  limit: NotRequired[int | None]
834
893
  offset: NotRequired[int | None]
835
894
 
836
895
 
837
- class GetMemorysetByNameOrIdAnalysisByAnalysisTaskIdParams(TypedDict):
896
+ class GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams(TypedDict):
838
897
  name_or_id: str
839
- analysis_task_id: str
898
+ analysis_job_id: str
840
899
 
841
900
 
842
901
  class PostMemorysetByNameOrIdMemoryByMemoryIdCascadingEditsParams(TypedDict):
@@ -852,34 +911,42 @@ class DeleteFinetunedEmbeddingModelByNameOrIdParams(TypedDict):
852
911
  name_or_id: str
853
912
 
854
913
 
855
- class PostFinetunedEmbeddingModelByNameOrIdEvaluationParams(TypedDict):
914
+ class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
856
915
  name_or_id: str
857
916
 
858
917
 
859
- class GetFinetunedEmbeddingModelByNameOrIdEvaluationByTaskIdParams(TypedDict):
860
- name_or_id: str
861
- task_id: str
918
+ class GetPretrainedEmbeddingModelByModelNameParams(TypedDict):
919
+ model_name: PretrainedEmbeddingModelName
862
920
 
863
921
 
864
- class GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams(TypedDict):
865
- name_or_id: str
866
- datasource: NotRequired[str | None]
867
- value_column: NotRequired[str | None]
868
- label_column: NotRequired[str | None]
869
- score_column: NotRequired[str | None]
922
+ class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
923
+ model_name: PretrainedEmbeddingModelName
870
924
 
871
925
 
872
- class GetPretrainedEmbeddingModelByModelNameParams(TypedDict):
873
- model_name: PretrainedEmbeddingModelName
926
+ class PostFinetunedEmbeddingModelByNameOrIdEvaluationParams(TypedDict):
927
+ name_or_id: str
874
928
 
875
929
 
876
930
  class PostPretrainedEmbeddingModelByModelNameEvaluationParams(TypedDict):
877
931
  model_name: PretrainedEmbeddingModelName
878
932
 
879
933
 
880
- class GetPretrainedEmbeddingModelByModelNameEvaluationByTaskIdParams(TypedDict):
934
+ class GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams(TypedDict):
935
+ name_or_id: str
936
+ job_id: str
937
+
938
+
939
+ class GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams(TypedDict):
881
940
  model_name: PretrainedEmbeddingModelName
882
- task_id: str
941
+ job_id: str
942
+
943
+
944
+ class GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams(TypedDict):
945
+ name_or_id: str
946
+ datasource: NotRequired[str | None]
947
+ value_column: NotRequired[str | None]
948
+ label_column: NotRequired[str | None]
949
+ score_column: NotRequired[str | None]
883
950
 
884
951
 
885
952
  class GetPretrainedEmbeddingModelByModelNameEvaluationsParams(TypedDict):
@@ -909,6 +976,14 @@ class DeleteDatasourceByNameOrIdParams(TypedDict):
909
976
  name_or_id: str
910
977
 
911
978
 
979
+ class PostDatasourceByNameOrIdRowsParams(TypedDict):
980
+ name_or_id: str
981
+
982
+
983
+ class PostDatasourceByNameOrIdRowsCountParams(TypedDict):
984
+ name_or_id: str
985
+
986
+
912
987
  class GetDatasourceByNameOrIdEmbeddingModelEvaluationsParams(TypedDict):
913
988
  name_or_id: str
914
989
  value_column: NotRequired[str | None]
@@ -939,36 +1014,42 @@ class DeleteClassificationModelByNameOrIdParams(TypedDict):
939
1014
  name_or_id: str
940
1015
 
941
1016
 
942
- class PostClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
943
- model_name_or_id: str
1017
+ class PatchRegressionModelByNameOrIdParams(TypedDict):
1018
+ name_or_id: str
944
1019
 
945
1020
 
946
- class GetClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
947
- model_name_or_id: str
1021
+ class GetRegressionModelByNameOrIdParams(TypedDict):
1022
+ name_or_id: str
948
1023
 
949
1024
 
950
- class GetClassificationModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
951
- model_name_or_id: str
952
- task_id: str
1025
+ class DeleteRegressionModelByNameOrIdParams(TypedDict):
1026
+ name_or_id: str
953
1027
 
954
1028
 
955
- class DeleteClassificationModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
956
- model_name_or_id: str
957
- task_id: str
1029
+ class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
1030
+ name_or_id: str
958
1031
 
959
1032
 
960
- class PatchRegressionModelByNameOrIdParams(TypedDict):
1033
+ class PostClassificationModelByNameOrIdPredictionParams(TypedDict):
961
1034
  name_or_id: str
962
1035
 
963
1036
 
964
- class GetRegressionModelByNameOrIdParams(TypedDict):
1037
+ class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
965
1038
  name_or_id: str
966
1039
 
967
1040
 
968
- class DeleteRegressionModelByNameOrIdParams(TypedDict):
1041
+ class PostRegressionModelByNameOrIdPredictionParams(TypedDict):
969
1042
  name_or_id: str
970
1043
 
971
1044
 
1045
+ class PostClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
1046
+ model_name_or_id: str
1047
+
1048
+
1049
+ class GetClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
1050
+ model_name_or_id: str
1051
+
1052
+
972
1053
  class PostRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
973
1054
  model_name_or_id: str
974
1055
 
@@ -977,26 +1058,36 @@ class GetRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
977
1058
  model_name_or_id: str
978
1059
 
979
1060
 
980
- class GetRegressionModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
1061
+ class GetClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
981
1062
  model_name_or_id: str
982
- task_id: str
1063
+ job_id: str
983
1064
 
984
1065
 
985
- class DeleteRegressionModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
1066
+ class DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
986
1067
  model_name_or_id: str
987
- task_id: str
1068
+ job_id: str
988
1069
 
989
1070
 
990
- class GetTaskByTaskIdParams(TypedDict):
991
- task_id: str
1071
+ class GetRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
1072
+ model_name_or_id: str
1073
+ job_id: str
992
1074
 
993
1075
 
994
- class GetTaskByTaskIdStatusParams(TypedDict):
995
- task_id: str
1076
+ class DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
1077
+ model_name_or_id: str
1078
+ job_id: str
1079
+
1080
+
1081
+ class GetJobByJobIdParams(TypedDict):
1082
+ job_id: str
1083
+
996
1084
 
1085
+ class GetJobByJobIdStatusParams(TypedDict):
1086
+ job_id: str
997
1087
 
998
- class GetTaskParams(TypedDict):
999
- status: NotRequired[TaskStatus | list[TaskStatus] | None]
1088
+
1089
+ class GetJobParams(TypedDict):
1090
+ status: NotRequired[JobStatus | list[JobStatus] | None]
1000
1091
  type: NotRequired[str | list[str] | None]
1001
1092
  limit: NotRequired[int | None]
1002
1093
  offset: NotRequired[int]
@@ -1004,8 +1095,8 @@ class GetTaskParams(TypedDict):
1004
1095
  end_timestamp: NotRequired[str | None]
1005
1096
 
1006
1097
 
1007
- class DeleteTaskByTaskIdAbortParams(TypedDict):
1008
- task_id: str
1098
+ class DeleteJobByJobIdAbortParams(TypedDict):
1099
+ job_id: str
1009
1100
 
1010
1101
 
1011
1102
  class GetWorkerParams(TypedDict):
@@ -1061,43 +1152,8 @@ class DeleteTelemetryFeedbackCategoryByNameOrIdParams(TypedDict):
1061
1152
  PutTelemetryPredictionFeedbackRequest = list[PredictionFeedbackRequest]
1062
1153
 
