orca-sdk 0.1.3__py3-none-any.whl → 0.1.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- orca_sdk/_shared/metrics.py +179 -40
- orca_sdk/_shared/metrics_test.py +99 -6
- orca_sdk/_utils/data_parsing_test.py +1 -1
- orca_sdk/async_client.py +462 -301
- orca_sdk/classification_model.py +156 -41
- orca_sdk/classification_model_test.py +327 -8
- orca_sdk/client.py +462 -301
- orca_sdk/conftest.py +140 -21
- orca_sdk/datasource.py +45 -2
- orca_sdk/datasource_test.py +120 -0
- orca_sdk/embedding_model.py +32 -24
- orca_sdk/job.py +17 -17
- orca_sdk/memoryset.py +459 -56
- orca_sdk/memoryset_test.py +435 -2
- orca_sdk/regression_model.py +110 -19
- orca_sdk/regression_model_test.py +213 -0
- orca_sdk/telemetry.py +52 -13
- {orca_sdk-0.1.3.dist-info → orca_sdk-0.1.5.dist-info}/METADATA +1 -1
- {orca_sdk-0.1.3.dist-info → orca_sdk-0.1.5.dist-info}/RECORD +20 -20
- {orca_sdk-0.1.3.dist-info → orca_sdk-0.1.5.dist-info}/WHEEL +0 -0
orca_sdk/client.py
CHANGED
|
@@ -133,6 +133,10 @@ class ClassificationEvaluationRequest(TypedDict):
|
|
|
133
133
|
datasource_value_column: str
|
|
134
134
|
record_telemetry: NotRequired[bool]
|
|
135
135
|
telemetry_tags: NotRequired[list[str] | None]
|
|
136
|
+
subsample: NotRequired[int | float | None]
|
|
137
|
+
ignore_unlabeled: NotRequired[bool]
|
|
138
|
+
datasource_partition_column: NotRequired[str | None]
|
|
139
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
136
140
|
|
|
137
141
|
|
|
138
142
|
class CleanupResponse(TypedDict):
|
|
@@ -161,6 +165,7 @@ class CountPredictionsRequest(TypedDict):
|
|
|
161
165
|
prediction_ids: NotRequired[list[str] | None]
|
|
162
166
|
start_timestamp: NotRequired[str | None]
|
|
163
167
|
end_timestamp: NotRequired[str | None]
|
|
168
|
+
memory_id: NotRequired[str | None]
|
|
164
169
|
|
|
165
170
|
|
|
166
171
|
class CreateApiKeyRequest(TypedDict):
|
|
@@ -191,6 +196,12 @@ class CreateOrgPlanRequest(TypedDict):
|
|
|
191
196
|
tier: Literal["FREE", "PRO", "ENTERPRISE", "CANCELLED"]
|
|
192
197
|
|
|
193
198
|
|
|
199
|
+
class DatasetFilterItem(TypedDict):
|
|
200
|
+
field: str
|
|
201
|
+
op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
|
|
202
|
+
value: Any
|
|
203
|
+
|
|
204
|
+
|
|
194
205
|
class DeleteMemoriesRequest(TypedDict):
|
|
195
206
|
memory_ids: list[str]
|
|
196
207
|
|
|
@@ -208,7 +219,7 @@ class EmbedRequest(TypedDict):
|
|
|
208
219
|
class EmbeddingEvaluationRequest(TypedDict):
|
|
209
220
|
datasource_name_or_id: str
|
|
210
221
|
eval_datasource_name_or_id: NotRequired[str | None]
|
|
211
|
-
subsample: NotRequired[int | None]
|
|
222
|
+
subsample: NotRequired[int | float | None]
|
|
212
223
|
datasource_value_column: NotRequired[str]
|
|
213
224
|
datasource_label_column: NotRequired[str | None]
|
|
214
225
|
datasource_score_column: NotRequired[str | None]
|
|
@@ -217,7 +228,7 @@ class EmbeddingEvaluationRequest(TypedDict):
|
|
|
217
228
|
weigh_memories: NotRequired[bool]
|
|
218
229
|
|
|
219
230
|
|
|
220
|
-
EmbeddingFinetuningMethod = Literal["classification", "batch_triplet_loss"]
|
|
231
|
+
EmbeddingFinetuningMethod = Literal["classification", "regression", "batch_triplet_loss"]
|
|
221
232
|
|
|
222
233
|
|
|
223
234
|
class FeedbackMetrics(TypedDict):
|
|
@@ -231,7 +242,19 @@ FeedbackType = Literal["CONTINUOUS", "BINARY"]
|
|
|
231
242
|
class FilterItem(TypedDict):
|
|
232
243
|
field: list
|
|
233
244
|
op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
|
|
234
|
-
value: str | int | float | bool | list[str] | list[int] | list[float] | list[bool] | None
|
|
245
|
+
value: str | int | float | bool | list[str | None] | list[int] | list[float] | list[bool] | None
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
class GetDatasourceRowCountRequest(TypedDict):
|
|
249
|
+
filters: NotRequired[list[DatasetFilterItem]]
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
class GetDatasourceRowsRequest(TypedDict):
|
|
253
|
+
filters: NotRequired[list[DatasetFilterItem]]
|
|
254
|
+
limit: NotRequired[int]
|
|
255
|
+
offset: NotRequired[int]
|
|
256
|
+
shuffle: NotRequired[bool]
|
|
257
|
+
shuffle_seed: NotRequired[int | None]
|
|
235
258
|
|
|
236
259
|
|
|
237
260
|
class GetMemoriesRequest(TypedDict):
|
|
@@ -252,6 +275,18 @@ class InternalServerErrorResponse(TypedDict):
|
|
|
252
275
|
request_id: str
|
|
253
276
|
|
|
254
277
|
|
|
278
|
+
JobStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
class JobStatusInfo(TypedDict):
|
|
282
|
+
status: JobStatus
|
|
283
|
+
steps_total: int | None
|
|
284
|
+
steps_completed: int | None
|
|
285
|
+
exception: str | None
|
|
286
|
+
updated_at: str
|
|
287
|
+
created_at: str
|
|
288
|
+
|
|
289
|
+
|
|
255
290
|
class LabelClassMetrics(TypedDict):
|
|
256
291
|
label: int | None
|
|
257
292
|
label_name: NotRequired[str | None]
|
|
@@ -274,6 +309,7 @@ class LabeledMemoryInsert(TypedDict):
|
|
|
274
309
|
value: str | bytes
|
|
275
310
|
metadata: NotRequired[dict[str, str | int | float | bool | None]]
|
|
276
311
|
source_id: NotRequired[str | None]
|
|
312
|
+
partition_id: NotRequired[str | None]
|
|
277
313
|
label: int | None
|
|
278
314
|
|
|
279
315
|
|
|
@@ -281,12 +317,16 @@ class ListMemoriesRequest(TypedDict):
|
|
|
281
317
|
offset: NotRequired[int]
|
|
282
318
|
limit: NotRequired[int]
|
|
283
319
|
filters: NotRequired[list[FilterItem]]
|
|
320
|
+
partition_id: NotRequired[str | None]
|
|
321
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
284
322
|
|
|
285
323
|
|
|
286
324
|
class LookupRequest(TypedDict):
|
|
287
325
|
query: list[str]
|
|
288
326
|
count: NotRequired[int]
|
|
289
327
|
prompt: NotRequired[str | None]
|
|
328
|
+
partition_id: NotRequired[str | list[str | None] | None]
|
|
329
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
290
330
|
|
|
291
331
|
|
|
292
332
|
class LookupScoreMetrics(TypedDict):
|
|
@@ -338,8 +378,6 @@ class MemorysetClassPatternsMetrics(TypedDict):
|
|
|
338
378
|
class MemorysetClusterAnalysisConfig(TypedDict):
|
|
339
379
|
min_cluster_size: NotRequired[int | None]
|
|
340
380
|
max_cluster_size: NotRequired[int | None]
|
|
341
|
-
clustering_method: NotRequired[Literal["density", "graph"]]
|
|
342
|
-
min_cluster_distance: NotRequired[float]
|
|
343
381
|
partitioning_method: NotRequired[Literal["ng", "rb", "cpm"]]
|
|
344
382
|
resolution: NotRequired[float | None]
|
|
345
383
|
num_iterations: NotRequired[int]
|
|
@@ -368,6 +406,7 @@ class MemorysetConceptAnalysisConfig(TypedDict):
|
|
|
368
406
|
use_generative_naming: NotRequired[bool]
|
|
369
407
|
naming_examples_count: NotRequired[int]
|
|
370
408
|
naming_counterexample_count: NotRequired[int]
|
|
409
|
+
primary_label_pct_threshold: NotRequired[float]
|
|
371
410
|
seed: NotRequired[int]
|
|
372
411
|
|
|
373
412
|
|
|
@@ -437,7 +476,7 @@ class NotFoundErrorResponse(TypedDict):
|
|
|
437
476
|
"memory",
|
|
438
477
|
"evaluation",
|
|
439
478
|
"analysis",
|
|
440
|
-
"
|
|
479
|
+
"job",
|
|
441
480
|
"pretrained_embedding_model",
|
|
442
481
|
"finetuned_embedding_model",
|
|
443
482
|
"feedback_category",
|
|
@@ -551,6 +590,10 @@ class RegressionEvaluationRequest(TypedDict):
|
|
|
551
590
|
datasource_value_column: str
|
|
552
591
|
record_telemetry: NotRequired[bool]
|
|
553
592
|
telemetry_tags: NotRequired[list[str] | None]
|
|
593
|
+
subsample: NotRequired[int | float | None]
|
|
594
|
+
ignore_unlabeled: NotRequired[bool]
|
|
595
|
+
datasource_partition_column: NotRequired[str | None]
|
|
596
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
554
597
|
|
|
555
598
|
|
|
556
599
|
class RegressionMetrics(TypedDict):
|
|
@@ -593,12 +636,16 @@ class RegressionPredictionRequest(TypedDict):
|
|
|
593
636
|
prompt: NotRequired[str | None]
|
|
594
637
|
use_lookup_cache: NotRequired[bool]
|
|
595
638
|
consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
|
|
639
|
+
ignore_unlabeled: NotRequired[bool]
|
|
640
|
+
partition_ids: NotRequired[str | list[str | None] | None]
|
|
641
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
596
642
|
|
|
597
643
|
|
|
598
644
|
class ScorePredictionMemoryLookup(TypedDict):
|
|
599
645
|
value: str | bytes
|
|
600
646
|
embedding: list[float]
|
|
601
647
|
source_id: str | None
|
|
648
|
+
partition_id: str | None
|
|
602
649
|
metadata: dict[str, str | int | float | bool | None]
|
|
603
650
|
memory_id: str
|
|
604
651
|
memory_version: int
|
|
@@ -636,6 +683,7 @@ class ScoredMemory(TypedDict):
|
|
|
636
683
|
value: str | bytes
|
|
637
684
|
embedding: list[float]
|
|
638
685
|
source_id: str | None
|
|
686
|
+
partition_id: str | None
