orca-sdk 0.1.3__py3-none-any.whl → 0.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -187,18 +187,24 @@ def test_evaluate(classification_model, eval_datasource: Datasource, eval_datase
187
187
  assert -1.0 <= result.anomaly_score_variance <= 1.0
188
188
 
189
189
  assert result.pr_auc is not None
190
- assert np.allclose(result.pr_auc, 0.75)
190
+ assert np.allclose(result.pr_auc, 0.83333)
191
191
  assert result.pr_curve is not None
192
- assert np.allclose(result.pr_curve["thresholds"], [0.0, 0.0, 0.8155114054679871, 0.834095299243927])
193
- assert np.allclose(result.pr_curve["precisions"], [0.5, 0.5, 1.0, 1.0])
194
- assert np.allclose(result.pr_curve["recalls"], [1.0, 0.5, 0.5, 0.0])
192
+ assert np.allclose(
193
+ result.pr_curve["thresholds"],
194
+ [0.0, 0.3021204173564911, 0.30852025747299194, 0.6932827234268188, 0.6972201466560364],
195
+ )
196
+ assert np.allclose(result.pr_curve["precisions"], [0.5, 0.666666, 0.5, 1.0, 1.0])
197
+ assert np.allclose(result.pr_curve["recalls"], [1.0, 1.0, 0.5, 0.5, 0.0])
195
198
 
196
199
  assert result.roc_auc is not None
197
- assert np.allclose(result.roc_auc, 0.625)
200
+ assert np.allclose(result.roc_auc, 0.75)
198
201
  assert result.roc_curve is not None
199
- assert np.allclose(result.roc_curve["thresholds"], [0.0, 0.8155114054679871, 0.834095299243927, 1.0])
200
- assert np.allclose(result.roc_curve["false_positive_rates"], [1.0, 0.5, 0.0, 0.0])
201
- assert np.allclose(result.roc_curve["true_positive_rates"], [1.0, 0.5, 0.5, 0.0])
202
+ assert np.allclose(
203
+ result.roc_curve["thresholds"],
204
+ [0.3021204173564911, 0.30852025747299194, 0.6932827234268188, 0.6972201466560364, 1.0],
205
+ )
206
+ assert np.allclose(result.roc_curve["false_positive_rates"], [1.0, 0.5, 0.5, 0.0, 0.0])
207
+ assert np.allclose(result.roc_curve["true_positive_rates"], [1.0, 1.0, 0.5, 0.5, 0.0])
202
208
 
203
209
 
204
210
  def test_evaluate_datasource_with_nones_raises_error(classification_model: ClassificationModel, datasource: Datasource):
@@ -221,6 +227,139 @@ def test_evaluate_with_telemetry(classification_model: ClassificationModel, eval
221
227
  assert all(p.expected_label == l for p, l in zip(predictions, eval_dataset["label"]))
222
228
 