1063
1154
 
1064
- class GetAgentsBootstrapClassificationModelByTaskIdParams(TypedDict):
1065
- task_id: str
1066
-
1067
-
1068
- class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
1069
- name_or_id: str
1070
-
1071
-
1072
- class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
1073
- name_or_id: str
1074
-
1075
-
1076
- class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
1077
- name_or_id: str
1078
-
1079
-
1080
- PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
1081
-
1082
-
1083
- class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
1084
- name_or_id: str
1085
-
1086
-
1087
- class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
1088
- name_or_id: str
1089
-
1090
-
1091
- class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
1092
- name_or_id: str
1093
-
1094
-
1095
- class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
1096
- name_or_id: str
1097
-
1098
-
1099
- class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
1100
- model_name: PretrainedEmbeddingModelName
1155
+ class GetAgentsBootstrapClassificationModelByJobIdParams(TypedDict):
1156
+ job_id: str
1101
1157
 
1102
1158
 
1103
1159
  class FieldValidationError(TypedDict):
@@ -1169,6 +1225,9 @@ class ClassificationPredictionRequest(TypedDict):
1169
1225
  prompt: NotRequired[str | None]
1170
1226
  use_lookup_cache: NotRequired[bool]
1171
1227
  consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
1228
+ ignore_unlabeled: NotRequired[bool]
1229
+ partition_ids: NotRequired[str | list[str | None] | None]
1230
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
1172
1231
 
1173
1232
 
1174
1233
  class CloneMemorysetRequest(TypedDict):
@@ -1185,6 +1244,7 @@ class ColumnInfo(TypedDict):
1185
1244
  name: str
1186
1245
  type: ColumnType
1187
1246
  enum_options: NotRequired[list[str] | None]
1247
+ string_values: NotRequired[list[str] | None]
1188
1248
  int_values: NotRequired[list[int] | None]
1189
1249
  contains_nones: NotRequired[bool]
1190
1250
 
@@ -1221,6 +1281,7 @@ class CreateMemorysetRequest(TypedDict):
1221
1281
  datasource_score_column: NotRequired[str | None]
1222
1282
  datasource_value_column: str
1223
1283
  datasource_source_id_column: NotRequired[str | None]
1284
+ datasource_partition_id_column: NotRequired[str | None]
1224
1285
  remove_duplicates: NotRequired[bool]
1225
1286
  pretrained_embedding_model_name: NotRequired[PretrainedEmbeddingModelName | None]
1226
1287
  finetuned_embedding_model_name_or_id: NotRequired[str | None]
@@ -1231,6 +1292,8 @@ class CreateMemorysetRequest(TypedDict):
1231
1292
  prompt: NotRequired[str]
1232
1293
  hidden: NotRequired[bool]
1233
1294
  batch_size: NotRequired[int]
1295
+ subsample: NotRequired[int | float | None]
1296
+ memory_type: NotRequired[MemoryType]
1234
1297
 
1235
1298
 
1236
1299
  class CreateRegressionModelRequest(TypedDict):
@@ -1255,48 +1318,52 @@ class DatasourceMetadata(TypedDict):
1255
1318
 
1256
1319
 
1257
1320
  class EmbeddingEvaluationResponse(TypedDict):
1258
- task_id: str
1321
+ job_id: str
1259
1322
  org_id: str
1260
1323
  finetuned_embedding_model_id: str | None
1261
1324
  pretrained_embedding_model_name: PretrainedEmbeddingModelName | None
1262
1325
  datasource_id: str
1263
- subsample: int | None
1326
+ subsample: int | float | None
1264
1327
  datasource_value_column: str
1265
1328
  datasource_label_column: NotRequired[str | None]
1266
1329
  datasource_score_column: NotRequired[str | None]
1267
1330
  neighbor_count: int
1268
1331
  weigh_memories: bool
1269
- status: TaskStatus
1332
+ status: JobStatus
1270
1333
  result: ClassificationMetrics | RegressionMetrics | None
1271
1334
  created_at: str
1272
1335
  updated_at: str
1336
+ task_id: str
1273
1337
 
1274
1338
 
1275
1339
  class EvaluationResponse(TypedDict):
1276
- task_id: str
1340
+ job_id: str
1277
1341
  org_id: str
1278
- status: TaskStatus
1342
+ status: JobStatus
1279
1343
  result: ClassificationMetrics | RegressionMetrics | None
1280
1344
  created_at: str
1281
1345
  updated_at: str
1346
+ task_id: str
1282
1347
 
1283
1348
 
1284
1349
  class EvaluationResponseClassificationMetrics(TypedDict):
1285
- task_id: str
1350
+ job_id: str
1286
1351
  org_id: str
1287
- status: TaskStatus
1352
+ status: JobStatus
1288
1353
  result: ClassificationMetrics | None
1289
1354
  created_at: str
1290
1355
  updated_at: str
1356
+ task_id: str
1291
1357
 
1292
1358
 
1293
1359
  class EvaluationResponseRegressionMetrics(TypedDict):
1294
- task_id: str
1360
+ job_id: str
1295
1361
  org_id: str
1296
- status: TaskStatus
1362
+ status: JobStatus
1297
1363
  result: RegressionMetrics | None
1298
1364
  created_at: str
1299
1365
  updated_at: str
1366
+ task_id: str
1300
1367
 
1301
1368
 
1302
1369
  class FinetuneEmbeddingModelRequest(TypedDict):
@@ -1305,7 +1372,8 @@ class FinetuneEmbeddingModelRequest(TypedDict):
1305
1372
  train_memoryset_name_or_id: NotRequired[str | None]
1306
1373
  train_datasource_name_or_id: NotRequired[str | None]
1307
1374
  eval_datasource_name_or_id: NotRequired[str | None]
1308
- label_column: NotRequired[str]
1375
+ label_column: NotRequired[str | None]
1376
+ score_column: NotRequired[str | None]
1309
1377
  value_column: NotRequired[str]
1310
1378
  training_method: NotRequired[EmbeddingFinetuningMethod]
1311
1379
  training_args: NotRequired[dict[str, str | int | float | bool]]
@@ -1322,8 +1390,9 @@ class FinetunedEmbeddingModelMetadata(TypedDict):
1322
1390
  created_at: str
1323
1391
  updated_at: str
1324
1392
  base_model: PretrainedEmbeddingModelName
1393
+ finetuning_job_id: str
1394
+ finetuning_status: JobStatus
1325
1395
  finetuning_task_id: str
1326
- finetuning_status: TaskStatus
1327
1396
 
1328
1397
 
1329
1398
  class HTTPValidationError(TypedDict):
@@ -1335,10 +1404,28 @@ class InvalidInputErrorResponse(TypedDict):
1335
1404
  validation_issues: list[FieldValidationError]
1336
1405
 
1337
1406
 
1407
+ class Job(TypedDict):
1408
+ status: JobStatus
1409
+ steps_total: int | None
1410
+ steps_completed: int | None
1411
+ exception: str | None
1412
+ updated_at: str
1413
+ created_at: str
1414
+ id: str
1415
+ org_id: str
1416
+ worker_id: str | None
1417
+ type: str
1418
+ payload: BaseModel
1419
+ result: BaseModel | None
1420
+ depends_on: NotRequired[list[str]]
1421
+ lease_token: str | None
1422
+
1423
+
1338
1424
  class LabelPredictionMemoryLookup(TypedDict):
1339
1425
  value: str | bytes
1340
1426
  embedding: list[float]
1341
1427
  source_id: str | None
1428
+ partition_id: str | None
1342
1429
  metadata: dict[str, str | int | float | bool | None]
1343
1430
  memory_id: str
1344
1431
  memory_version: int
@@ -1380,6 +1467,7 @@ class LabeledMemory(TypedDict):
1380
1467
  value: str | bytes
1381
1468
  embedding: list[float]
1382
1469
  source_id: str | None
1470
+ partition_id: str | None
1383
1471
  metadata: dict[str, str | int | float | bool | None]
1384
1472
  memory_id: str
1385
1473
  memory_version: int
@@ -1395,6 +1483,7 @@ class LabeledMemoryLookup(TypedDict):
1395
1483
  value: str | bytes
1396
1484
  embedding: list[float]
1397
1485
  source_id: str | None
1486
+ partition_id: str | None
1398
1487
  metadata: dict[str, str | int | float | bool | None]
1399
1488
  memory_id: str
1400
1489
  memory_version: int
@@ -1412,6 +1501,7 @@ class LabeledMemoryUpdate(TypedDict):
1412
1501
  value: NotRequired[str | bytes]
1413
1502
  metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
1414
1503
  source_id: NotRequired[str | None]
1504
+ partition_id: NotRequired[str | None]
1415
1505
  metrics: NotRequired[MemoryMetrics | None]
1416
1506
  label: NotRequired[int | None]
1417
1507
 