|
|
639
687
|
metadata: dict[str, str | int | float | bool | None]
|
|
640
688
|
memory_id: str
|
|
641
689
|
memory_version: int
|
|
@@ -651,6 +699,7 @@ class ScoredMemoryInsert(TypedDict):
|
|
|
651
699
|
value: str | bytes
|
|
652
700
|
metadata: NotRequired[dict[str, str | int | float | bool | None]]
|
|
653
701
|
source_id: NotRequired[str | None]
|
|
702
|
+
partition_id: NotRequired[str | None]
|
|
654
703
|
score: float | None
|
|
655
704
|
|
|
656
705
|
|
|
@@ -658,6 +707,7 @@ class ScoredMemoryLookup(TypedDict):
|
|
|
658
707
|
value: str | bytes
|
|
659
708
|
embedding: list[float]
|
|
660
709
|
source_id: str | None
|
|
710
|
+
partition_id: str | None
|
|
661
711
|
metadata: dict[str, str | int | float | bool | None]
|
|
662
712
|
memory_id: str
|
|
663
713
|
memory_version: int
|
|
@@ -674,6 +724,7 @@ class ScoredMemoryUpdate(TypedDict):
|
|
|
674
724
|
value: NotRequired[str | bytes]
|
|
675
725
|
metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
|
|
676
726
|
source_id: NotRequired[str | None]
|
|
727
|
+
partition_id: NotRequired[str | None]
|
|
677
728
|
metrics: NotRequired[MemoryMetrics | None]
|
|
678
729
|
score: NotRequired[float | None]
|
|
679
730
|
|
|
@@ -682,6 +733,7 @@ class ScoredMemoryWithFeedbackMetrics(TypedDict):
|
|
|
682
733
|
value: str | bytes
|
|
683
734
|
embedding: list[float]
|
|
684
735
|
source_id: str | None
|
|
736
|
+
partition_id: str | None
|
|
685
737
|
metadata: dict[str, str | int | float | bool | None]
|
|
686
738
|
memory_id: str
|
|
687
739
|
memory_version: int
|
|
@@ -707,18 +759,6 @@ class SubConceptMetrics(TypedDict):
|
|
|
707
759
|
memory_count: int
|
|
708
760
|
|
|
709
761
|
|
|
710
|
-
TaskStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
|
|
711
|
-
|
|
712
|
-
|
|
713
|
-
class TaskStatusInfo(TypedDict):
|
|
714
|
-
status: TaskStatus
|
|
715
|
-
steps_total: int | None
|
|
716
|
-
steps_completed: int | None
|
|
717
|
-
exception: str | None
|
|
718
|
-
updated_at: str
|
|
719
|
-
created_at: str
|
|
720
|
-
|
|
721
|
-
|
|
722
762
|
TelemetryField = list
|
|
723
763
|
|
|
724
764
|
|
|
@@ -791,6 +831,10 @@ class DeleteMemorysetByNameOrIdParams(TypedDict):
|
|
|
791
831
|
name_or_id: str
|
|
792
832
|
|
|
793
833
|
|
|
834
|
+
class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
|
|
835
|
+
name_or_id: str
|
|
836
|
+
|
|
837
|
+
|
|
794
838
|
class GetMemorysetByNameOrIdMemoryByMemoryIdParams(TypedDict):
|
|
795
839
|
name_or_id: str
|
|
796
840
|
memory_id: str
|
|
@@ -823,20 +867,35 @@ class PostMemorysetByNameOrIdMemoriesDeleteParams(TypedDict):
|
|
|
823
867
|
name_or_id: str
|
|
824
868
|
|
|
825
869
|
|
|
870
|
+
class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
|
|
871
|
+
name_or_id: str
|
|
872
|
+
|
|
873
|
+
|
|
874
|
+
class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
|
|
875
|
+
name_or_id: str
|
|
876
|
+
|
|
877
|
+
|
|
878
|
+
PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
|
|
879
|
+
|
|
880
|
+
|
|
881
|
+
class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
|
|
882
|
+
name_or_id: str
|
|
883
|
+
|
|
884
|
+
|
|
826
885
|
class PostMemorysetByNameOrIdAnalysisParams(TypedDict):
|
|
827
886
|
name_or_id: str
|
|
828
887
|
|
|
829
888
|
|
|
830
889
|
class GetMemorysetByNameOrIdAnalysisParams(TypedDict):
|
|
831
890
|
name_or_id: str
|
|
832
|
-
status: NotRequired[
|
|
891
|
+
status: NotRequired[JobStatus | None]
|
|
833
892
|
limit: NotRequired[int | None]
|
|
834
893
|
offset: NotRequired[int | None]
|
|
835
894
|
|
|
836
895
|
|
|
837
|
-
class
|
|
896
|
+
class GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams(TypedDict):
|
|
838
897
|
name_or_id: str
|
|
839
|
-
|
|
898
|
+
analysis_job_id: str
|
|
840
899
|
|
|
841
900
|
|
|
842
901
|
class PostMemorysetByNameOrIdMemoryByMemoryIdCascadingEditsParams(TypedDict):
|
|
@@ -852,34 +911,42 @@ class DeleteFinetunedEmbeddingModelByNameOrIdParams(TypedDict):
|
|
|
852
911
|
name_or_id: str
|
|
853
912
|
|
|
854
913
|
|
|
855
|
-
class
|
|
914
|
+
class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
|
|
856
915
|
name_or_id: str
|
|
857
916
|
|
|
858
917
|
|
|
859
|
-
class
|
|
860
|
-
|
|
861
|
-
task_id: str
|
|
918
|
+
class GetPretrainedEmbeddingModelByModelNameParams(TypedDict):
|
|
919
|
+
model_name: PretrainedEmbeddingModelName
|
|
862
920
|
|
|
863
921
|
|
|
864
|
-
class
|
|
865
|
-
|
|
866
|
-
datasource: NotRequired[str | None]
|
|
867
|
-
value_column: NotRequired[str | None]
|
|
868
|
-
label_column: NotRequired[str | None]
|
|
869
|
-
score_column: NotRequired[str | None]
|
|
922
|
+
class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
|
|
923
|
+
model_name: PretrainedEmbeddingModelName
|
|
870
924
|
|
|
871
925
|
|
|
872
|
-
class
|
|
873
|
-
|
|
926
|
+
class PostFinetunedEmbeddingModelByNameOrIdEvaluationParams(TypedDict):
|
|
927
|
+
name_or_id: str
|
|
874
928
|
|
|
875
929
|
|
|
876
930
|
class PostPretrainedEmbeddingModelByModelNameEvaluationParams(TypedDict):
|
|
877
931
|
model_name: PretrainedEmbeddingModelName
|
|
878
932
|
|
|
879
933
|
|
|
880
|
-
class
|
|
934
|
+
class GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams(TypedDict):
|
|
935
|
+
name_or_id: str
|
|
936
|
+
job_id: str
|
|
937
|
+
|
|
938
|
+
|
|
939
|
+
class GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams(TypedDict):
|
|
881
940
|
model_name: PretrainedEmbeddingModelName
|
|
882
|
-
|
|
941
|
+
job_id: str
|
|
942
|
+
|
|
943
|
+
|
|
944
|
+
class GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams(TypedDict):
|
|
945
|
+
name_or_id: str
|
|
946
|
+
datasource: NotRequired[str | None]
|
|
947
|
+
value_column: NotRequired[str | None]
|
|
948
|
+
label_column: NotRequired[str | None]
|
|
949
|
+
score_column: NotRequired[str | None]
|
|
883
950
|
|
|
884
951
|
|
|
885
952
|
class GetPretrainedEmbeddingModelByModelNameEvaluationsParams(TypedDict):
|
|
@@ -909,6 +976,14 @@ class DeleteDatasourceByNameOrIdParams(TypedDict):
|
|
|
909
976
|
name_or_id: str
|
|
910
977
|
|
|
911
978
|
|
|
979
|
+
class PostDatasourceByNameOrIdRowsParams(TypedDict):
|
|
980
|
+
name_or_id: str
|
|
981
|
+
|
|
982
|
+
|
|
983
|
+
class PostDatasourceByNameOrIdRowsCountParams(TypedDict):
|
|
984
|
+
name_or_id: str
|
|
985
|
+
|
|
986
|
+
|
|
912
987
|
class GetDatasourceByNameOrIdEmbeddingModelEvaluationsParams(TypedDict):
|
|
913
988
|
name_or_id: str
|
|
914
989
|
value_column: NotRequired[str | None]
|
|
@@ -939,36 +1014,42 @@ class DeleteClassificationModelByNameOrIdParams(TypedDict):
|
|
|
939
1014
|
name_or_id: str
|
|
940
1015
|
|
|
941
1016
|
|
|
942
|
-
class
|
|
943
|
-
|
|
1017
|
+
class PatchRegressionModelByNameOrIdParams(TypedDict):
|
|
1018
|
+
name_or_id: str
|
|
944
1019
|
|
|
945
1020
|
|
|
946
|
-
class
|
|
947
|
-
|
|
1021
|
+
class GetRegressionModelByNameOrIdParams(TypedDict):
|
|
1022
|
+
name_or_id: str
|
|
948
1023
|
|
|
949
1024
|
|
|
950
|
-
class
|
|
951
|
-
|
|
952
|
-
task_id: str
|
|
1025
|
+
class DeleteRegressionModelByNameOrIdParams(TypedDict):
|
|
1026
|
+
name_or_id: str
|
|
953
1027
|
|
|
954
1028
|
|
|
955
|
-
class
|
|
956
|
-
|
|
957
|
-
task_id: str
|
|
1029
|
+
class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
|
|
1030
|
+
name_or_id: str
|
|
958
1031
|
|
|
959
1032
|
|
|
960
|
-
class
|
|
1033
|
+
class PostClassificationModelByNameOrIdPredictionParams(TypedDict):
|
|
961
1034
|
name_or_id: str
|
|
962
1035
|
|
|
963
1036
|
|
|
964
|
-
class
|
|
1037
|
+
class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
|
|
965
1038
|
name_or_id: str
|
|
966
1039
|
|
|
967
1040
|
|
|
968
|
-
class
|
|
1041
|
+
class PostRegressionModelByNameOrIdPredictionParams(TypedDict):
|
|
969
1042
|
name_or_id: str
|
|
970
1043
|
|
|
971
1044
|
|
|
1045
|
+
class PostClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
|
|
1046
|
+
model_name_or_id: str
|
|
1047
|
+
|
|
1048
|
+
|
|
1049
|
+
class GetClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
|
|
1050
|
+
model_name_or_id: str
|
|
1051
|
+
|
|
1052
|
+
|
|
972
1053
|
class PostRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
|
|
973
1054
|
model_name_or_id: str
|
|
974
1055
|
|
|
@@ -977,26 +1058,36 @@ class GetRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
|
|
|
977
1058
|
model_name_or_id: str
|
|
978
1059
|
|
|
979
1060
|
|
|
980
|
-
class
|
|
1061
|
+
class GetClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
|
|
981
1062
|
model_name_or_id: str
|
|
982
|
-
|
|
1063
|
+
job_id: str
|
|
983
1064
|
|
|
984
1065
|
|
|
985
|
-
class
|
|
1066
|
+
class DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
|
|
986
1067
|
model_name_or_id: str
|
|
987
|
-
|
|
1068
|
+
job_id: str
|
|
988
1069
|
|
|
989
1070
|
|
|
990
|
-
class
|
|
991
|
-
|
|
1071
|
+
class GetRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
|
|
1072
|
+
model_name_or_id: str
|
|
1073
|
+
job_id: str
|
|
992
1074
|
|
|
993
1075
|
|
|
994
|
-
class
|
|
995
|
-
|
|
1076
|
+
class DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
|
|
1077
|
+
model_name_or_id: str
|
|
1078
|
+
job_id: str
|
|
1079
|
+
|
|
1080
|
+
|
|
1081
|
+
class GetJobByJobIdParams(TypedDict):
|
|
1082
|
+
job_id: str
|
|
1083
|
+
|
|
996
1084
|
|
|
1085
|
+
class GetJobByJobIdStatusParams(TypedDict):
|
|
1086
|
+
job_id: str
|
|
997
1087
|
|
|
998
|
-
|
|
999
|
-
|
|
1088
|
+
|
|
1089
|
+
class GetJobParams(TypedDict):
|
|
1090
|
+
status: NotRequired[JobStatus | list[JobStatus] | None]
|
|
1000
1091
|
type: NotRequired[str | list[str] | None]
|
|
1001
1092
|
limit: NotRequired[int | None]
|
|
1002
1093
|
offset: NotRequired[int]
|
|
@@ -1004,8 +1095,8 @@ class GetTaskParams(TypedDict):
|
|
|
1004
1095
|
end_timestamp: NotRequired[str | None]
|
|
1005
1096
|
|
|
1006
1097
|
|
|
1007
|
-
class
|
|
1008
|
-
|
|
1098
|
+
class DeleteJobByJobIdAbortParams(TypedDict):
|
|
1099
|
+
job_id: str
|
|
1009
1100
|
|
|
1010
1101
|
|
|
1011
1102
|
class GetWorkerParams(TypedDict):
|
|
@@ -1061,43 +1152,8 @@ class DeleteTelemetryFeedbackCategoryByNameOrIdParams(TypedDict):
|
|
|
1061
1152
|
PutTelemetryPredictionFeedbackRequest = list[PredictionFeedbackRequest]
|
|
1062
1153
|
|
|
1063
1154
|
|
|
1064
|
-
class
|
|
1065
|
-
|
|
1066
|
-
|
|
1067
|
-
|
|
1068
|
-
class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
|
|
1069
|
-
name_or_id: str
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
|
|
1073
|
-
name_or_id: str
|
|
1074
|
-
|
|
1075
|
-
|
|
1076
|
-
class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
|
|
1077
|
-
name_or_id: str
|
|
1078
|
-
|
|
1079
|
-
|
|
1080
|
-
PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
|
|
1081
|
-
|
|
1082
|
-
|
|
1083
|
-
class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
|
|
1084
|
-
name_or_id: str
|
|
1085
|
-
|
|
1086
|
-
|
|
1087
|
-
class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
|
|
1088
|
-
name_or_id: str
|
|
1089
|
-
|
|
1090
|
-
|
|
1091
|
-
class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
|
|
1092
|
-
name_or_id: str
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
|
-
class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
|
|
1096
|
-
name_or_id: str
|
|
1097
|
-
|
|
1098
|
-
|
|
1099
|
-
class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
|
|
1100
|
-
model_name: PretrainedEmbeddingModelName
|
|
1155
|
+
class GetAgentsBootstrapClassificationModelByJobIdParams(TypedDict):
|
|
1156
|
+
job_id: str
|
|
1101
1157
|
|
|
1102
1158
|
|
|
1103
1159
|
class FieldValidationError(TypedDict):
|
|
@@ -1169,6 +1225,9 @@ class ClassificationPredictionRequest(TypedDict):
|
|
|
1169
1225
|
prompt: NotRequired[str | None]
|
|
1170
1226
|
use_lookup_cache: NotRequired[bool]
|
|
1171
1227
|
consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
|
|
1228
|
+
ignore_unlabeled: NotRequired[bool]
|
|
1229
|
+
partition_ids: NotRequired[str | list[str | None] | None]
|
|
1230
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
1172
1231
|
|
|
1173
1232
|
|
|
1174
1233
|
class CloneMemorysetRequest(TypedDict):
|
|
@@ -1185,6 +1244,7 @@ class ColumnInfo(TypedDict):
|
|
|
1185
1244
|
name: str
|
|
1186
1245
|
type: ColumnType
|
|
1187
1246
|
enum_options: NotRequired[list[str] | None]
|
|
1247
|
+
string_values: NotRequired[list[str] | None]
|
|
1188
1248
|
int_values: NotRequired[list[int] | None]
|
|
1189
1249
|
contains_nones: NotRequired[bool]
|
|
1190
1250
|
|
|
@@ -1221,6 +1281,7 @@ class CreateMemorysetRequest(TypedDict):
|
|
|
1221
1281
|
datasource_score_column: NotRequired[str | None]
|
|
1222
1282
|
datasource_value_column: str
|
|
1223
1283
|
datasource_source_id_column: NotRequired[str | None]
|
|
1284
|
+
datasource_partition_id_column: NotRequired[str | None]
|
|
1224
1285
|
remove_duplicates: NotRequired[bool]
|
|
1225
1286
|
pretrained_embedding_model_name: NotRequired[PretrainedEmbeddingModelName | None]
|
|
1226
1287
|
finetuned_embedding_model_name_or_id: NotRequired[str | None]
|
|
@@ -1231,6 +1292,8 @@ class CreateMemorysetRequest(TypedDict):
|
|
|
1231
1292
|
prompt: NotRequired[str]
|
|
1232
1293
|
hidden: NotRequired[bool]
|
|
1233
1294
|
batch_size: NotRequired[int]
|
|
1295
|
+
subsample: NotRequired[int | float | None]
|
|
1296
|
+
memory_type: NotRequired[MemoryType]
|
|
1234
1297
|
|
|
1235
1298
|
|
|
1236
1299
|
class CreateRegressionModelRequest(TypedDict):
|
|
@@ -1255,48 +1318,52 @@ class DatasourceMetadata(TypedDict):
|
|
|
1255
1318
|
|
|
1256
1319
|
|
|
1257
1320
|
class EmbeddingEvaluationResponse(TypedDict):
|
|
1258
|
-
|
|
1321
|
+
job_id: str
|
|
1259
1322
|
org_id: str
|
|
1260
1323
|
finetuned_embedding_model_id: str | None
|
|
1261
1324
|
pretrained_embedding_model_name: PretrainedEmbeddingModelName | None
|
|
1262
1325
|
datasource_id: str
|
|
1263
|
-
subsample: int | None
|
|
1326
|
+
subsample: int | float | None
|
|
1264
1327
|
datasource_value_column: str
|
|
1265
1328
|
datasource_label_column: NotRequired[str | None]
|
|
1266
1329
|
datasource_score_column: NotRequired[str | None]
|
|
1267
1330
|
neighbor_count: int
|
|
1268
1331
|
weigh_memories: bool
|
|
1269
|
-
status:
|
|
1332
|
+
status: JobStatus
|
|
1270
1333
|
result: ClassificationMetrics | RegressionMetrics | None
|
|
1271
1334
|
created_at: str
|
|
1272
1335
|
updated_at: str
|
|
1336
|
+
task_id: str
|
|
1273
1337
|
|
|
1274
1338
|
|
|
1275
1339
|
class EvaluationResponse(TypedDict):
|
|
1276
|
-
|
|
1340
|
+
job_id: str
|
|
1277
1341
|
org_id: str
|
|
1278
|
-
status:
|
|
1342
|
+
status: JobStatus
|
|
1279
1343
|
result: ClassificationMetrics | RegressionMetrics | None
|
|
1280
1344
|
created_at: str
|
|
1281
1345
|
updated_at: str
|
|
1346
|
+
task_id: str
|
|
1282
1347
|
|
|
1283
1348
|
|
|
1284
1349
|
class EvaluationResponseClassificationMetrics(TypedDict):
|
|
1285
|
-
|
|
1350
|
+
job_id: str
|
|
1286
1351
|
org_id: str
|
|
1287
|
-
status:
|
|
1352
|
+
status: JobStatus
|
|
1288
1353
|
result: ClassificationMetrics | None
|
|
1289
1354
|
created_at: str
|
|
1290
1355
|
updated_at: str
|
|
1356
|
+
task_id: str
|
|
1291
1357
|
|
|
1292
1358
|
|
|
1293
1359
|
class EvaluationResponseRegressionMetrics(TypedDict):
|
|
1294
|
-
|
|
1360
|
+
job_id: str
|
|
1295
1361
|
org_id: str
|
|
1296
|
-
status:
|
|
1362
|
+
status: JobStatus
|
|
1297
1363
|
result: RegressionMetrics | None
|
|
1298
1364
|
created_at: str
|
|
1299
1365
|
updated_at: str
|
|
1366
|
+
task_id: str
|
|
1300
1367
|
|
|
1301
1368
|
|
|
1302
1369
|
class FinetuneEmbeddingModelRequest(TypedDict):
|
|
@@ -1305,7 +1372,8 @@ class FinetuneEmbeddingModelRequest(TypedDict):
|
|
|
1305
1372
|
train_memoryset_name_or_id: NotRequired[str | None]
|
|
1306
1373
|
train_datasource_name_or_id: NotRequired[str | None]
|
|
1307
1374
|
eval_datasource_name_or_id: NotRequired[str | None]
|
|
1308
|
-
label_column: NotRequired[str]
|
|
1375
|
+
label_column: NotRequired[str | None]
|
|
1376
|
+
score_column: NotRequired[str | None]
|
|
1309
1377
|
value_column: NotRequired[str]
|
|
1310
1378
|
training_method: NotRequired[EmbeddingFinetuningMethod]
|
|
1311
1379
|
training_args: NotRequired[dict[str, str | int | float | bool]]
|
|
@@ -1322,8 +1390,9 @@ class FinetunedEmbeddingModelMetadata(TypedDict):
|
|
|
1322
1390
|
created_at: str
|
|
1323
1391
|
updated_at: str
|
|
1324
1392
|
base_model: PretrainedEmbeddingModelName
|
|
1393
|
+
finetuning_job_id: str
|
|
1394
|
+
finetuning_status: JobStatus
|
|
1325
1395
|
finetuning_task_id: str
|
|
1326
|
-
finetuning_status: TaskStatus
|
|
1327
1396
|
|
|
1328
1397
|
|
|
1329
1398
|
class HTTPValidationError(TypedDict):
|
|
@@ -1335,10 +1404,28 @@ class InvalidInputErrorResponse(TypedDict):
|
|
|
1335
1404
|
validation_issues: list[FieldValidationError]
|
|
1336
1405
|
|
|
1337
1406
|
|
|
1407
|
+
class Job(TypedDict):
|
|
1408
|
+
status: JobStatus
|
|
1409
|
+
steps_total: int | None
|
|
1410
|
+
steps_completed: int | None
|
|
1411
|
+
exception: str | None
|
|
1412
|
+
updated_at: str
|
|
1413
|
+
created_at: str
|
|
1414
|
+
id: str
|
|
1415
|
+
org_id: str
|
|
1416
|
+
worker_id: str | None
|
|
1417
|
+
type: str
|
|
1418
|
+
payload: BaseModel
|
|
1419
|
+
result: BaseModel | None
|
|
1420
|
+