223
229
 
230
+ def test_evaluate_with_partition_column_dataset(partitioned_classification_model: ClassificationModel):
231
+ """Test evaluate with partition_column on a Dataset"""
232
+ # Create a test dataset with partition_id column
233
+ eval_dataset_with_partition = Dataset.from_list(
234
+ [
235
+ {"value": "soup is good", "label": 0, "partition_id": "p1"},
236
+ {"value": "cats are cute", "label": 1, "partition_id": "p1"},
237
+ {"value": "homemade soup recipes", "label": 0, "partition_id": "p2"},
238
+ {"value": "cats purr when happy", "label": 1, "partition_id": "p2"},
239
+ ]
240
+ )
241
+
242
+ # Evaluate with partition_column
243
+ result = partitioned_classification_model.evaluate(
244
+ eval_dataset_with_partition,
245
+ partition_column="partition_id",
246
+ partition_filter_mode="exclude_global",
247
+ )
248
+ assert result is not None
249
+ assert isinstance(result, ClassificationMetrics)
250
+ assert isinstance(result.accuracy, float)
251
+ assert isinstance(result.f1_score, float)
252
+ assert isinstance(result.loss, float)
253
+
254
+
255
+ def test_evaluate_with_partition_column_include_global(partitioned_classification_model: ClassificationModel):
256
+ """Test evaluate with partition_column and include_global mode"""
257
+ eval_dataset_with_partition = Dataset.from_list(
258
+ [
259
+ {"value": "soup is good", "label": 0, "partition_id": "p1"},
260
+ {"value": "cats are cute", "label": 1, "partition_id": "p1"},
261
+ ]
262
+ )
263
+
264
+ # Evaluate with partition_column and include_global (default)
265
+ result = partitioned_classification_model.evaluate(
266
+ eval_dataset_with_partition,
267
+ partition_column="partition_id",
268
+ partition_filter_mode="include_global",
269
+ )
270
+ assert result is not None
271
+ assert isinstance(result, ClassificationMetrics)
272
+
273
+
274
+ def test_evaluate_with_partition_column_exclude_global(partitioned_classification_model: ClassificationModel):
275
+ """Test evaluate with partition_column and exclude_global mode"""
276
+ eval_dataset_with_partition = Dataset.from_list(
277
+ [
278
+ {"value": "soup is good", "label": 0, "partition_id": "p1"},
279
+ {"value": "cats are cute", "label": 1, "partition_id": "p1"},
280
+ ]
281
+ )
282
+
283
+ # Evaluate with partition_column and exclude_global
284
+ result = partitioned_classification_model.evaluate(
285
+ eval_dataset_with_partition,
286
+ partition_column="partition_id",
287
+ partition_filter_mode="exclude_global",
288
+ )
289
+ assert result is not None
290
+ assert isinstance(result, ClassificationMetrics)
291
+
292
+
293
+ def test_evaluate_with_partition_column_only_global(partitioned_classification_model: ClassificationModel):
294
+ """Test evaluate with partition_filter_mode only_global"""
295
+ eval_dataset_with_partition = Dataset.from_list(
296
+ [
297
+ {"value": "cats are independent animals", "label": 1, "partition_id": None},
298
+ {"value": "i love the beach", "label": 1, "partition_id": None},
299
+ ]
300
+ )
301
+
302
+ # Evaluate with only_global mode
303
+ result = partitioned_classification_model.evaluate(
304
+ eval_dataset_with_partition,
305
+ partition_column="partition_id",
306
+ partition_filter_mode="only_global",
307
+ )
308
+ assert result is not None
309
+ assert isinstance(result, ClassificationMetrics)
310
+
311
+
312
+ def test_evaluate_with_partition_column_ignore_partitions(partitioned_classification_model: ClassificationModel):
313
+ """Test evaluate with partition_filter_mode ignore_partitions"""
314
+ eval_dataset_with_partition = Dataset.from_list(
315
+ [
316
+ {"value": "soup is good", "label": 0, "partition_id": "p1"},
317
+ {"value": "cats are cute", "label": 1, "partition_id": "p2"},
318
+ ]
319
+ )
320
+
321
+ # Evaluate with ignore_partitions mode
322
+ result = partitioned_classification_model.evaluate(
323
+ eval_dataset_with_partition,
324
+ partition_column="partition_id",
325
+ partition_filter_mode="ignore_partitions",
326
+ )
327
+ assert result is not None
328
+ assert isinstance(result, ClassificationMetrics)
329
+
330
+
331
+ @pytest.mark.parametrize("data_type", ["dataset", "datasource"])
332
+ def test_evaluate_with_partition_column_datasource(partitioned_classification_model: ClassificationModel, data_type):
333
+ """Test evaluate with partition_column on a Datasource"""
334
+ # Create a test datasource with partition_id column
335
+ eval_data_with_partition = [
336
+ {"value": "soup is good", "label": 0, "partition_id": "p1"},
337
+ {"value": "cats are cute", "label": 1, "partition_id": "p1"},
338
+ {"value": "homemade soup recipes", "label": 0, "partition_id": "p2"},
339
+ {"value": "cats purr when happy", "label": 1, "partition_id": "p2"},
340
+ ]
341
+
342
+ if data_type == "dataset":
343
+ eval_data = Dataset.from_list(eval_data_with_partition)
344
+ result = partitioned_classification_model.evaluate(
345
+ eval_data,
346
+ partition_column="partition_id",
347
+ partition_filter_mode="exclude_global",
348
+ )
349
+ else:
350
+ eval_datasource = Datasource.from_list("eval_datasource_with_partition", eval_data_with_partition)
351
+ result = partitioned_classification_model.evaluate(
352
+ eval_datasource,
353
+ partition_column="partition_id",
354
+ partition_filter_mode="exclude_global",
355
+ )
356
+
357
+ assert result is not None
358
+ assert isinstance(result, ClassificationMetrics)
359
+ assert isinstance(result.accuracy, float)
360
+ assert isinstance(result.f1_score, float)
361
+
362
+
224
363
  def test_predict(classification_model: ClassificationModel, label_names: list[str]):
225
364
  predictions = classification_model.predict(["Do you love soup?", "Are cats cute?"])
226
365
  assert len(predictions) == 2
@@ -284,6 +423,186 @@ def test_predict_constraint_violation(readonly_memoryset: LabeledMemoryset):
284
423
  model.predict("test")
285
424
 