@@ -1420,6 +1510,7 @@ class LabeledMemoryWithFeedbackMetrics(TypedDict):
1420
1510
  value: str | bytes
1421
1511
  embedding: list[float]
1422
1512
  source_id: str | None
1513
+ partition_id: str | None
1423
1514
  metadata: dict[str, str | int | float | bool | None]
1424
1515
  memory_id: str
1425
1516
  memory_version: int
@@ -1439,7 +1530,8 @@ class ListPredictionsRequest(TypedDict):
1439
1530
  prediction_ids: NotRequired[list[str] | None]
1440
1531
  start_timestamp: NotRequired[str | None]
1441
1532
  end_timestamp: NotRequired[str | None]
1442
- limit: NotRequired[int | None]
1533
+ memory_id: NotRequired[str | None]
1534
+ limit: NotRequired[int]
1443
1535
  offset: NotRequired[int | None]
1444
1536
  sort: NotRequired[PredictionSort]
1445
1537
  expected_label_match: NotRequired[bool | None]
@@ -1460,6 +1552,7 @@ class MemorysetAnalysisRequest(TypedDict):
1460
1552
  batch_size: NotRequired[int]
1461
1553
  clear_metrics: NotRequired[bool]
1462
1554
  configs: MemorysetAnalysisConfigs
1555
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
1463
1556
 
1464
1557
 
1465
1558
  class MemorysetConceptMetrics(TypedDict):
@@ -1478,6 +1571,13 @@ class MemorysetMetrics(TypedDict):
1478
1571
  concepts: NotRequired[MemorysetConceptMetrics | None]
1479
1572
 
1480
1573
 
1574
+ class PaginatedJob(TypedDict):
1575
+ items: list[Job]
1576
+ total: int
1577
+ offset: int
1578
+ limit: int
1579
+
1580
+
1481
1581
  class PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics(TypedDict):
1482
1582
  items: list[LabeledMemoryWithFeedbackMetrics | ScoredMemoryWithFeedbackMetrics]
1483
1583
  total: int
@@ -1495,23 +1595,6 @@ class PretrainedEmbeddingModelMetadata(TypedDict):
1495
1595
  num_params: int
1496
1596
 
1497
1597
 
1498
- class Task(TypedDict):
1499
- status: TaskStatus
1500
- steps_total: int | None
1501
- steps_completed: int | None
1502
- exception: str | None
1503
- updated_at: str
1504
- created_at: str
1505
- id: str
1506
- org_id: str
1507
- worker_id: str | None
1508
- type: str
1509
- payload: BaseModel
1510
- result: BaseModel | None
1511
- depends_on: list[str]
1512
- lease_token: str | None
1513
-
1514
-
1515
1598
  class TelemetryMemoriesRequest(TypedDict):
1516
1599
  memoryset_id: str
1517
1600
  offset: NotRequired[int]
@@ -1543,10 +1626,10 @@ class CascadingEditSuggestion(TypedDict):
1543
1626
 
1544
1627
 
1545
1628
  class MemorysetAnalysisResponse(TypedDict):
1546
- task_id: str
1629
+ job_id: str
1547
1630
  org_id: str
1548
1631
  memoryset_id: str
1549
- status: TaskStatus
1632
+ status: JobStatus
1550
1633
  lookup_count: int
1551
1634
  batch_size: int
1552
1635
  clear_metrics: bool
@@ -1554,6 +1637,7 @@ class MemorysetAnalysisResponse(TypedDict):
1554
1637
  results: MemorysetMetrics | None
1555
1638
  created_at: str
1556
1639
  updated_at: str
1640
+ task_id: str
1557
1641
 
1558
1642
 
1559
1643
  class MemorysetMetadata(TypedDict):
@@ -1569,8 +1653,8 @@ class MemorysetMetadata(TypedDict):
1569
1653
  created_at: str
1570
1654
  updated_at: str
1571
1655
  memories_updated_at: str
1572
- insertion_task_id: str
1573
- insertion_status: TaskStatus
1656
+ insertion_job_id: str
1657
+ insertion_status: JobStatus
1574
1658
  metrics: MemorysetMetrics
1575
1659
  memory_type: MemoryType
1576
1660
  label_names: list[str] | None
@@ -1580,13 +1664,7 @@ class MemorysetMetadata(TypedDict):
1580
1664
  document_prompt_override: str | None
1581
1665
  query_prompt_override: str | None
1582
1666
  hidden: bool
1583
-
1584
-
1585
- class PaginatedTask(TypedDict):
1586
- items: list[Task]
1587
- total: int
1588
- offset: int
1589
- limit: int
1667
+ insertion_task_id: str
1590
1668
 
1591
1669
 
1592
1670
  class PaginatedWorkerInfo(TypedDict):
@@ -1604,11 +1682,12 @@ class BootstrapClassificationModelMeta(TypedDict):
1604
1682
 
1605
1683
 
1606
1684
  class BootstrapClassificationModelResponse(TypedDict):
1607
- task_id: str
1685
+ job_id: str
1608
1686
  org_id: str
1609
- status: TaskStatus
1687
+ status: JobStatus
1610
1688
  result: BootstrapClassificationModelMeta | None
1611
1689
  input: BootstrapClassificationModelRequest | None
1690
+ task_id: str
1612
1691
 
1613
1692
 
1614
1693
  class OrcaClient(Client):
@@ -1887,9 +1966,9 @@ class OrcaClient(Client):
1887
1966
  @overload
1888
1967
  def GET(
1889
1968
  self,
1890
- path: Literal["/memoryset/{name_or_id}/analysis/{analysis_task_id}"],
1969
+ path: Literal["/memoryset/{name_or_id}/analysis/{analysis_job_id}"],
1891
1970
  *,
1892
- params: GetMemorysetByNameOrIdAnalysisByAnalysisTaskIdParams,
1971
+ params: GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams,
1893
1972
  parse_as: Literal["json"] = "json",
1894
1973
  headers: HeaderTypes | None = None,
1895
1974
  cookies: CookieTypes | None = None,
@@ -1937,9 +2016,9 @@ class OrcaClient(Client):
1937
2016
  @overload
1938
2017
  def GET(
1939
2018
  self,
1940
- path: Literal["/finetuned_embedding_model/{name_or_id}/evaluation/{task_id}"],
2019
+ path: Literal["/pretrained_embedding_model"],
1941
2020
  *,
1942
- params: GetFinetunedEmbeddingModelByNameOrIdEvaluationByTaskIdParams,
2021
+ params: None = None,
1943
2022
  parse_as: Literal["json"] = "json",
1944
2023
  headers: HeaderTypes | None = None,
1945
2024
  cookies: CookieTypes | None = None,
@@ -1947,16 +2026,16 @@ class OrcaClient(Client):
1947
2026
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1948
2027
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1949
2028
  extensions: RequestExtensions | None = None,
1950
- ) -> EmbeddingEvaluationResponse:
1951
- """Get evaluation results for a finetuned embedding model by task ID."""
2029
+ ) -> list[PretrainedEmbeddingModelMetadata]:
2030
+ """List all available pretrained embedding models."""
1952
2031
  pass
1953
2032
 