depends_on: NotRequired[list[str]]
|
|
1421
|
+
lease_token: str | None
|
|
1422
|
+
|
|
1423
|
+
|
|
1338
1424
|
class LabelPredictionMemoryLookup(TypedDict):
|
|
1339
1425
|
value: str | bytes
|
|
1340
1426
|
embedding: list[float]
|
|
1341
1427
|
source_id: str | None
|
|
1428
|
+
partition_id: str | None
|
|
1342
1429
|
metadata: dict[str, str | int | float | bool | None]
|
|
1343
1430
|
memory_id: str
|
|
1344
1431
|
memory_version: int
|
|
@@ -1380,6 +1467,7 @@ class LabeledMemory(TypedDict):
|
|
|
1380
1467
|
value: str | bytes
|
|
1381
1468
|
embedding: list[float]
|
|
1382
1469
|
source_id: str | None
|
|
1470
|
+
partition_id: str | None
|
|
1383
1471
|
metadata: dict[str, str | int | float | bool | None]
|
|
1384
1472
|
memory_id: str
|
|
1385
1473
|
memory_version: int
|
|
@@ -1395,6 +1483,7 @@ class LabeledMemoryLookup(TypedDict):
|
|
|
1395
1483
|
value: str | bytes
|
|
1396
1484
|
embedding: list[float]
|
|
1397
1485
|
source_id: str | None
|
|
1486
|
+
partition_id: str | None
|
|
1398
1487
|
metadata: dict[str, str | int | float | bool | None]
|
|
1399
1488
|
memory_id: str
|
|
1400
1489
|
memory_version: int
|
|
@@ -1412,6 +1501,7 @@ class LabeledMemoryUpdate(TypedDict):
|
|
|
1412
1501
|
value: NotRequired[str | bytes]
|
|
1413
1502
|
metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
|
|
1414
1503
|
source_id: NotRequired[str | None]
|
|
1504
|
+
partition_id: NotRequired[str | None]
|
|
1415
1505
|
metrics: NotRequired[MemoryMetrics | None]
|
|
1416
1506
|
label: NotRequired[int | None]
|
|
1417
1507
|
|
|
@@ -1420,6 +1510,7 @@ class LabeledMemoryWithFeedbackMetrics(TypedDict):
|
|
|
1420
1510
|
value: str | bytes
|
|
1421
1511
|
embedding: list[float]
|
|
1422
1512
|
source_id: str | None
|
|
1513
|
+
partition_id: str | None
|
|
1423
1514
|
metadata: dict[str, str | int | float | bool | None]
|
|
1424
1515
|
memory_id: str
|
|
1425
1516
|
memory_version: int
|
|
@@ -1439,7 +1530,8 @@ class ListPredictionsRequest(TypedDict):
|
|
|
1439
1530
|
prediction_ids: NotRequired[list[str] | None]
|
|
1440
1531
|
start_timestamp: NotRequired[str | None]
|
|
1441
1532
|
end_timestamp: NotRequired[str | None]
|
|
1442
|
-
|
|
1533
|
+
memory_id: NotRequired[str | None]
|
|
1534
|
+
limit: NotRequired[int]
|
|
1443
1535
|
offset: NotRequired[int | None]
|
|
1444
1536
|
sort: NotRequired[PredictionSort]
|
|
1445
1537
|
expected_label_match: NotRequired[bool | None]
|
|
@@ -1460,6 +1552,7 @@ class MemorysetAnalysisRequest(TypedDict):
|
|
|
1460
1552
|
batch_size: NotRequired[int]
|
|
1461
1553
|
clear_metrics: NotRequired[bool]
|
|
1462
1554
|
configs: MemorysetAnalysisConfigs
|
|
1555
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
1463
1556
|
|
|
1464
1557
|
|
|
1465
1558
|
class MemorysetConceptMetrics(TypedDict):
|
|
@@ -1478,6 +1571,13 @@ class MemorysetMetrics(TypedDict):
|
|
|
1478
1571
|
concepts: NotRequired[MemorysetConceptMetrics | None]
|
|
1479
1572
|
|
|
1480
1573
|
|
|
1574
|
+
class PaginatedJob(TypedDict):
|
|
1575
|
+
items: list[Job]
|
|
1576
|
+
total: int
|
|
1577
|
+
offset: int
|
|
1578
|
+
limit: int
|
|
1579
|
+
|
|
1580
|
+
|
|
1481
1581
|
class PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics(TypedDict):
|
|
1482
1582
|
items: list[LabeledMemoryWithFeedbackMetrics | ScoredMemoryWithFeedbackMetrics]
|
|
1483
1583
|
total: int
|
|
@@ -1495,23 +1595,6 @@ class PretrainedEmbeddingModelMetadata(TypedDict):
|
|
|
1495
1595
|
num_params: int
|
|
1496
1596
|
|
|
1497
1597
|
|
|
1498
|
-
class Task(TypedDict):
|
|
1499
|
-
status: TaskStatus
|
|
1500
|
-
steps_total: int | None
|
|
1501
|
-
steps_completed: int | None
|
|
1502
|
-
exception: str | None
|
|
1503
|
-
updated_at: str
|
|
1504
|
-
created_at: str
|
|
1505
|
-
id: str
|
|
1506
|
-
org_id: str
|
|
1507
|
-
worker_id: str | None
|
|
1508
|
-
type: str
|
|
1509
|
-
payload: BaseModel
|
|
1510
|
-
result: BaseModel | None
|
|
1511
|
-
depends_on: list[str]
|
|
1512
|
-
lease_token: str | None
|
|
1513
|
-
|
|
1514
|
-
|
|
1515
1598
|
class TelemetryMemoriesRequest(TypedDict):
|
|
1516
1599
|
memoryset_id: str
|
|
1517
1600
|
offset: NotRequired[int]
|
|
@@ -1543,10 +1626,10 @@ class CascadingEditSuggestion(TypedDict):
|
|
|
1543
1626
|
|
|
1544
1627
|
|
|
1545
1628
|
class MemorysetAnalysisResponse(TypedDict):
|
|
1546
|
-
|
|
1629
|
+
job_id: str
|
|
1547
1630
|
org_id: str
|
|
1548
1631
|
memoryset_id: str
|
|
1549
|
-
status:
|
|
1632
|
+
status: JobStatus
|
|
1550
1633
|
lookup_count: int
|
|
1551
1634
|
batch_size: int
|
|
1552
1635
|
clear_metrics: bool
|
|
@@ -1554,6 +1637,7 @@ class MemorysetAnalysisResponse(TypedDict):
|
|
|
1554
1637
|
results: MemorysetMetrics | None
|
|
1555
1638
|
created_at: str
|
|
1556
1639
|
updated_at: str
|
|
1640
|
+
task_id: str
|
|
1557
1641
|
|
|
1558
1642
|
|
|
1559
1643
|
class MemorysetMetadata(TypedDict):
|
|
@@ -1569,8 +1653,8 @@ class MemorysetMetadata(TypedDict):
|
|
|
1569
1653
|
created_at: str
|
|
1570
1654
|
updated_at: str
|
|
1571
1655
|
memories_updated_at: str
|
|
1572
|
-
|
|
1573
|
-
insertion_status:
|
|
1656
|
+
insertion_job_id: str
|
|
1657
|
+
insertion_status: JobStatus
|
|
1574
1658
|
metrics: MemorysetMetrics
|
|
1575
1659
|
memory_type: MemoryType
|
|
1576
1660
|
label_names: list[str] | None
|
|
@@ -1580,13 +1664,7 @@ class MemorysetMetadata(TypedDict):
|
|
|
1580
1664
|
document_prompt_override: str | None
|
|
1581
1665
|
query_prompt_override: str | None
|
|
1582
1666
|
hidden: bool
|
|
1583
|
-
|
|
1584
|
-
|
|
1585
|
-
class PaginatedTask(TypedDict):
|
|
1586
|
-
items: list[Task]
|
|
1587
|
-
total: int
|
|
1588
|
-
offset: int
|
|
1589
|
-
limit: int
|
|
1667
|
+
insertion_task_id: str
|
|
1590
1668
|
|
|
1591
1669
|
|
|
1592
1670
|
class PaginatedWorkerInfo(TypedDict):
|
|
@@ -1604,11 +1682,12 @@ class BootstrapClassificationModelMeta(TypedDict):
|
|
|
1604
1682
|
|
|
1605
1683
|
|
|
1606
1684
|
class BootstrapClassificationModelResponse(TypedDict):
|
|
1607
|
-
|
|
1685
|
+
job_id: str
|
|
1608
1686
|
org_id: str
|
|
1609
|
-
status:
|
|
1687
|
+
status: JobStatus
|
|
1610
1688
|
result: BootstrapClassificationModelMeta | None
|
|
1611
1689
|
input: BootstrapClassificationModelRequest | None
|
|
1690
|
+
task_id: str
|
|
1612
1691
|
|
|
1613
1692
|
|
|
1614
1693
|
class OrcaClient(Client):
|
|
@@ -1887,9 +1966,9 @@ class OrcaClient(Client):
|
|
|
1887
1966
|
@overload
|
|
1888
1967
|
def GET(
|
|
1889
1968
|
self,
|
|
1890
|
-
path: Literal["/memoryset/{name_or_id}/analysis/{
|
|
1969
|
+
path: Literal["/memoryset/{name_or_id}/analysis/{analysis_job_id}"],
|
|
1891
1970
|
*,
|
|
1892
|
-
params:
|
|
1971
|
+
params: GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams,
|
|
1893
1972
|
parse_as: Literal["json"] = "json",
|
|
1894
1973
|
headers: HeaderTypes | None = None,
|
|
1895
1974
|
cookies: CookieTypes | None = None,
|
|
@@ -1937,9 +2016,9 @@ class OrcaClient(Client):
|
|
|
1937
2016
|
@overload
|
|
1938
2017
|
def GET(
|
|
1939
2018
|
self,
|
|
1940
|
-
path: Literal["/
|
|
2019
|
+
path: Literal["/pretrained_embedding_model"],
|
|
1941
2020
|
*,
|
|
1942
|
-
params:
|
|
2021
|
+
params: None = None,
|
|
1943
2022
|
parse_as: Literal["json"] = "json",
|
|
1944
2023
|
headers: HeaderTypes | None = None,
|
|
1945
2024
|
cookies: CookieTypes | None = None,
|
|
@@ -1947,16 +2026,16 @@ class OrcaClient(Client):
|
|
|
1947
2026
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1948
2027
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1949
2028
|
extensions: RequestExtensions | None = None,
|
|
1950
|
-
) ->
|
|
1951
|
-
"""
|
|
2029
|
+
) -> list[PretrainedEmbeddingModelMetadata]:
|
|
2030
|
+
"""List all available pretrained embedding models."""
|
|
1952
2031
|
pass
|
|
1953
2032
|
|
|
1954
2033
|
@overload
|
|
1955
2034
|
def GET(
|
|
1956
2035
|
self,
|
|
1957
|
-
path: Literal["/
|
|
2036
|
+
path: Literal["/pretrained_embedding_model/{model_name}"],
|
|
1958
2037
|
*,
|
|
1959
|
-
params:
|
|
2038
|
+
params: GetPretrainedEmbeddingModelByModelNameParams,
|
|
1960
2039
|
parse_as: Literal["json"] = "json",
|
|
1961
2040
|
headers: HeaderTypes | None = None,
|
|
1962
2041
|
cookies: CookieTypes | None = None,
|
|
@@ -1964,16 +2043,16 @@ class OrcaClient(Client):
|
|
|
1964
2043
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1965
2044
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1966
2045
|
extensions: RequestExtensions | None = None,
|
|
1967
|
-
) ->
|
|
1968
|
-
"""
|
|
2046
|
+
) -> PretrainedEmbeddingModelMetadata:
|
|
2047
|
+
"""Get metadata for a specific pretrained embedding model."""