286
425
 
426
+ def test_predict_with_partition_id(partitioned_classification_model: ClassificationModel, label_names: list[str]):
427
+ """Test predict with a specific partition_id"""
428
+ # Predict with partition_id p1 - should use memories from p1
429
+ prediction = partitioned_classification_model.predict(
430
+ "soup", partition_id="p1", partition_filter_mode="exclude_global"
431
+ )
432
+ assert prediction.label is not None
433
+ assert prediction.label_name in label_names
434
+ assert 0 <= prediction.confidence <= 1
435
+ assert prediction.logits is not None
436
+ assert len(prediction.logits) == 2
437
+
438
+ # Predict with partition_id p2 - should use memories from p2
439
+ prediction_p2 = partitioned_classification_model.predict(
440
+ "cats", partition_id="p2", partition_filter_mode="exclude_global"
441
+ )
442
+ assert prediction_p2.label is not None
443
+ assert prediction_p2.label_name in label_names
444
+ assert 0 <= prediction_p2.confidence <= 1
445
+
446
+
447
+ def test_predict_with_partition_id_include_global(
448
+ partitioned_classification_model: ClassificationModel, label_names: list[str]
449
+ ):
450
+ """Test predict with partition_id and include_global mode (default)"""
451
+ # Predict with partition_id p1 and include_global (default) - should include both p1 and global memories
452
+ prediction = partitioned_classification_model.predict(
453
+ "soup", partition_id="p1", partition_filter_mode="include_global"
454
+ )
455
+ assert prediction.label is not None
456
+ assert prediction.label_name in label_names
457
+ assert 0 <= prediction.confidence <= 1
458
+
459
+
460
+ def test_predict_with_partition_id_exclude_global(
461
+ partitioned_classification_model: ClassificationModel, label_names: list[str]
462
+ ):
463
+ """Test predict with partition_id and exclude_global mode"""
464
+ # Predict with partition_id p1 and exclude_global - should only use p1 memories
465
+ prediction = partitioned_classification_model.predict(
466
+ "soup", partition_id="p1", partition_filter_mode="exclude_global"
467
+ )
468
+ assert prediction.label is not None
469
+ assert prediction.label_name in label_names
470
+ assert 0 <= prediction.confidence <= 1
471
+
472
+
473
+ def test_predict_with_partition_id_only_global(
474
+ partitioned_classification_model: ClassificationModel, label_names: list[str]
475
+ ):
476
+ """Test predict with partition_filter_mode only_global"""
477
+ # Predict with only_global mode - should only use global memories
478
+ prediction = partitioned_classification_model.predict("cats", partition_filter_mode="only_global")
479
+ assert prediction.label is not None
480
+ assert prediction.label_name in label_names
481
+ assert 0 <= prediction.confidence <= 1
482
+
483
+
484
+ def test_predict_with_partition_id_ignore_partitions(
485
+ partitioned_classification_model: ClassificationModel, label_names: list[str]
486
+ ):
487
+ """Test predict with partition_filter_mode ignore_partitions"""
488
+ # Predict with ignore_partitions mode - should ignore partition filtering
489
+ prediction = partitioned_classification_model.predict("soup", partition_filter_mode="ignore_partitions")
490
+ assert prediction.label is not None
491
+ assert prediction.label_name in label_names
492
+ assert 0 <= prediction.confidence <= 1
493
+
494
+
495
+ def test_predict_batch_with_partition_id(partitioned_classification_model: ClassificationModel, label_names: list[str]):
496
+ """Test batch predict with partition_id"""
497
+ # Batch predict with partition_id p1
498
+ predictions = partitioned_classification_model.predict(
499
+ ["soup is good", "cats are cute"],
500
+ partition_id="p1",
501
+ partition_filter_mode="exclude_global",
502
+ )
503
+ assert len(predictions) == 2
504
+ assert all(p.label is not None for p in predictions)
505
+ assert all(p.label_name in label_names for p in predictions)
506
+ assert all(0 <= p.confidence <= 1 for p in predictions)
507
+ assert all(p.logits is not None and len(p.logits) == 2 for p in predictions)
508
+
509
+
510
+ def test_predict_with_partition_id_and_filters(
511
+ partitioned_classification_model: ClassificationModel, label_names: list[str]
512
+ ):
513
+ """Test predict with partition_id and filters"""
514
+ # Predict with partition_id and filters