1954
2033
  @overload
1955
2034
  def GET(
1956
2035
  self,
1957
- path: Literal["/finetuned_embedding_model/{name_or_id}/evaluations"],
2036
+ path: Literal["/pretrained_embedding_model/{model_name}"],
1958
2037
  *,
1959
- params: GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams,
2038
+ params: GetPretrainedEmbeddingModelByModelNameParams,
1960
2039
  parse_as: Literal["json"] = "json",
1961
2040
  headers: HeaderTypes | None = None,
1962
2041
  cookies: CookieTypes | None = None,
@@ -1964,16 +2043,16 @@ class OrcaClient(Client):
1964
2043
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1965
2044
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1966
2045
  extensions: RequestExtensions | None = None,
1967
- ) -> list[EmbeddingEvaluationResponse]:
1968
- """List all evaluation results for a finetuned embedding model."""
2046
+ ) -> PretrainedEmbeddingModelMetadata:
2047
+ """Get metadata for a specific pretrained embedding model."""
1969
2048
  pass
1970
2049
 
1971
2050
  @overload
1972
2051
  def GET(
1973
2052
  self,
1974
- path: Literal["/pretrained_embedding_model"],
2053
+ path: Literal["/finetuned_embedding_model/{name_or_id}/evaluation/{job_id}"],
1975
2054
  *,
1976
- params: None = None,
2055
+ params: GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams,
1977
2056
  parse_as: Literal["json"] = "json",
1978
2057
  headers: HeaderTypes | None = None,
1979
2058
  cookies: CookieTypes | None = None,
@@ -1981,16 +2060,16 @@ class OrcaClient(Client):
1981
2060
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1982
2061
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1983
2062
  extensions: RequestExtensions | None = None,
1984
- ) -> list[PretrainedEmbeddingModelMetadata]:
1985
- """List all available pretrained embedding models."""
2063
+ ) -> EmbeddingEvaluationResponse:
2064
+ """Get evaluation results for a finetuned embedding model by job ID."""
1986
2065
  pass
1987
2066
 
1988
2067
  @overload
1989
2068
  def GET(
1990
2069
  self,
1991
- path: Literal["/pretrained_embedding_model/{model_name}"],
2070
+ path: Literal["/pretrained_embedding_model/{model_name}/evaluation/{job_id}"],
1992
2071
  *,
1993
- params: GetPretrainedEmbeddingModelByModelNameParams,
2072
+ params: GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams,
1994
2073
  parse_as: Literal["json"] = "json",
1995
2074
  headers: HeaderTypes | None = None,
1996
2075
  cookies: CookieTypes | None = None,
@@ -1998,16 +2077,16 @@ class OrcaClient(Client):
1998
2077
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1999
2078
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2000
2079
  extensions: RequestExtensions | None = None,
2001
- ) -> PretrainedEmbeddingModelMetadata:
2002
- """Get metadata for a specific pretrained embedding model."""
2080
+ ) -> EmbeddingEvaluationResponse:
2081
+ """Get evaluation results for a pretrained embedding model by job ID."""
2003
2082
  pass
2004
2083
 
2005
2084
  @overload
2006
2085
  def GET(
2007
2086
  self,
2008
- path: Literal["/pretrained_embedding_model/{model_name}/evaluation/{task_id}"],
2087
+ path: Literal["/finetuned_embedding_model/{name_or_id}/evaluations"],
2009
2088
  *,
2010
- params: GetPretrainedEmbeddingModelByModelNameEvaluationByTaskIdParams,
2089
+ params: GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams,
2011
2090
  parse_as: Literal["json"] = "json",
2012
2091
  headers: HeaderTypes | None = None,
2013
2092
  cookies: CookieTypes | None = None,
@@ -2015,8 +2094,8 @@ class OrcaClient(Client):
2015
2094
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2016
2095
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2017
2096
  extensions: RequestExtensions | None = None,
2018
- ) -> EmbeddingEvaluationResponse:
2019
- """Get evaluation results for a pretrained embedding model by task ID."""
2097
+ ) -> list[EmbeddingEvaluationResponse]:
2098
+ """List all evaluation results for a finetuned embedding model."""
2020
2099
  pass
2021
2100
 
2022
2101
  @overload
@@ -2141,7 +2220,7 @@ class OrcaClient(Client):
2141
2220
  @overload
2142
2221
  def GET(
2143
2222
  self,
2144
- path: Literal["/predictive_model"],
2223
+ path: Literal["/classification_model"],
2145
2224
  *,
2146
2225
  params: None = None,
2147
2226
  parse_as: Literal["json"] = "json",
@@ -2151,13 +2230,13 @@ class OrcaClient(Client):
2151
2230
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2152
2231
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2153
2232
  extensions: RequestExtensions | None = None,
2154
- ) -> list[ClassificationModelMetadata | RegressionModelMetadata]:
2233
+ ) -> list[ClassificationModelMetadata]:
2155
2234
  pass
2156
2235
 
2157
2236
  @overload
2158
2237
  def GET(
2159
2238
  self,
2160
- path: Literal["/classification_model"],
2239
+ path: Literal["/regression_model"],
2161
2240
  *,
2162
2241
  params: None = None,
2163
2242
  parse_as: Literal["json"] = "json",
@@ -2167,7 +2246,7 @@ class OrcaClient(Client):
2167
2246
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2168
2247
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2169
2248
  extensions: RequestExtensions | None = None,
2170
- ) -> list[ClassificationModelMetadata]:
2249
+ ) -> list[RegressionModelMetadata]:
2171
2250
  pass
2172
2251
 
2173
2252
  @overload
@@ -2189,9 +2268,9 @@ class OrcaClient(Client):
2189
2268
  @overload
2190
2269
  def GET(
2191
2270
  self,
2192
- path: Literal["/classification_model/{model_name_or_id}/evaluation"],
2271
+ path: Literal["/regression_model/{name_or_id}"],
2193
2272
  *,
2194
- params: GetClassificationModelByModelNameOrIdEvaluationParams,
2273
+ params: GetRegressionModelByNameOrIdParams,
2195
2274
  parse_as: Literal["json"] = "json",
2196
2275
  headers: HeaderTypes | None = None,
2197
2276
  cookies: CookieTypes | None = None,
@@ -2199,15 +2278,15 @@ class OrcaClient(Client):
2199
2278
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2200
2279
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2201
2280
  extensions: RequestExtensions | None = None,
2202
- ) -> list[EvaluationResponseClassificationMetrics]:
2281
+ ) -> RegressionModelMetadata:
2203
2282
  pass
2204
2283
 
2205
2284
  @overload
2206
2285
  def GET(
2207
2286
  self,
2208
- path: Literal["/classification_model/{model_name_or_id}/evaluation/{task_id}"],
2287
+ path: Literal["/predictive_model"],
2209
2288
  *,
2210
- params: GetClassificationModelByModelNameOrIdEvaluationByTaskIdParams,
2289
+ params: None = None,
2211
2290
  parse_as: Literal["json"] = "json",
2212
2291
  headers: HeaderTypes | None = None,
2213
2292
  cookies: CookieTypes | None = None,
@@ -2215,15 +2294,15 @@ class OrcaClient(Client):
2215
2294
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2216
2295
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2217
2296
  extensions: RequestExtensions | None = None,
2218
- ) -> EvaluationResponseClassificationMetrics:
2297
+ ) -> list[ClassificationModelMetadata | RegressionModelMetadata]:
2219
2298
  pass
2220
2299
 