|
|
1969
2048
|
pass
|
|
1970
2049
|
|
|
1971
2050
|
@overload
|
|
1972
2051
|
def GET(
|
|
1973
2052
|
self,
|
|
1974
|
-
path: Literal["/
|
|
2053
|
+
path: Literal["/finetuned_embedding_model/{name_or_id}/evaluation/{job_id}"],
|
|
1975
2054
|
*,
|
|
1976
|
-
params:
|
|
2055
|
+
params: GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams,
|
|
1977
2056
|
parse_as: Literal["json"] = "json",
|
|
1978
2057
|
headers: HeaderTypes | None = None,
|
|
1979
2058
|
cookies: CookieTypes | None = None,
|
|
@@ -1981,16 +2060,16 @@ class OrcaClient(Client):
|
|
|
1981
2060
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1982
2061
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1983
2062
|
extensions: RequestExtensions | None = None,
|
|
1984
|
-
) ->
|
|
1985
|
-
"""
|
|
2063
|
+
) -> EmbeddingEvaluationResponse:
|
|
2064
|
+
"""Get evaluation results for a finetuned embedding model by job ID."""
|
|
1986
2065
|
pass
|
|
1987
2066
|
|
|
1988
2067
|
@overload
|
|
1989
2068
|
def GET(
|
|
1990
2069
|
self,
|
|
1991
|
-
path: Literal["/pretrained_embedding_model/{model_name}"],
|
|
2070
|
+
path: Literal["/pretrained_embedding_model/{model_name}/evaluation/{job_id}"],
|
|
1992
2071
|
*,
|
|
1993
|
-
params:
|
|
2072
|
+
params: GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams,
|
|
1994
2073
|
parse_as: Literal["json"] = "json",
|
|
1995
2074
|
headers: HeaderTypes | None = None,
|
|
1996
2075
|
cookies: CookieTypes | None = None,
|
|
@@ -1998,16 +2077,16 @@ class OrcaClient(Client):
|
|
|
1998
2077
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
1999
2078
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2000
2079
|
extensions: RequestExtensions | None = None,
|
|
2001
|
-
) ->
|
|
2002
|
-
"""Get
|
|
2080
|
+
) -> EmbeddingEvaluationResponse:
|
|
2081
|
+
"""Get evaluation results for a pretrained embedding model by job ID."""
|
|
2003
2082
|
pass
|
|
2004
2083
|
|
|
2005
2084
|
@overload
|
|
2006
2085
|
def GET(
|
|
2007
2086
|
self,
|
|
2008
|
-
path: Literal["/
|
|
2087
|
+
path: Literal["/finetuned_embedding_model/{name_or_id}/evaluations"],
|
|
2009
2088
|
*,
|
|
2010
|
-
params:
|
|
2089
|
+
params: GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams,
|
|
2011
2090
|
parse_as: Literal["json"] = "json",
|
|
2012
2091
|
headers: HeaderTypes | None = None,
|
|
2013
2092
|
cookies: CookieTypes | None = None,
|
|
@@ -2015,8 +2094,8 @@ class OrcaClient(Client):
|
|
|
2015
2094
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2016
2095
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2017
2096
|
extensions: RequestExtensions | None = None,
|
|
2018
|
-
) -> EmbeddingEvaluationResponse:
|
|
2019
|
-
"""
|
|
2097
|
+
) -> list[EmbeddingEvaluationResponse]:
|
|
2098
|
+
"""List all evaluation results for a finetuned embedding model."""
|
|
2020
2099
|
pass
|
|
2021
2100
|
|
|
2022
2101
|
@overload
|
|
@@ -2141,7 +2220,7 @@ class OrcaClient(Client):
|
|
|
2141
2220
|
@overload
|
|
2142
2221
|
def GET(
|
|
2143
2222
|
self,
|
|
2144
|
-
path: Literal["/
|
|
2223
|
+
path: Literal["/classification_model"],
|
|
2145
2224
|
*,
|
|
2146
2225
|
params: None = None,
|
|
2147
2226
|
parse_as: Literal["json"] = "json",
|
|
@@ -2151,13 +2230,13 @@ class OrcaClient(Client):
|
|
|
2151
2230
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2152
2231
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2153
2232
|
extensions: RequestExtensions | None = None,
|
|
2154
|
-
) -> list[ClassificationModelMetadata
|
|
2233
|
+
) -> list[ClassificationModelMetadata]:
|
|
2155
2234
|
pass
|
|
2156
2235
|
|
|
2157
2236
|
@overload
|
|
2158
2237
|
def GET(
|
|
2159
2238
|
self,
|
|
2160
|
-
path: Literal["/
|
|
2239
|
+
path: Literal["/regression_model"],
|
|
2161
2240
|
*,
|
|
2162
2241
|
params: None = None,
|
|
2163
2242
|
parse_as: Literal["json"] = "json",
|
|
@@ -2167,7 +2246,7 @@ class OrcaClient(Client):
|
|
|
2167
2246
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2168
2247
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2169
2248
|
extensions: RequestExtensions | None = None,
|
|
2170
|
-
) -> list[
|
|
2249
|
+
) -> list[RegressionModelMetadata]:
|
|
2171
2250
|
pass
|
|
2172
2251
|
|
|
2173
2252
|
@overload
|
|
@@ -2189,9 +2268,9 @@ class OrcaClient(Client):
|
|
|
2189
2268
|
@overload
|
|
2190
2269
|
def GET(
|
|
2191
2270
|
self,
|
|
2192
|
-
path: Literal["/
|
|
2271
|
+
path: Literal["/regression_model/{name_or_id}"],
|
|
2193
2272
|
*,
|
|
2194
|
-
params:
|
|
2273
|
+
params: GetRegressionModelByNameOrIdParams,
|
|
2195
2274
|
parse_as: Literal["json"] = "json",
|
|
2196
2275
|
headers: HeaderTypes | None = None,
|
|
2197
2276
|
cookies: CookieTypes | None = None,
|
|
@@ -2199,15 +2278,15 @@ class OrcaClient(Client):
|
|
|
2199
2278
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2200
2279
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2201
2280
|
extensions: RequestExtensions | None = None,
|
|
2202
|
-
) ->
|
|
2281
|
+
) -> RegressionModelMetadata:
|
|
2203
2282
|
pass
|
|
2204
2283
|
|
|
2205
2284
|
@overload
|
|
2206
2285
|
def GET(
|
|
2207
2286
|
self,
|
|
2208
|
-
path: Literal["/
|
|
2287
|
+
path: Literal["/predictive_model"],
|
|
2209
2288
|
*,
|
|
2210
|
-
params:
|
|
2289
|
+
params: None = None,
|
|
2211
2290
|
parse_as: Literal["json"] = "json",
|
|
2212
2291
|
headers: HeaderTypes | None = None,
|
|
2213
2292
|
cookies: CookieTypes | None = None,
|
|
@@ -2215,15 +2294,15 @@ class OrcaClient(Client):
|
|
|
2215
2294
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2216
2295
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2217
2296
|
extensions: RequestExtensions | None = None,
|
|
2218
|
-
) ->
|
|
2297
|
+
) -> list[ClassificationModelMetadata | RegressionModelMetadata]:
|
|
2219
2298
|
pass
|
|
2220
2299
|
|
|
2221
2300
|
@overload
|
|
2222
2301
|
def GET(
|
|
2223
2302
|
self,
|
|
2224
|
-
path: Literal["/
|
|
2303
|
+
path: Literal["/classification_model/{model_name_or_id}/evaluation"],
|
|
2225
2304
|
*,
|
|
2226
|
-
params:
|
|
2305
|
+
params: GetClassificationModelByModelNameOrIdEvaluationParams,
|
|
2227
2306
|
parse_as: Literal["json"] = "json",
|
|
2228
2307
|
headers: HeaderTypes | None = None,
|
|
2229
2308
|
cookies: CookieTypes | None = None,
|
|
@@ -2231,15 +2310,15 @@ class OrcaClient(Client):
|
|
|
2231
2310
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2232
2311
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2233
2312
|
extensions: RequestExtensions | None = None,
|
|
2234
|
-
) -> list[
|
|
2313
|
+
) -> list[EvaluationResponseClassificationMetrics]:
|
|
2235
2314
|
pass
|
|
2236
2315
|
|
|
2237
2316
|
@overload
|
|
2238
2317
|
def GET(
|
|
2239
2318
|
self,
|
|
2240
|
-
path: Literal["/regression_model/{
|
|
2319
|
+
path: Literal["/regression_model/{model_name_or_id}/evaluation"],
|
|
2241
2320
|
*,
|
|
2242
|
-
params:
|
|
2321
|
+
params: GetRegressionModelByModelNameOrIdEvaluationParams,
|
|
2243
2322
|
parse_as: Literal["json"] = "json",
|
|
2244
2323
|
headers: HeaderTypes | None = None,
|
|
2245
2324
|
cookies: CookieTypes | None = None,
|
|
@@ -2247,15 +2326,15 @@ class OrcaClient(Client):
|
|
|
2247
2326
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2248
2327
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2249
2328
|
extensions: RequestExtensions | None = None,
|
|
2250
|
-
) ->
|
|
2329
|
+
) -> list[EvaluationResponseRegressionMetrics]:
|
|
2251
2330
|
pass
|
|
2252
2331
|
|
|
2253
2332
|
@overload
|
|
2254
2333
|
def GET(
|
|
2255
2334
|
self,
|
|
2256
|
-
path: Literal["/
|
|
2335
|
+
path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
|
|
2257
2336
|
*,
|
|
2258
|
-
params:
|
|
2337
|
+
params: GetClassificationModelByModelNameOrIdEvaluationByJobIdParams,
|
|
2259
2338
|
parse_as: Literal["json"] = "json",
|
|
2260
2339
|
headers: HeaderTypes | None = None,
|
|
2261
2340
|
cookies: CookieTypes | None = None,
|
|
@@ -2263,15 +2342,15 @@ class OrcaClient(Client):
|
|
|
2263
2342
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2264
2343
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2265
2344
|
extensions: RequestExtensions | None = None,
|
|
2266
|
-
) ->
|
|
2345
|
+
) -> EvaluationResponseClassificationMetrics:
|
|
2267
2346
|
pass
|
|
2268
2347
|
|
|
2269
2348
|
@overload
|
|
2270
2349
|
def GET(
|
|
2271
2350
|
self,
|
|
2272
|
-
path: Literal["/regression_model/{model_name_or_id}/evaluation/{
|
|
2351
|
+
path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
|
|
2273
2352
|
*,
|
|
2274
|
-
params:
|
|
2353
|
+
params: GetRegressionModelByModelNameOrIdEvaluationByJobIdParams,
|
|
2275
2354
|
parse_as: Literal["json"] = "json",
|
|
2276
2355
|
headers: HeaderTypes | None = None,
|
|
2277
2356
|
cookies: CookieTypes | None = None,
|
|
@@ -2285,9 +2364,9 @@ class OrcaClient(Client):
|
|
|
2285
2364
|
@overload
|
|
2286
2365
|
def GET(
|
|
2287
2366
|
self,
|
|
2288
|
-
path: Literal["/
|
|
2367
|
+
path: Literal["/job/{job_id}"],
|
|
2289