515
+ prediction = partitioned_classification_model.predict(
516
+ "soup",
517
+ partition_id="p1",
518
+ partition_filter_mode="exclude_global",
519
+ filters=[("key", "==", "g1")],
520
+ )
521
+ assert prediction.label is not None
522
+ assert prediction.label_name in label_names
523
+ assert 0 <= prediction.confidence <= 1
524
+
525
+
526
+ def test_predict_batch_with_list_of_partition_ids(
527
+ partitioned_classification_model: ClassificationModel, label_names: list[str]
528
+ ):
529
+ """Test batch predict with a list of partition_ids (one for each query input)"""
530
+ # Batch predict with a list of partition_ids - one for each input
531
+ # First input uses p1, second input uses p2
532
+ predictions = partitioned_classification_model.predict(
533
+ ["soup is good", "cats are cute"],
534
+ partition_id=["p1", "p2"],
535
+ partition_filter_mode="exclude_global",
536
+ )
537
+ assert len(predictions) == 2
538
+ assert all(p.label is not None for p in predictions)
539
+ assert all(p.label_name in label_names for p in predictions)
540
+ assert all(0 <= p.confidence <= 1 for p in predictions)
541
+ assert all(p.logits is not None and len(p.logits) == 2 for p in predictions)
542
+
543
+ # Verify that predictions were made using the correct partitions
544
+ # Each prediction should use memories from its respective partition
545
+ assert predictions[0].input_value == "soup is good"
546
+ assert predictions[1].input_value == "cats are cute"
547
+
548
+
549
+ @pytest.mark.asyncio
550
+ async def test_predict_async_with_partition_id(
551
+ partitioned_classification_model: ClassificationModel, label_names: list[str]
552
+ ):
553
+ """Test async predict with partition_id"""
554
+ # Async predict with partition_id p1
555
+ prediction = await partitioned_classification_model.apredict(
556
+ "soup", partition_id="p1", partition_filter_mode="exclude_global"
557
+ )
558
+ assert prediction.label is not None
559
+ assert prediction.label_name in label_names
560
+ assert 0 <= prediction.confidence <= 1
561
+ assert prediction.logits is not None
562
+ assert len(prediction.logits) == 2
563
+
564
+
565
+ @pytest.mark.asyncio
566
+ async def test_predict_async_batch_with_partition_id(
567
+ partitioned_classification_model: ClassificationModel, label_names: list[str]
568
+ ):
569
+ """Test async batch predict with partition_id"""
570
+ # Async batch predict with partition_id p1
571
+ predictions = await partitioned_classification_model.apredict(
572
+ ["soup is good", "cats are cute"],
573
+ partition_id="p1",
574
+ partition_filter_mode="exclude_global",
575
+ )
576
+ assert len(predictions) == 2
577
+ assert all(p.label is not None for p in predictions)
578
+ assert all(p.label_name in label_names for p in predictions)
579
+ assert all(0 <= p.confidence <= 1 for p in predictions)
580
+
581
+
582
+ @pytest.mark.asyncio
583
+ async def test_predict_async_batch_with_list_of_partition_ids(
584
+ partitioned_classification_model: ClassificationModel, label_names: list[str]
585
+ ):
586
+ """Test async batch predict with a list of partition_ids (one for each query input)"""
587
+ # Async batch predict with a list of partition_ids - one for each input
588
+ # First input uses p1, second input uses p2
589
+ predictions = await partitioned_classification_model.apredict(
590
+ ["soup is good", "cats are cute"],
591
+ partition_id=["p1", "p2"],
592
+ partition_filter_mode="exclude_global",
593
+ )
594
+ assert len(predictions) == 2
595
+ assert all(p.label is not None for p in predictions)
596
+ assert all(p.label_name in label_names for p in predictions)
597
+ assert all(0 <= p.confidence <= 1 for p in predictions)
598
+ assert all(p.logits is not None and len(p.logits) == 2 for p in predictions)
599
+
600
+ # Verify that predictions were made using the correct partitions
601
+ # Each prediction should use memories from its respective partition
602
+ assert predictions[0].input_value == "soup is good"
603
+ assert predictions[1].input_value == "cats are cute"
604
+
605
+
287
606
  def test_record_prediction_feedback(classification_model: ClassificationModel):
288
607
  predictions = classification_model.predict(["Do you love soup?", "Are cats cute?"])
289
608
  expected_labels = [0, 1]