2221
2300
  @overload
2222
2301
  def GET(
2223
2302
  self,
2224
- path: Literal["/regression_model"],
2303
+ path: Literal["/classification_model/{model_name_or_id}/evaluation"],
2225
2304
  *,
2226
- params: None = None,
2305
+ params: GetClassificationModelByModelNameOrIdEvaluationParams,
2227
2306
  parse_as: Literal["json"] = "json",
2228
2307
  headers: HeaderTypes | None = None,
2229
2308
  cookies: CookieTypes | None = None,
@@ -2231,15 +2310,15 @@ class OrcaClient(Client):
2231
2310
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2232
2311
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2233
2312
  extensions: RequestExtensions | None = None,
2234
- ) -> list[RegressionModelMetadata]:
2313
+ ) -> list[EvaluationResponseClassificationMetrics]:
2235
2314
  pass
2236
2315
 
2237
2316
  @overload
2238
2317
  def GET(
2239
2318
  self,
2240
- path: Literal["/regression_model/{name_or_id}"],
2319
+ path: Literal["/regression_model/{model_name_or_id}/evaluation"],
2241
2320
  *,
2242
- params: GetRegressionModelByNameOrIdParams,
2321
+ params: GetRegressionModelByModelNameOrIdEvaluationParams,
2243
2322
  parse_as: Literal["json"] = "json",
2244
2323
  headers: HeaderTypes | None = None,
2245
2324
  cookies: CookieTypes | None = None,
@@ -2247,15 +2326,15 @@ class OrcaClient(Client):
2247
2326
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2248
2327
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2249
2328
  extensions: RequestExtensions | None = None,
2250
- ) -> RegressionModelMetadata:
2329
+ ) -> list[EvaluationResponseRegressionMetrics]:
2251
2330
  pass
2252
2331
 
2253
2332
  @overload
2254
2333
  def GET(
2255
2334
  self,
2256
- path: Literal["/regression_model/{model_name_or_id}/evaluation"],
2335
+ path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
2257
2336
  *,
2258
- params: GetRegressionModelByModelNameOrIdEvaluationParams,
2337
+ params: GetClassificationModelByModelNameOrIdEvaluationByJobIdParams,
2259
2338
  parse_as: Literal["json"] = "json",
2260
2339
  headers: HeaderTypes | None = None,
2261
2340
  cookies: CookieTypes | None = None,
@@ -2263,15 +2342,15 @@ class OrcaClient(Client):
2263
2342
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2264
2343
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2265
2344
  extensions: RequestExtensions | None = None,
2266
- ) -> list[EvaluationResponseRegressionMetrics]:
2345
+ ) -> EvaluationResponseClassificationMetrics:
2267
2346
  pass
2268
2347
 
2269
2348
  @overload
2270
2349
  def GET(
2271
2350
  self,
2272
- path: Literal["/regression_model/{model_name_or_id}/evaluation/{task_id}"],
2351
+ path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
2273
2352
  *,
2274
- params: GetRegressionModelByModelNameOrIdEvaluationByTaskIdParams,
2353
+ params: GetRegressionModelByModelNameOrIdEvaluationByJobIdParams,
2275
2354
  parse_as: Literal["json"] = "json",
2276
2355
  headers: HeaderTypes | None = None,
2277
2356
  cookies: CookieTypes | None = None,
@@ -2285,9 +2364,9 @@ class OrcaClient(Client):
2285
2364
  @overload
2286
2365
  def GET(
2287
2366
  self,
2288
- path: Literal["/task/{task_id}"],
2367
+ path: Literal["/job/{job_id}"],
2289
2368
  *,
2290
- params: GetTaskByTaskIdParams,
2369
+ params: GetJobByJobIdParams,
2291
2370
  parse_as: Literal["json"] = "json",
2292
2371
  headers: HeaderTypes | None = None,
2293
2372
  cookies: CookieTypes | None = None,
@@ -2295,15 +2374,15 @@ class OrcaClient(Client):
2295
2374
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2296
2375
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2297
2376
  extensions: RequestExtensions | None = None,
2298
- ) -> Task:
2377
+ ) -> Job:
2299
2378
  pass
2300
2379
 
2301
2380
  @overload
2302
2381
  def GET(
2303
2382
  self,
2304
- path: Literal["/task/{task_id}/status"],
2383
+ path: Literal["/job/{job_id}/status"],
2305
2384
  *,
2306
- params: GetTaskByTaskIdStatusParams,
2385
+ params: GetJobByJobIdStatusParams,
2307
2386
  parse_as: Literal["json"] = "json",
2308
2387
  headers: HeaderTypes | None = None,
2309
2388
  cookies: CookieTypes | None = None,
@@ -2311,15 +2390,15 @@ class OrcaClient(Client):
2311
2390
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2312
2391
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2313
2392
  extensions: RequestExtensions | None = None,
2314
- ) -> TaskStatusInfo:
2393
+ ) -> JobStatusInfo:
2315
2394
  pass
2316
2395
 
2317
2396
  @overload
2318
2397
  def GET(
2319
2398
  self,
2320
- path: Literal["/task"],
2399
+ path: Literal["/job"],
2321
2400
  *,
2322
- params: GetTaskParams,
2401
+ params: GetJobParams,
2323
2402
  parse_as: Literal["json"] = "json",
2324
2403
  headers: HeaderTypes | None = None,
2325
2404
  cookies: CookieTypes | None = None,
@@ -2327,7 +2406,7 @@ class OrcaClient(Client):
2327
2406
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2328
2407
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2329
2408
  extensions: RequestExtensions | None = None,
2330
- ) -> PaginatedTask:
2409
+ ) -> PaginatedJob:
2331
2410
  pass
2332
2411
 
2333
2412
  @overload
@@ -2478,9 +2557,9 @@ class OrcaClient(Client):
2478
2557
  @overload
2479
2558
  def GET(
2480
2559
  self,
2481
- path: Literal["/agents/bootstrap_classification_model/{task_id}"],
2560
+ path: Literal["/agents/bootstrap_classification_model/{job_id}"],
2482
2561
  *,
2483
- params: GetAgentsBootstrapClassificationModelByTaskIdParams,
2562
+ params: GetAgentsBootstrapClassificationModelByJobIdParams,
2484
2563
  parse_as: Literal["json"] = "json",
2485
2564
  headers: HeaderTypes | None = None,
2486
2565
  cookies: CookieTypes | None = None,
@@ -2489,7 +2568,7 @@ class OrcaClient(Client):
2489
2568
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2490
2569
  extensions: RequestExtensions | None = None,
2491
2570
  ) -> BootstrapClassificationModelResponse:
2492
- """Get the status of a bootstrap classification model task"""
2571
+ """Get the status of a bootstrap classification model job"""
2493
2572
  pass
2494
2573
 
2495
2574
  def GET(
@@ -2659,9 +2738,9 @@ class OrcaClient(Client):
2659
2738
  @overload
2660
2739
  def DELETE(
2661
2740
  self,
2662
- path: Literal["/classification_model/{model_name_or_id}/evaluation/{task_id}"],
2741
+ path: Literal["/regression_model/{name_or_id}"],
2663
2742
  *,
2664
- params: DeleteClassificationModelByModelNameOrIdEvaluationByTaskIdParams,
2743
+ params: DeleteRegressionModelByNameOrIdParams,
2665
2744
  parse_as: Literal["json"] = "json",
2666
2745
  headers: HeaderTypes | None = None,
2667
2746
  cookies: CookieTypes | None = None,
@@ -2675,9 +2754,9 @@ class OrcaClient(Client):
2675
2754
  @overload
2676
2755
  def DELETE(
2677
2756
  self,
2678
- path: Literal["/regression_model/{name_or_id}"],
2757
+ path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
2679
2758
  *,
2680
- params: DeleteRegressionModelByNameOrIdParams,
2759
+ params: DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams,
2681
2760
  parse_as: Literal["json"] = "json",
2682
2761
  headers: HeaderTypes | None = None,
2683
2762
  cookies: CookieTypes | None = None,
@@ -2691,9 +2770,9 @@ class OrcaClient(Client):
2691
2770
  @overload
2692
2771
  def DELETE(
2693
2772
  self,
2694
- path: Literal["/regression_model/{model_name_or_id}/evaluation/{task_id}"],
2773
+ path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
2695
2774
  *,
2696
- params: DeleteRegressionModelByModelNameOrIdEvaluationByTaskIdParams,
2775
+ params: DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams,
2697
2776
  parse_as: Literal["json"] = "json",
2698
2777
  headers: HeaderTypes | None = None,
2699
2778
  cookies: CookieTypes | None = None,
@@ -2707,9 +2786,9 @@ class OrcaClient(Client):
2707
2786
  @overload
2708
2787
  def DELETE(
2709
2788
  self,
2710
- path: Literal["/task/{task_id}/abort"],
2789
+ path: Literal["/job/{job_id}/abort"],
2711
2790
  *,
2712
- params: DeleteTaskByTaskIdAbortParams,
2791
+ params: DeleteJobByJobIdAbortParams,
2713
2792
  parse_as: Literal["json"] = "json",
2714
2793
  headers: HeaderTypes | None = None,
2715
2794
  cookies: CookieTypes | None = None,
@@ -2870,6 +2949,26 @@ class OrcaClient(Client):
2870
2949
  ) -> None:
2871
2950
  pass
2872
2951
 