2368
|
*,
|
|
2290
|
-
params:
|
|
2369
|
+
params: GetJobByJobIdParams,
|
|
2291
2370
|
parse_as: Literal["json"] = "json",
|
|
2292
2371
|
headers: HeaderTypes | None = None,
|
|
2293
2372
|
cookies: CookieTypes | None = None,
|
|
@@ -2295,15 +2374,15 @@ class OrcaClient(Client):
|
|
|
2295
2374
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2296
2375
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2297
2376
|
extensions: RequestExtensions | None = None,
|
|
2298
|
-
) ->
|
|
2377
|
+
) -> Job:
|
|
2299
2378
|
pass
|
|
2300
2379
|
|
|
2301
2380
|
@overload
|
|
2302
2381
|
def GET(
|
|
2303
2382
|
self,
|
|
2304
|
-
path: Literal["/
|
|
2383
|
+
path: Literal["/job/{job_id}/status"],
|
|
2305
2384
|
*,
|
|
2306
|
-
params:
|
|
2385
|
+
params: GetJobByJobIdStatusParams,
|
|
2307
2386
|
parse_as: Literal["json"] = "json",
|
|
2308
2387
|
headers: HeaderTypes | None = None,
|
|
2309
2388
|
cookies: CookieTypes | None = None,
|
|
@@ -2311,15 +2390,15 @@ class OrcaClient(Client):
|
|
|
2311
2390
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2312
2391
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2313
2392
|
extensions: RequestExtensions | None = None,
|
|
2314
|
-
) ->
|
|
2393
|
+
) -> JobStatusInfo:
|
|
2315
2394
|
pass
|
|
2316
2395
|
|
|
2317
2396
|
@overload
|
|
2318
2397
|
def GET(
|
|
2319
2398
|
self,
|
|
2320
|
-
path: Literal["/
|
|
2399
|
+
path: Literal["/job"],
|
|
2321
2400
|
*,
|
|
2322
|
-
params:
|
|
2401
|
+
params: GetJobParams,
|
|
2323
2402
|
parse_as: Literal["json"] = "json",
|
|
2324
2403
|
headers: HeaderTypes | None = None,
|
|
2325
2404
|
cookies: CookieTypes | None = None,
|
|
@@ -2327,7 +2406,7 @@ class OrcaClient(Client):
|
|
|
2327
2406
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2328
2407
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2329
2408
|
extensions: RequestExtensions | None = None,
|
|
2330
|
-
) ->
|
|
2409
|
+
) -> PaginatedJob:
|
|
2331
2410
|
pass
|
|
2332
2411
|
|
|
2333
2412
|
@overload
|
|
@@ -2478,9 +2557,9 @@ class OrcaClient(Client):
|
|
|
2478
2557
|
@overload
|
|
2479
2558
|
def GET(
|
|
2480
2559
|
self,
|
|
2481
|
-
path: Literal["/agents/bootstrap_classification_model/{
|
|
2560
|
+
path: Literal["/agents/bootstrap_classification_model/{job_id}"],
|
|
2482
2561
|
*,
|
|
2483
|
-
params:
|
|
2562
|
+
params: GetAgentsBootstrapClassificationModelByJobIdParams,
|
|
2484
2563
|
parse_as: Literal["json"] = "json",
|
|
2485
2564
|
headers: HeaderTypes | None = None,
|
|
2486
2565
|
cookies: CookieTypes | None = None,
|
|
@@ -2489,7 +2568,7 @@ class OrcaClient(Client):
|
|
|
2489
2568
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2490
2569
|
extensions: RequestExtensions | None = None,
|
|
2491
2570
|
) -> BootstrapClassificationModelResponse:
|
|
2492
|
-
"""Get the status of a bootstrap classification model
|
|
2571
|
+
"""Get the status of a bootstrap classification model job"""
|
|
2493
2572
|
pass
|
|
2494
2573
|
|
|
2495
2574
|
def GET(
|
|
@@ -2659,9 +2738,9 @@ class OrcaClient(Client):
|
|
|
2659
2738
|
@overload
|
|
2660
2739
|
def DELETE(
|
|
2661
2740
|
self,
|
|
2662
|
-
path: Literal["/
|
|
2741
|
+
path: Literal["/regression_model/{name_or_id}"],
|
|
2663
2742
|
*,
|
|
2664
|
-
params:
|
|
2743
|
+
params: DeleteRegressionModelByNameOrIdParams,
|
|
2665
2744
|
parse_as: Literal["json"] = "json",
|
|
2666
2745
|
headers: HeaderTypes | None = None,
|
|
2667
2746
|
cookies: CookieTypes | None = None,
|
|
@@ -2675,9 +2754,9 @@ class OrcaClient(Client):
|
|
|
2675
2754
|
@overload
|
|
2676
2755
|
def DELETE(
|
|
2677
2756
|
self,
|
|
2678
|
-
path: Literal["/
|
|
2757
|
+
path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
|
|
2679
2758
|
*,
|
|
2680
|
-
params:
|
|
2759
|
+
params: DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams,
|
|
2681
2760
|
parse_as: Literal["json"] = "json",
|
|
2682
2761
|
headers: HeaderTypes | None = None,
|
|
2683
2762
|
cookies: CookieTypes | None = None,
|
|
@@ -2691,9 +2770,9 @@ class OrcaClient(Client):
|
|
|
2691
2770
|
@overload
|
|
2692
2771
|
def DELETE(
|
|
2693
2772
|
self,
|
|
2694
|
-
path: Literal["/regression_model/{model_name_or_id}/evaluation/{
|
|
2773
|
+
path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
|
|
2695
2774
|
*,
|
|
2696
|
-
params:
|
|
2775
|
+
params: DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams,
|
|
2697
2776
|
parse_as: Literal["json"] = "json",
|
|
2698
2777
|
headers: HeaderTypes | None = None,
|
|
2699
2778
|
cookies: CookieTypes | None = None,
|
|
@@ -2707,9 +2786,9 @@ class OrcaClient(Client):
|
|
|
2707
2786
|
@overload
|
|
2708
2787
|
def DELETE(
|
|
2709
2788
|
self,
|
|
2710
|
-
path: Literal["/
|
|
2789
|
+
path: Literal["/job/{job_id}/abort"],
|
|
2711
2790
|
*,
|
|
2712
|
-
params:
|
|
2791
|
+
params: DeleteJobByJobIdAbortParams,
|
|
2713
2792
|
parse_as: Literal["json"] = "json",
|
|
2714
2793
|
headers: HeaderTypes | None = None,
|
|
2715
2794
|
cookies: CookieTypes | None = None,
|
|
@@ -2870,6 +2949,26 @@ class OrcaClient(Client):
|
|
|
2870
2949
|
) -> None:
|
|
2871
2950
|
pass
|
|
2872
2951
|
|
|
2952
|
+
@overload
|
|
2953
|
+
def POST(
|
|
2954
|
+
self,
|
|
2955
|
+
path: Literal["/gpu/memoryset/{name_or_id}/lookup"],
|
|
2956
|
+
*,
|
|
2957
|
+
params: PostGpuMemorysetByNameOrIdLookupParams,
|
|
2958
|
+
json: LookupRequest,
|
|
2959
|
+
data: None = None,
|
|
2960
|
+
files: None = None,
|
|
2961
|
+
content: None = None,
|
|
2962
|
+
parse_as: Literal["json"] = "json",
|
|
2963
|
+
headers: HeaderTypes | None = None,
|
|
2964
|
+
cookies: CookieTypes | None = None,
|
|
2965
|
+
auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2966
|
+
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2967
|
+
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2968
|
+
extensions: RequestExtensions | None = None,
|
|
2969
|
+
) -> list[list[LabeledMemoryLookup | ScoredMemoryLookup]]:
|
|
2970
|
+
pass
|
|
2971
|
+
|
|
2873
2972
|
@overload
|
|
2874
2973
|
def POST(
|
|
2875
2974
|
self,
|
|
@@ -2930,6 +3029,26 @@ class OrcaClient(Client):
|
|
|
2930
3029
|
) -> None:
|
|
2931
3030
|
pass
|
|
2932
3031
|
|
|
3032
|
+
@overload
|
|
3033
|
+
def POST(
|
|
3034
|
+
self,
|
|
3035
|
+
path: Literal["/gpu/memoryset/{name_or_id}/memory"],
|
|
3036
|
+
*,
|
|
3037
|
+
params: PostGpuMemorysetByNameOrIdMemoryParams,
|
|
3038
|
+
json: PostGpuMemorysetByNameOrIdMemoryRequest,
|
|
3039
|
+
data: None = None,
|
|
3040
|
+
files: None = None,
|
|
3041
|
+
content: None = None,
|
|
3042
|
+
parse_as: Literal["json"] = "json",
|
|
3043
|
+
headers: HeaderTypes | None = None,
|
|
3044
|
+
cookies: CookieTypes | None = None,
|
|
3045
|
+
auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3046
|
+
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3047
|
+
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3048
|
+
extensions: RequestExtensions | None = None,
|
|
3049
|
+
) -> list[str]:
|
|
3050
|
+
pass
|
|
3051
|
+
|
|
2933
3052
|
@overload
|
|
2934
3053
|
def POST(
|
|
2935
3054
|
self,
|
|
@@ -2991,6 +3110,48 @@ class OrcaClient(Client):
|
|
|
2991
3110
|
"""Create a finetuned embedding model."""
|
|
2992
3111
|
pass
|
|
2993
3112
|
|
|
3113
|
+
@overload
|
|
3114
|
+
def POST(
|
|
3115
|
+
self,
|
|
3116
|
+
path: Literal["/gpu/finetuned_embedding_model/{name_or_id}/embedding"],
|
|
3117
|
+
*,
|
|
3118
|
+
params: PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams,
|
|
3119
|
+
json: EmbedRequest,
|
|
3120
|
+
data: None = None,
|
|
3121
|
+
files: None = None,
|
|
3122
|
+
content: None = None,
|
|
3123
|
+
parse_as: Literal["json"] = "json",
|
|
3124
|
+
headers: HeaderTypes | None = None,
|
|
3125
|
+
cookies: CookieTypes | None = None,
|
|
3126
|
+
auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3127
|
+
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3128
|
+
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3129
|
+
extensions: RequestExtensions | None = None,
|
|
3130
|
+
) -> list[list[float]]:
|
|
3131
|
+
"""Embed values using a finetuned embedding model."""
|
|
3132
|
+
pass
|
|
3133
|
+
|
|
3134
|
+
@overload
|
|
3135
|
+
def POST(
|
|
3136
|
+
self,
|
|
3137
|
+
path: Literal["/gpu/pretrained_embedding_model/{model_name}/embedding"],
|
|
3138
|
+
*,
|
|
3139
|
+
params: PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams,
|
|
3140
|
+
json: EmbedRequest,
|
|
3141
|
+
data: None = None,
|
|
3142
|
+
files: None = None,
|
|
3143
|
+
content: None = None,
|
|
3144
|
+
parse_as: Literal["json"] = "json",
|
|
3145
|
+
headers: HeaderTypes | None = None,
|
|
3146
|
+
cookies: CookieTypes | None = None,
|
|
3147
|
+
auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3148
|
+
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3149
|
+
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3150
|
+
extensions: RequestExtensions | None = None,
|
|
3151
|
+
) -> list[list[float]]:
|
|
3152
|
+
"""Embed values using a pretrained embedding model."""