2952
+ @overload
2953
+ def POST(
2954
+ self,
2955
+ path: Literal["/gpu/memoryset/{name_or_id}/lookup"],
2956
+ *,
2957
+ params: PostGpuMemorysetByNameOrIdLookupParams,
2958
+ json: LookupRequest,
2959
+ data: None = None,
2960
+ files: None = None,
2961
+ content: None = None,
2962
+ parse_as: Literal["json"] = "json",
2963
+ headers: HeaderTypes | None = None,
2964
+ cookies: CookieTypes | None = None,
2965
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2966
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2967
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2968
+ extensions: RequestExtensions | None = None,
2969
+ ) -> list[list[LabeledMemoryLookup | ScoredMemoryLookup]]:
2970
+ pass
2971
+
2873
2972
  @overload
2874
2973
  def POST(
2875
2974
  self,
@@ -2930,6 +3029,26 @@ class OrcaClient(Client):
2930
3029
  ) -> None:
2931
3030
  pass
2932
3031
 
3032
+ @overload
3033
+ def POST(
3034
+ self,
3035
+ path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3036
+ *,
3037
+ params: PostGpuMemorysetByNameOrIdMemoryParams,
3038
+ json: PostGpuMemorysetByNameOrIdMemoryRequest,
3039
+ data: None = None,
3040
+ files: None = None,
3041
+ content: None = None,
3042
+ parse_as: Literal["json"] = "json",
3043
+ headers: HeaderTypes | None = None,
3044
+ cookies: CookieTypes | None = None,
3045
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3046
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3047
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3048
+ extensions: RequestExtensions | None = None,
3049
+ ) -> list[str]:
3050
+ pass
3051
+
2933
3052
  @overload
2934
3053
  def POST(
2935
3054
  self,
@@ -2991,6 +3110,48 @@ class OrcaClient(Client):
2991
3110
  """Create a finetuned embedding model."""
2992
3111
  pass
2993
3112
 
3113
+ @overload
3114
+ def POST(
3115
+ self,
3116
+ path: Literal["/gpu/finetuned_embedding_model/{name_or_id}/embedding"],
3117
+ *,
3118
+ params: PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams,
3119
+ json: EmbedRequest,
3120
+ data: None = None,
3121
+ files: None = None,
3122
+ content: None = None,
3123
+ parse_as: Literal["json"] = "json",
3124
+ headers: HeaderTypes | None = None,
3125
+ cookies: CookieTypes | None = None,
3126
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3127
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3128
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3129
+ extensions: RequestExtensions | None = None,
3130
+ ) -> list[list[float]]:
3131
+ """Embed values using a finetuned embedding model."""
3132
+ pass
3133
+
3134
+ @overload
3135
+ def POST(
3136
+ self,
3137
+ path: Literal["/gpu/pretrained_embedding_model/{model_name}/embedding"],
3138
+ *,
3139
+ params: PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams,
3140
+ json: EmbedRequest,
3141
+ data: None = None,
3142
+ files: None = None,
3143
+ content: None = None,
3144
+ parse_as: Literal["json"] = "json",
3145
+ headers: HeaderTypes | None = None,
3146
+ cookies: CookieTypes | None = None,
3147
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3148
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3149
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3150
+ extensions: RequestExtensions | None = None,
3151
+ ) -> list[list[float]]:
3152
+ """Embed values using a pretrained embedding model."""
3153
+ pass
3154
+
2994
3155
  @overload
2995
3156
  def POST(
2996
3157
  self,
@@ -3090,10 +3251,10 @@ class OrcaClient(Client):
3090
3251
  @overload
3091
3252
  def POST(
3092
3253
  self,
3093
- path: Literal["/classification_model"],
3254
+ path: Literal["/datasource/{name_or_id}/rows"],
3094
3255
  *,
3095
- params: None = None,
3096
- json: CreateClassificationModelRequest,
3256
+ params: PostDatasourceByNameOrIdRowsParams,
3257
+ json: GetDatasourceRowsRequest,
3097
3258
  data: None = None,
3098
3259
  files: None = None,
3099
3260
  content: None = None,
@@ -3104,16 +3265,17 @@ class OrcaClient(Client):
3104
3265
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3105
3266
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3106
3267
  extensions: RequestExtensions | None = None,
3107
- ) -> ClassificationModelMetadata:
3268
+ ) -> list[dict[str, Any]]:
3269
+ """Get rows from a specific datasource with optional filtering."""
3108
3270
  pass
3109
3271
 
3110
3272
  @overload
3111
3273
  def POST(
3112
3274
  self,
3113
- path: Literal["/classification_model/{model_name_or_id}/evaluation"],
3275
+ path: Literal["/datasource/{name_or_id}/rows/count"],
3114
3276
  *,
3115
- params: PostClassificationModelByModelNameOrIdEvaluationParams,
3116
- json: ClassificationEvaluationRequest,
3277
+ params: PostDatasourceByNameOrIdRowsCountParams,
3278
+ json: GetDatasourceRowCountRequest,
3117
3279
  data: None = None,
3118
3280
  files: None = None,
3119
3281
  content: None = None,
@@ -3124,16 +3286,17 @@ class OrcaClient(Client):
3124
3286
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3125
3287
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3126
3288
  extensions: RequestExtensions | None = None,
3127
- ) -> EvaluationResponse:
3289
+ ) -> int:
3290
+ """Get row count from a specific datasource with optional filtering."""
3128
3291
  pass
3129
3292
 
3130
3293
  @overload
3131
3294
  def POST(
3132
3295
  self,
3133
- path: Literal["/regression_model"],
3296
+ path: Literal["/classification_model"],
3134
3297
  *,
3135
3298
  params: None = None,
3136
- json: CreateRegressionModelRequest,
3299
+ json: CreateClassificationModelRequest,
3137
3300
  data: None = None,
3138
3301
  files: None = None,
3139
3302
  content: None = None,
@@ -3144,16 +3307,16 @@ class OrcaClient(Client):
3144
3307
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3145
3308
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3146
3309
  extensions: RequestExtensions | None = None,
3147
- ) -> RegressionModelMetadata:
3310
+ ) -> ClassificationModelMetadata:
3148
3311
  pass
3149
3312
 
3150
3313
  @overload
3151
3314
  def POST(
3152
3315
  self,
3153
- path: Literal["/regression_model/{model_name_or_id}/evaluation"],
3316
+ path: Literal["/regression_model"],
3154
3317
  *,
3155
- params: PostRegressionModelByModelNameOrIdEvaluationParams,
3156
- json: RegressionEvaluationRequest,
3318
+ params: None = None,
3319
+ json: CreateRegressionModelRequest,
3157
3320
  data: None = None,
3158
3321
  files: None = None,
3159
3322
  content: None = None,
@@ -3164,16 +3327,16 @@ class OrcaClient(Client):
3164
3327
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3165
3328
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3166
3329
  extensions: RequestExtensions | None = None,
3167
- ) -> EvaluationResponse:
3330
+ ) -> RegressionModelMetadata:
3168
3331
  pass
3169
3332
 
3170
3333
  @overload
3171
3334
  def POST(
3172
3335
  self,
3173
- path: Literal["/telemetry/prediction"],
3336
+ path: Literal["/gpu/classification_model/{name_or_id}/prediction"],
3174
3337
  *,
3175
- params: None = None,
3176
- json: ListPredictionsRequest | None = None,
3338
+ params: PostGpuClassificationModelByNameOrIdPredictionParams,
3339
+ json: ClassificationPredictionRequest,
3177
3340
  data: None = None,
3178
3341
  files: None = None,
3179
3342
  content: None = None,
@@ -3184,17 +3347,16 @@ class OrcaClient(Client):
3184
3347
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3185
3348
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3186
3349
  extensions: RequestExtensions | None = None,
3187
- ) -> list[LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback]:
3188
- """List predictions with optional filtering and sorting."""
3350
+ ) -> list[BaseLabelPredictionResult]:
3189
3351
  pass
3190
3352
 
3191
3353
  @overload
3192
3354
  def POST(
3193
3355
  self,
3194
- path: Literal["/telemetry/prediction/count"],
3356
+ path: Literal["/classification_model/{name_or_id}/prediction"],
3195
3357
  *,
3196
- params: None = None,
3197
- json: CountPredictionsRequest | None = None,
3358
+ params: PostClassificationModelByNameOrIdPredictionParams,
3359
+ json: ClassificationPredictionRequest,
3198
3360
  data: None = None,
3199
3361
  files: None = None,
3200
3362
  content: None = None,
@@ -3205,17 +3367,16 @@ class OrcaClient(Client):
3205
3367
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3206
3368
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3207
3369
  extensions: RequestExtensions | None = None,
3208
- ) -> int:
3209
- """Count predictions with optional filtering."""
3370
+ ) -> list[BaseLabelPredictionResult]:
3210
3371
  pass
3211
3372
 
3212
3373
  @overload
3213
3374
  def POST(
3214
3375
  self,
3215
- path: Literal["/telemetry/memories"],
3376
+ path: Literal["/gpu/regression_model/{name_or_id}/prediction"],
3216
3377
  *,
3217
- params: None = None,
3218
- json: TelemetryMemoriesRequest,
3378
+ params: PostGpuRegressionModelByNameOrIdPredictionParams,
3379
+ json: RegressionPredictionRequest,
3219
3380
  data: None = None,
3220
3381
  files: None = None,
3221
3382
  content: None = None,
@@ -3226,21 +3387,16 @@ class OrcaClient(Client):
3226
3387
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3227
3388
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3228
3389
  extensions: RequestExtensions | None = None,
3229
- ) -> PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics:
3230
- """
3231
- List memories with feedback metrics.
3232
- **Note**: This endpoint will ONLY return memories that have been used in a prediction.
3233
- If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
3234
- """
3390
+ ) -> list[BaseScorePredictionResult]:
3235
3391
  pass
3236
3392
 
3237
3393
  @overload
3238
3394
  def POST(
3239
3395
  self,
3240
- path: Literal["/agents/bootstrap_classification_model"],
3396
+ path: Literal["/regression_model/{name_or_id}/prediction"],
3241
3397
  *,
3242
- params: None = None,
3243
- json: BootstrapClassificationModelRequest,
3398
+ params: PostRegressionModelByNameOrIdPredictionParams,
3399
+ json: RegressionPredictionRequest,
3244
3400
  data: None = None,
3245
3401
  files: None = None,
3246
3402
  content: None = None,
@@ -3251,30 +3407,16 @@ class OrcaClient(Client):
3251
3407
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3252
3408
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3253
3409
  extensions: RequestExtensions | None = None,
3254
- ) -> BootstrapClassificationModelResponse:
3255
- """
3256
- Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
3257
-
3258
- This endpoint uses the bootstrap_classification_model agent to generate:
3259
- 1. Memoryset configuration with appropriate settings
3260
- 2. Model configuration with optimal parameters
3261
- 3. High-quality training memories for each label
3262
-
3263
- The process involves:
3264
- 1. Calling the agent to generate configurations and memories
3265
- 2. Creating a datasource from the generated memories
3266
- 3. Creating a memoryset from the datasource
3267
- 4. Creating a classification model from the memoryset
3268
- """
3410
+ ) -> list[BaseScorePredictionResult]:
3269
3411
  pass
3270
3412
 
3271
3413
  @overload
3272
3414
  def POST(
3273
3415
  self,
3274
- path: Literal["/gpu/memoryset/{name_or_id}/lookup"],
3416
+ path: Literal["/classification_model/{model_name_or_id}/evaluation"],
3275
3417
  *,
3276
- params: PostGpuMemorysetByNameOrIdLookupParams,
3277
- json: LookupRequest,
3418
+ params: PostClassificationModelByModelNameOrIdEvaluationParams,
3419
+ json: ClassificationEvaluationRequest,
3278
3420
  data: None = None,
3279
3421
  files: None = None,
3280
3422
  content: None = None,
@@ -3285,16 +3427,16 @@ class OrcaClient(Client):
3285
3427
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3286
3428
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3287
3429
  extensions: RequestExtensions | None = None,
3288
- ) -> list[list[LabeledMemoryLookup | ScoredMemoryLookup]]:
3430
+ ) -> EvaluationResponse:
3289
3431
  pass
3290
3432
 
3291
3433
  @overload
3292
3434
  def POST(
3293
3435
  self,
3294
- path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3436
+ path: Literal["/regression_model/{model_name_or_id}/evaluation"],
3295
3437
  *,
3296
- params: PostGpuMemorysetByNameOrIdMemoryParams,
3297
- json: PostGpuMemorysetByNameOrIdMemoryRequest,
3438
+ params: PostRegressionModelByModelNameOrIdEvaluationParams,
3439
+ json: RegressionEvaluationRequest,
3298
3440
  data: None = None,
3299
3441
  files: None = None,
3300
3442
  content: None = None,
@@ -3305,16 +3447,16 @@ class OrcaClient(Client):
3305
3447
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3306
3448
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3307
3449
  extensions: RequestExtensions | None = None,
3308
- ) -> list[str]:
3450
+ ) -> EvaluationResponse:
3309
3451
  pass
3310
3452
 
3311
3453
  @overload
3312
3454
  def POST(
3313
3455
  self,
3314
- path: Literal["/gpu/classification_model/{name_or_id}/prediction"],
3456
+ path: Literal["/telemetry/prediction"],
3315
3457
  *,
3316
- params: PostGpuClassificationModelByNameOrIdPredictionParams,
3317
- json: ClassificationPredictionRequest,
3458
+ params: None = None,
3459
+ json: ListPredictionsRequest | None = None,
3318
3460
  data: None = None,
3319
3461
  files: None = None,
3320
3462
  content: None = None,
@@ -3325,16 +3467,17 @@ class OrcaClient(Client):
3325
3467
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3326
3468
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3327
3469
  extensions: RequestExtensions | None = None,
3328
- ) -> list[BaseLabelPredictionResult]:
3470
+ ) -> list[LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback]:
3471
+ """List predictions with optional filtering and sorting."""
3329
3472
  pass
3330
3473
 
3331
3474
  @overload
3332
3475
  def POST(
3333
3476
  self,
3334
- path: Literal["/gpu/regression_model/{name_or_id}/prediction"],
3477
+ path: Literal["/telemetry/prediction/count"],
3335
3478
  *,
3336
- params: PostGpuRegressionModelByNameOrIdPredictionParams,
3337
- json: RegressionPredictionRequest,
3479
+ params: None = None,
3480
+ json: CountPredictionsRequest | None = None,
3338
3481
  data: None = None,
3339
3482
  files: None = None,
3340
3483
  content: None = None,
@@ -3345,16 +3488,17 @@ class OrcaClient(Client):
3345
3488
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3346
3489
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3347
3490
  extensions: RequestExtensions | None = None,
3348
- ) -> list[BaseScorePredictionResult]:
3491
+ ) -> int:
3492
+ """Count predictions with optional filtering."""
3349
3493
  pass
3350
3494
 