|
|
3153
|
+
pass
|
|
3154
|
+
|
|
2994
3155
|
@overload
|
|
2995
3156
|
def POST(
|
|
2996
3157
|
self,
|
|
@@ -3090,10 +3251,10 @@ class OrcaClient(Client):
|
|
|
3090
3251
|
@overload
|
|
3091
3252
|
def POST(
|
|
3092
3253
|
self,
|
|
3093
|
-
path: Literal["/
|
|
3254
|
+
path: Literal["/datasource/{name_or_id}/rows"],
|
|
3094
3255
|
*,
|
|
3095
|
-
params:
|
|
3096
|
-
json:
|
|
3256
|
+
params: PostDatasourceByNameOrIdRowsParams,
|
|
3257
|
+
json: GetDatasourceRowsRequest,
|
|
3097
3258
|
data: None = None,
|
|
3098
3259
|
files: None = None,
|
|
3099
3260
|
content: None = None,
|
|
@@ -3104,16 +3265,17 @@ class OrcaClient(Client):
|
|
|
3104
3265
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3105
3266
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3106
3267
|
extensions: RequestExtensions | None = None,
|
|
3107
|
-
) ->
|
|
3268
|
+
) -> list[dict[str, Any]]:
|
|
3269
|
+
"""Get rows from a specific datasource with optional filtering."""
|
|
3108
3270
|
pass
|
|
3109
3271
|
|
|
3110
3272
|
@overload
|
|
3111
3273
|
def POST(
|
|
3112
3274
|
self,
|
|
3113
|
-
path: Literal["/
|
|
3275
|
+
path: Literal["/datasource/{name_or_id}/rows/count"],
|
|
3114
3276
|
*,
|
|
3115
|
-
params:
|
|
3116
|
-
json:
|
|
3277
|
+
params: PostDatasourceByNameOrIdRowsCountParams,
|
|
3278
|
+
json: GetDatasourceRowCountRequest,
|
|
3117
3279
|
data: None = None,
|
|
3118
3280
|
files: None = None,
|
|
3119
3281
|
content: None = None,
|
|
@@ -3124,16 +3286,17 @@ class OrcaClient(Client):
|
|
|
3124
3286
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3125
3287
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3126
3288
|
extensions: RequestExtensions | None = None,
|
|
3127
|
-
) ->
|
|
3289
|
+
) -> int:
|
|
3290
|
+
"""Get row count from a specific datasource with optional filtering."""
|
|
3128
3291
|
pass
|
|
3129
3292
|
|
|
3130
3293
|
@overload
|
|
3131
3294
|
def POST(
|
|
3132
3295
|
self,
|
|
3133
|
-
path: Literal["/
|
|
3296
|
+
path: Literal["/classification_model"],
|
|
3134
3297
|
*,
|
|
3135
3298
|
params: None = None,
|
|
3136
|
-
json:
|
|
3299
|
+
json: CreateClassificationModelRequest,
|
|
3137
3300
|
data: None = None,
|
|
3138
3301
|
files: None = None,
|
|
3139
3302
|
content: None = None,
|
|
@@ -3144,16 +3307,16 @@ class OrcaClient(Client):
|
|
|
3144
3307
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3145
3308
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3146
3309
|
extensions: RequestExtensions | None = None,
|
|
3147
|
-
) ->
|
|
3310
|
+
) -> ClassificationModelMetadata:
|
|
3148
3311
|
pass
|
|
3149
3312
|
|
|
3150
3313
|
@overload
|
|
3151
3314
|
def POST(
|
|
3152
3315
|
self,
|
|
3153
|
-
path: Literal["/regression_model
|
|
3316
|
+
path: Literal["/regression_model"],
|
|
3154
3317
|
*,
|
|
3155
|
-
params:
|
|
3156
|
-
json:
|
|
3318
|
+
params: None = None,
|
|
3319
|
+
json: CreateRegressionModelRequest,
|
|
3157
3320
|
data: None = None,
|
|
3158
3321
|
files: None = None,
|
|
3159
3322
|
content: None = None,
|
|
@@ -3164,16 +3327,16 @@ class OrcaClient(Client):
|
|
|
3164
3327
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3165
3328
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3166
3329
|
extensions: RequestExtensions | None = None,
|
|
3167
|
-
) ->
|
|
3330
|
+
) -> RegressionModelMetadata:
|
|
3168
3331
|
pass
|
|
3169
3332
|
|
|
3170
3333
|
@overload
|
|
3171
3334
|
def POST(
|
|
3172
3335
|
self,
|
|
3173
|
-
path: Literal["/
|
|
3336
|
+
path: Literal["/gpu/classification_model/{name_or_id}/prediction"],
|
|
3174
3337
|
*,
|
|
3175
|
-
params:
|
|
3176
|
-
json:
|
|
3338
|
+
params: PostGpuClassificationModelByNameOrIdPredictionParams,
|
|
3339
|
+
json: ClassificationPredictionRequest,
|
|
3177
3340
|
data: None = None,
|
|
3178
3341
|
files: None = None,
|
|
3179
3342
|
content: None = None,
|
|
@@ -3184,17 +3347,16 @@ class OrcaClient(Client):
|
|
|
3184
3347
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3185
3348
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3186
3349
|
extensions: RequestExtensions | None = None,
|
|
3187
|
-
) -> list[
|
|
3188
|
-
"""List predictions with optional filtering and sorting."""
|
|
3350
|
+
) -> list[BaseLabelPredictionResult]:
|
|
3189
3351
|
pass
|
|
3190
3352
|
|
|
3191
3353
|
@overload
|
|
3192
3354
|
def POST(
|
|
3193
3355
|
self,
|
|
3194
|
-
path: Literal["/
|
|
3356
|
+
path: Literal["/classification_model/{name_or_id}/prediction"],
|
|
3195
3357
|
*,
|
|
3196
|
-
params:
|
|
3197
|
-
json:
|
|
3358
|
+
params: PostClassificationModelByNameOrIdPredictionParams,
|
|
3359
|
+
json: ClassificationPredictionRequest,
|
|
3198
3360
|
data: None = None,
|
|
3199
3361
|
files: None = None,
|
|
3200
3362
|
content: None = None,
|
|
@@ -3205,17 +3367,16 @@ class OrcaClient(Client):
|
|
|
3205
3367
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3206
3368
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3207
3369
|
extensions: RequestExtensions | None = None,
|
|
3208
|
-
) ->
|
|
3209
|
-
"""Count predictions with optional filtering."""
|
|
3370
|
+
) -> list[BaseLabelPredictionResult]:
|
|
3210
3371
|
pass
|
|
3211
3372
|
|
|
3212
3373
|
@overload
|
|
3213
3374
|
def POST(
|
|
3214
3375
|
self,
|
|
3215
|
-
path: Literal["/
|
|
3376
|
+
path: Literal["/gpu/regression_model/{name_or_id}/prediction"],
|
|
3216
3377
|
*,
|
|
3217
|
-
params:
|
|
3218
|
-
json:
|
|
3378
|
+
params: PostGpuRegressionModelByNameOrIdPredictionParams,
|
|
3379
|
+
json: RegressionPredictionRequest,
|
|
3219
3380
|
data: None = None,
|
|
3220
3381
|
files: None = None,
|
|
3221
3382
|
content: None = None,
|
|
@@ -3226,21 +3387,16 @@ class OrcaClient(Client):
|
|
|
3226
3387
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3227
3388
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3228
3389
|
extensions: RequestExtensions | None = None,
|
|
3229
|
-
) ->
|
|
3230
|
-
"""
|
|
3231
|
-
List memories with feedback metrics.
|
|
3232
|
-
**Note**: This endpoint will ONLY return memories that have been used in a prediction.
|
|
3233
|
-
If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
|
|
3234
|
-
"""
|
|
3390
|
+
) -> list[BaseScorePredictionResult]:
|
|
3235
3391
|
pass
|
|
3236
3392
|
|
|
3237
3393
|
@overload
|
|
3238
3394
|
def POST(
|
|
3239
3395
|
self,
|
|
3240
|
-
path: Literal["/
|
|
3396
|
+
path: Literal["/regression_model/{name_or_id}/prediction"],
|
|
3241
3397
|
*,
|
|
3242
|
-
params:
|
|
3243
|
-
json:
|
|
3398
|
+
params: PostRegressionModelByNameOrIdPredictionParams,
|
|
3399
|
+
json: RegressionPredictionRequest,
|
|
3244
3400
|
data: None = None,
|
|
3245
3401
|
files: None = None,
|
|
3246
3402
|
content: None = None,
|
|
@@ -3251,30 +3407,16 @@ class OrcaClient(Client):
|
|
|
3251
3407
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3252
3408
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3253
3409
|
extensions: RequestExtensions | None = None,
|
|
3254
|
-
) ->
|
|
3255
|
-
"""
|
|
3256
|
-
Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
|
|
3257
|
-
|
|
3258
|
-
This endpoint uses the bootstrap_classification_model agent to generate:
|
|
3259
|
-
1. Memoryset configuration with appropriate settings
|
|
3260
|
-
2. Model configuration with optimal parameters
|
|
3261
|
-
3. High-quality training memories for each label
|
|
3262
|
-
|
|
3263
|
-
The process involves:
|
|
3264
|
-
1. Calling the agent to generate configurations and memories
|
|
3265
|
-
2. Creating a datasource from the generated memories
|
|
3266
|
-
3. Creating a memoryset from the datasource
|
|
3267
|
-
4. Creating a classification model from the memoryset
|
|
3268
|
-
"""
|
|
3410
|
+
) -> list[BaseScorePredictionResult]:
|
|
3269
3411
|
pass
|
|
3270
3412
|
|
|
3271
3413
|
@overload
|
|
3272
3414
|
def POST(
|
|
3273
3415
|
self,
|
|
3274
|
-
path: Literal["/
|
|
3416
|
+
path: Literal["/classification_model/{model_name_or_id}/evaluation"],
|
|
3275
3417
|
*,
|
|
3276
|
-
params:
|
|
3277
|
-
json:
|
|
3418
|
+
params: PostClassificationModelByModelNameOrIdEvaluationParams,
|
|
3419
|
+
json: ClassificationEvaluationRequest,
|
|
3278
3420
|
data: None = None,
|
|
3279
3421
|
files: None = None,
|
|
3280
3422
|
content: None = None,
|
|
@@ -3285,16 +3427,16 @@ class OrcaClient(Client):
|
|
|
3285
3427
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3286
3428
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3287
3429
|
extensions: RequestExtensions | None = None,
|
|
3288
|
-
) ->
|
|
3430
|
+
) -> EvaluationResponse:
|
|
3289
3431
|
pass
|
|
3290
3432
|
|
|
3291
3433
|
@overload
|
|
3292
3434
|
def POST(
|
|
3293
3435
|
self,
|
|
3294
|
-
path: Literal["/
|
|
3436
|
+
path: Literal["/regression_model/{model_name_or_id}/evaluation"],
|
|
3295
3437
|
*,
|
|
3296
|
-
params:
|
|
3297
|
-
json:
|
|
3438
|
+
params: PostRegressionModelByModelNameOrIdEvaluationParams,
|
|
3439
|
+
json: RegressionEvaluationRequest,
|
|
3298
3440
|
data: None = None,
|
|
3299
3441
|
files: None = None,
|
|
3300
3442
|
content: None = None,
|
|
@@ -3305,16 +3447,16 @@ class OrcaClient(Client):
|
|
|
3305
3447
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3306
3448
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3307
3449
|
extensions: RequestExtensions | None = None,
|
|
3308
|
-
) ->
|
|
3450
|
+
) -> EvaluationResponse:
|
|
3309
3451
|
pass
|
|
3310
3452
|
|
|
3311
3453
|
@overload
|
|
3312
3454
|
def POST(
|
|
3313
3455
|
self,
|
|
3314
|
-
path: Literal["/
|
|
3456
|
+
path: Literal["/telemetry/prediction"],
|
|
3315
3457
|
*,
|
|
3316
|
-
params:
|
|
3317
|
-
json:
|
|
3458
|
+
params: None = None,
|
|
3459
|
+
json: ListPredictionsRequest | None = None,
|
|
3318
3460
|
data: None = None,
|
|
3319
3461
|
files: None = None,
|
|
3320
3462
|
content: None = None,
|
|
@@ -3325,16 +3467,17 @@ class OrcaClient(Client):
|
|
|
3325
3467
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3326
3468
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3327
3469
|
extensions: RequestExtensions | None = None,
|
|
3328
|
-
) -> list[
|
|
3470
|
+
) -> list[LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback]:
|
|
3471
|
+
"""List predictions with optional filtering and sorting."""