3351
3495
  @overload
3352
3496
  def POST(
3353
3497
  self,
3354
- path: Literal["/gpu/finetuned_embedding_model/{name_or_id}/embedding"],
3498
+ path: Literal["/telemetry/memories"],
3355
3499
  *,
3356
- params: PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams,
3357
- json: EmbedRequest,
3500
+ params: None = None,
3501
+ json: TelemetryMemoriesRequest,
3358
3502
  data: None = None,
3359
3503
  files: None = None,
3360
3504
  content: None = None,
@@ -3365,17 +3509,21 @@ class OrcaClient(Client):
3365
3509
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3366
3510
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3367
3511
  extensions: RequestExtensions | None = None,
3368
- ) -> list[list[float]]:
3369
- """Embed values using a finetuned embedding model."""
3512
+ ) -> PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics:
3513
+ """
3514
+ List memories with feedback metrics.
3515
+ **Note**: This endpoint will ONLY return memories that have been used in a prediction.
3516
+ If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
3517
+ """
3370
3518
  pass
3371
3519
 
3372
3520
  @overload
3373
3521
  def POST(
3374
3522
  self,
3375
- path: Literal["/gpu/pretrained_embedding_model/{model_name}/embedding"],
3523
+ path: Literal["/agents/bootstrap_classification_model"],
3376
3524
  *,
3377
- params: PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams,
3378
- json: EmbedRequest,
3525
+ params: None = None,
3526
+ json: BootstrapClassificationModelRequest,
3379
3527
  data: None = None,
3380
3528
  files: None = None,
3381
3529
  content: None = None,
@@ -3386,8 +3534,21 @@ class OrcaClient(Client):
3386
3534
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3387
3535
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3388
3536
  extensions: RequestExtensions | None = None,
3389
- ) -> list[list[float]]:
3390
- """Embed values using a pretrained embedding model."""
3537
+ ) -> BootstrapClassificationModelResponse:
3538
+ """
3539
+ Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
3540
+
3541
+ This endpoint uses the bootstrap_classification_model agent to generate:
3542
+ 1. Memoryset configuration with appropriate settings
3543
+ 2. Model configuration with optimal parameters
3544
+ 3. High-quality training memories for each label
3545
+
3546
+ The process involves:
3547
+ 1. Calling the agent to generate configurations and memories
3548
+ 2. Creating a datasource from the generated memories
3549
+ 3. Creating a memoryset from the datasource
3550
+ 4. Creating a classification model from the memoryset
3551
+ """
3391
3552
  pass
3392
3553
 
3393
3554
  def POST(
@@ -3533,10 +3694,10 @@ class OrcaClient(Client):
3533
3694
  @overload
3534
3695
  def PATCH(
3535
3696
  self,
3536
- path: Literal["/classification_model/{name_or_id}"],
3697
+ path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3537
3698
  *,
3538
- params: PatchClassificationModelByNameOrIdParams,
3539
- json: PredictiveModelUpdate,
3699
+ params: PatchGpuMemorysetByNameOrIdMemoryParams,
3700
+ json: PatchGpuMemorysetByNameOrIdMemoryRequest,
3540
3701
  data: None = None,
3541
3702
  files: None = None,
3542
3703
  content: None = None,
@@ -3547,16 +3708,16 @@ class OrcaClient(Client):
3547
3708
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3548
3709
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3549
3710
  extensions: RequestExtensions | None = None,
3550
- ) -> ClassificationModelMetadata:
3711
+ ) -> LabeledMemory | ScoredMemory:
3551
3712
  pass
3552
3713
 
3553
3714
  @overload
3554
3715
  def PATCH(
3555
3716
  self,
3556
- path: Literal["/regression_model/{name_or_id}"],
3717
+ path: Literal["/gpu/memoryset/{name_or_id}/memories"],
3557
3718
  *,
3558
- params: PatchRegressionModelByNameOrIdParams,
3559
- json: PredictiveModelUpdate,
3719
+ params: PatchGpuMemorysetByNameOrIdMemoriesParams,
3720
+ json: PatchGpuMemorysetByNameOrIdMemoriesRequest,
3560
3721
  data: None = None,
3561
3722
  files: None = None,
3562
3723
  content: None = None,
@@ -3567,16 +3728,16 @@ class OrcaClient(Client):
3567
3728
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3568
3729
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3569
3730
  extensions: RequestExtensions | None = None,
3570
- ) -> RegressionModelMetadata:
3731
+ ) -> list[LabeledMemory] | list[ScoredMemory]:
3571
3732
  pass
3572
3733
 
3573
3734
  @overload
3574
3735
  def PATCH(
3575
3736
  self,
3576
- path: Literal["/telemetry/prediction/{prediction_id}"],
3737
+ path: Literal["/classification_model/{name_or_id}"],
3577
3738
  *,
3578
- params: PatchTelemetryPredictionByPredictionIdParams,
3579
- json: UpdatePredictionRequest,
3739
+ params: PatchClassificationModelByNameOrIdParams,
3740
+ json: PredictiveModelUpdate,
3580
3741
  data: None = None,
3581
3742
  files: None = None,
3582
3743
  content: None = None,
@@ -3587,17 +3748,16 @@ class OrcaClient(Client):
3587
3748
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3588
3749
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3589
3750
  extensions: RequestExtensions | None = None,
3590
- ) -> Any:
3591
- """Update a prediction with new expected values, tags, or memory ID."""
3751
+ ) -> ClassificationModelMetadata:
3592
3752
  pass
3593
3753
 
3594
3754
  @overload
3595
3755
  def PATCH(
3596
3756
  self,
3597
- path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3757
+ path: Literal["/regression_model/{name_or_id}"],
3598
3758
  *,
3599
- params: PatchGpuMemorysetByNameOrIdMemoryParams,
3600
- json: PatchGpuMemorysetByNameOrIdMemoryRequest,
3759
+ params: PatchRegressionModelByNameOrIdParams,
3760
+ json: PredictiveModelUpdate,
3601
3761
  data: None = None,
3602
3762
  files: None = None,
3603
3763
  content: None = None,
@@ -3608,16 +3768,16 @@ class OrcaClient(Client):
3608
3768
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3609
3769
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3610
3770
  extensions: RequestExtensions | None = None,
3611
- ) -> LabeledMemory | ScoredMemory:
3771
+ ) -> RegressionModelMetadata:
3612
3772
  pass
3613
3773
 
3614
3774
  @overload
3615
3775
  def PATCH(
3616
3776
  self,
3617
- path: Literal["/gpu/memoryset/{name_or_id}/memories"],
3777
+ path: Literal["/telemetry/prediction/{prediction_id}"],
3618
3778
  *,
3619
- params: PatchGpuMemorysetByNameOrIdMemoriesParams,
3620
- json: PatchGpuMemorysetByNameOrIdMemoriesRequest,
3779
+ params: PatchTelemetryPredictionByPredictionIdParams,
3780
+ json: UpdatePredictionRequest,
3621
3781
  data: None = None,
3622
3782
  files: None = None,
3623
3783
  content: None = None,
@@ -3628,7 +3788,8 @@ class OrcaClient(Client):
3628
3788
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3629
3789
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3630
3790
  extensions: RequestExtensions | None = None,
3631
- ) -> list[LabeledMemory] | list[ScoredMemory]:
3791
+ ) -> Any:
3792
+ """Update a prediction with new expected values, tags, or memory ID."""
3632
3793
  pass
3633
3794
 
3634
3795
  def PATCH(