|
|
3329
3472
|
pass
|
|
3330
3473
|
|
|
3331
3474
|
@overload
|
|
3332
3475
|
def POST(
|
|
3333
3476
|
self,
|
|
3334
|
-
path: Literal["/
|
|
3477
|
+
path: Literal["/telemetry/prediction/count"],
|
|
3335
3478
|
*,
|
|
3336
|
-
params:
|
|
3337
|
-
json:
|
|
3479
|
+
params: None = None,
|
|
3480
|
+
json: CountPredictionsRequest | None = None,
|
|
3338
3481
|
data: None = None,
|
|
3339
3482
|
files: None = None,
|
|
3340
3483
|
content: None = None,
|
|
@@ -3345,16 +3488,17 @@ class OrcaClient(Client):
|
|
|
3345
3488
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3346
3489
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3347
3490
|
extensions: RequestExtensions | None = None,
|
|
3348
|
-
) ->
|
|
3491
|
+
) -> int:
|
|
3492
|
+
"""Count predictions with optional filtering."""
|
|
3349
3493
|
pass
|
|
3350
3494
|
|
|
3351
3495
|
@overload
|
|
3352
3496
|
def POST(
|
|
3353
3497
|
self,
|
|
3354
|
-
path: Literal["/
|
|
3498
|
+
path: Literal["/telemetry/memories"],
|
|
3355
3499
|
*,
|
|
3356
|
-
params:
|
|
3357
|
-
json:
|
|
3500
|
+
params: None = None,
|
|
3501
|
+
json: TelemetryMemoriesRequest,
|
|
3358
3502
|
data: None = None,
|
|
3359
3503
|
files: None = None,
|
|
3360
3504
|
content: None = None,
|
|
@@ -3365,17 +3509,21 @@ class OrcaClient(Client):
|
|
|
3365
3509
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3366
3510
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3367
3511
|
extensions: RequestExtensions | None = None,
|
|
3368
|
-
) ->
|
|
3369
|
-
"""
|
|
3512
|
+
) -> PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics:
|
|
3513
|
+
"""
|
|
3514
|
+
List memories with feedback metrics.
|
|
3515
|
+
**Note**: This endpoint will ONLY return memories that have been used in a prediction.
|
|
3516
|
+
If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
|
|
3517
|
+
"""
|
|
3370
3518
|
pass
|
|
3371
3519
|
|
|
3372
3520
|
@overload
|
|
3373
3521
|
def POST(
|
|
3374
3522
|
self,
|
|
3375
|
-
path: Literal["/
|
|
3523
|
+
path: Literal["/agents/bootstrap_classification_model"],
|
|
3376
3524
|
*,
|
|
3377
|
-
params:
|
|
3378
|
-
json:
|
|
3525
|
+
params: None = None,
|
|
3526
|
+
json: BootstrapClassificationModelRequest,
|
|
3379
3527
|
data: None = None,
|
|
3380
3528
|
files: None = None,
|
|
3381
3529
|
content: None = None,
|
|
@@ -3386,8 +3534,21 @@ class OrcaClient(Client):
|
|
|
3386
3534
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3387
3535
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3388
3536
|
extensions: RequestExtensions | None = None,
|
|
3389
|
-
) ->
|
|
3390
|
-
"""
|
|
3537
|
+
) -> BootstrapClassificationModelResponse:
|
|
3538
|
+
"""
|
|
3539
|
+
Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
|
|
3540
|
+
|
|
3541
|
+
This endpoint uses the bootstrap_classification_model agent to generate:
|
|
3542
|
+
1. Memoryset configuration with appropriate settings
|
|
3543
|
+
2. Model configuration with optimal parameters
|
|
3544
|
+
3. High-quality training memories for each label
|
|
3545
|
+
|
|
3546
|
+
The process involves:
|
|
3547
|
+
1. Calling the agent to generate configurations and memories
|
|
3548
|
+
2. Creating a datasource from the generated memories
|
|
3549
|
+
3. Creating a memoryset from the datasource
|
|
3550
|
+
4. Creating a classification model from the memoryset
|
|
3551
|
+
"""
|
|
3391
3552
|
pass
|
|
3392
3553
|
|
|
3393
3554
|
def POST(
|
|
@@ -3533,10 +3694,10 @@ class OrcaClient(Client):
|
|
|
3533
3694
|
@overload
|
|
3534
3695
|
def PATCH(
|
|
3535
3696
|
self,
|
|
3536
|
-
path: Literal["/
|
|
3697
|
+
path: Literal["/gpu/memoryset/{name_or_id}/memory"],
|
|
3537
3698
|
*,
|
|
3538
|
-
params:
|
|
3539
|
-
json:
|
|
3699
|
+
params: PatchGpuMemorysetByNameOrIdMemoryParams,
|
|
3700
|
+
json: PatchGpuMemorysetByNameOrIdMemoryRequest,
|
|
3540
3701
|
data: None = None,
|
|
3541
3702
|
files: None = None,
|
|
3542
3703
|
content: None = None,
|
|
@@ -3547,16 +3708,16 @@ class OrcaClient(Client):
|
|
|
3547
3708
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3548
3709
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3549
3710
|
extensions: RequestExtensions | None = None,
|
|
3550
|
-
) ->
|
|
3711
|
+
) -> LabeledMemory | ScoredMemory:
|
|
3551
3712
|
pass
|
|
3552
3713
|
|
|
3553
3714
|
@overload
|
|
3554
3715
|
def PATCH(
|
|
3555
3716
|
self,
|
|
3556
|
-
path: Literal["/
|
|
3717
|
+
path: Literal["/gpu/memoryset/{name_or_id}/memories"],
|
|
3557
3718
|
*,
|
|
3558
|
-
params:
|
|
3559
|
-
json:
|
|
3719
|
+
params: PatchGpuMemorysetByNameOrIdMemoriesParams,
|
|
3720
|
+
json: PatchGpuMemorysetByNameOrIdMemoriesRequest,
|
|
3560
3721
|
data: None = None,
|
|
3561
3722
|
files: None = None,
|
|
3562
3723
|
content: None = None,
|
|
@@ -3567,16 +3728,16 @@ class OrcaClient(Client):
|
|
|
3567
3728
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3568
3729
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3569
3730
|
extensions: RequestExtensions | None = None,
|
|
3570
|
-
) ->
|
|
3731
|
+
) -> list[LabeledMemory] | list[ScoredMemory]:
|
|
3571
3732
|
pass
|
|
3572
3733
|
|
|
3573
3734
|
@overload
|
|
3574
3735
|
def PATCH(
|
|
3575
3736
|
self,
|
|
3576
|
-
path: Literal["/
|
|
3737
|
+
path: Literal["/classification_model/{name_or_id}"],
|
|
3577
3738
|
*,
|
|
3578
|
-
params:
|
|
3579
|
-
json:
|
|
3739
|
+
params: PatchClassificationModelByNameOrIdParams,
|
|
3740
|
+
json: PredictiveModelUpdate,
|
|
3580
3741
|
data: None = None,
|
|
3581
3742
|
files: None = None,
|
|
3582
3743
|
content: None = None,
|
|
@@ -3587,17 +3748,16 @@ class OrcaClient(Client):
|
|
|
3587
3748
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3588
3749
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3589
3750
|
extensions: RequestExtensions | None = None,
|
|
3590
|
-
) ->
|
|
3591
|
-
"""Update a prediction with new expected values, tags, or memory ID."""
|
|
3751
|
+
) -> ClassificationModelMetadata:
|
|
3592
3752
|
pass
|
|
3593
3753
|
|
|
3594
3754
|
@overload
|
|
3595
3755
|
def PATCH(
|
|
3596
3756
|
self,
|
|
3597
|
-
path: Literal["/
|
|
3757
|
+
path: Literal["/regression_model/{name_or_id}"],
|
|
3598
3758
|
*,
|
|
3599
|
-
params:
|
|
3600
|
-
json:
|
|
3759
|
+
params: PatchRegressionModelByNameOrIdParams,
|
|
3760
|
+
json: PredictiveModelUpdate,
|
|
3601
3761
|
data: None = None,
|
|
3602
3762
|
files: None = None,
|
|
3603
3763
|
content: None = None,
|
|
@@ -3608,16 +3768,16 @@ class OrcaClient(Client):
|
|
|
3608
3768
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3609
3769
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3610
3770
|
extensions: RequestExtensions | None = None,
|
|
3611
|
-
) ->
|
|
3771
|
+
) -> RegressionModelMetadata:
|
|
3612
3772
|
pass
|
|
3613
3773
|
|
|
3614
3774
|
@overload
|
|
3615
3775
|
def PATCH(
|
|
3616
3776
|
self,
|
|
3617
|
-
path: Literal["/
|
|
3777
|
+
path: Literal["/telemetry/prediction/{prediction_id}"],
|
|
3618
3778
|
*,
|
|
3619
|
-
params:
|
|
3620
|
-
json:
|
|
3779
|
+
params: PatchTelemetryPredictionByPredictionIdParams,
|
|
3780
|
+
json: UpdatePredictionRequest,
|
|
3621
3781
|
data: None = None,
|
|
3622
3782
|
files: None = None,
|
|
3623
3783
|
content: None = None,
|
|
@@ -3628,7 +3788,8 @@ class OrcaClient(Client):
|
|
|
3628
3788
|
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3629
3789
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3630
3790
|
extensions: RequestExtensions | None = None,
|
|
3631
|
-
) ->
|
|
3791
|
+
) -> Any:
|
|
3792
|
+
"""Update a prediction with new expected values, tags, or memory ID."""
|
|
3632
3793
|
pass
|
|
3633
3794
|
|
|
3634
3795
|
def PATCH(
|