orca-sdk 0.1.3__py3-none-any.whl → 0.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
orca_sdk/async_client.py CHANGED
@@ -135,6 +135,10 @@ class ClassificationEvaluationRequest(TypedDict):
135
135
  datasource_value_column: str
136
136
  record_telemetry: NotRequired[bool]
137
137
  telemetry_tags: NotRequired[list[str] | None]
138
+ subsample: NotRequired[int | float | None]
139
+ ignore_unlabeled: NotRequired[bool]
140
+ datasource_partition_column: NotRequired[str | None]
141
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
138
142
 
139
143
 
140
144
  class CleanupResponse(TypedDict):
@@ -163,6 +167,7 @@ class CountPredictionsRequest(TypedDict):
163
167
  prediction_ids: NotRequired[list[str] | None]
164
168
  start_timestamp: NotRequired[str | None]
165
169
  end_timestamp: NotRequired[str | None]
170
+ memory_id: NotRequired[str | None]
166
171
 
167
172
 
168
173
  class CreateApiKeyRequest(TypedDict):
@@ -193,6 +198,12 @@ class CreateOrgPlanRequest(TypedDict):
193
198
  tier: Literal["FREE", "PRO", "ENTERPRISE", "CANCELLED"]
194
199
 
195
200
 
201
+ class DatasetFilterItem(TypedDict):
202
+ field: str
203
+ op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
204
+ value: Any
205
+
206
+
196
207
  class DeleteMemoriesRequest(TypedDict):
197
208
  memory_ids: list[str]
198
209
 
@@ -210,7 +221,7 @@ class EmbedRequest(TypedDict):
210
221
  class EmbeddingEvaluationRequest(TypedDict):
211
222
  datasource_name_or_id: str
212
223
  eval_datasource_name_or_id: NotRequired[str | None]
213
- subsample: NotRequired[int | None]
224
+ subsample: NotRequired[int | float | None]
214
225
  datasource_value_column: NotRequired[str]
215
226
  datasource_label_column: NotRequired[str | None]
216
227
  datasource_score_column: NotRequired[str | None]
@@ -219,7 +230,7 @@ class EmbeddingEvaluationRequest(TypedDict):
219
230
  weigh_memories: NotRequired[bool]
220
231
 
221
232
 
222
- EmbeddingFinetuningMethod = Literal["classification", "batch_triplet_loss"]
233
+ EmbeddingFinetuningMethod = Literal["classification", "regression", "batch_triplet_loss"]
223
234
 
224
235
 
225
236
  class FeedbackMetrics(TypedDict):
@@ -233,7 +244,19 @@ FeedbackType = Literal["CONTINUOUS", "BINARY"]
233
244
  class FilterItem(TypedDict):
234
245
  field: list
235
246
  op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
236
- value: str | int | float | bool | list[str] | list[int] | list[float] | list[bool] | None
247
+ value: str | int | float | bool | list[str | None] | list[int] | list[float] | list[bool] | None
248
+
249
+
250
+ class GetDatasourceRowCountRequest(TypedDict):
251
+ filters: NotRequired[list[DatasetFilterItem]]
252
+
253
+
254
+ class GetDatasourceRowsRequest(TypedDict):
255
+ filters: NotRequired[list[DatasetFilterItem]]
256
+ limit: NotRequired[int]
257
+ offset: NotRequired[int]
258
+ shuffle: NotRequired[bool]
259
+ shuffle_seed: NotRequired[int | None]
237
260
 
238
261
 
239
262
  class GetMemoriesRequest(TypedDict):
@@ -254,6 +277,18 @@ class InternalServerErrorResponse(TypedDict):
254
277
  request_id: str
255
278
 
256
279
 
280
+ JobStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
281
+
282
+
283
+ class JobStatusInfo(TypedDict):
284
+ status: JobStatus
285
+ steps_total: int | None
286
+ steps_completed: int | None
287
+ exception: str | None
288
+ updated_at: str
289
+ created_at: str
290
+
291
+
257
292
  class LabelClassMetrics(TypedDict):
258
293
  label: int | None
259
294
  label_name: NotRequired[str | None]
@@ -276,6 +311,7 @@ class LabeledMemoryInsert(TypedDict):
276
311
  value: str | bytes
277
312
  metadata: NotRequired[dict[str, str | int | float | bool | None]]
278
313
  source_id: NotRequired[str | None]
314
+ partition_id: NotRequired[str | None]
279
315
  label: int | None
280
316
 
281
317
 
@@ -283,12 +319,16 @@ class ListMemoriesRequest(TypedDict):
283
319
  offset: NotRequired[int]
284
320
  limit: NotRequired[int]
285
321
  filters: NotRequired[list[FilterItem]]
322
+ partition_id: NotRequired[str | None]
323
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
286
324
 
287
325
 
288
326
  class LookupRequest(TypedDict):
289
327
  query: list[str]
290
328
  count: NotRequired[int]
291
329
  prompt: NotRequired[str | None]
330
+ partition_id: NotRequired[str | list[str | None] | None]
331
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
292
332
 
293
333
 
294
334
  class LookupScoreMetrics(TypedDict):
@@ -340,8 +380,6 @@ class MemorysetClassPatternsMetrics(TypedDict):
340
380
  class MemorysetClusterAnalysisConfig(TypedDict):
341
381
  min_cluster_size: NotRequired[int | None]
342
382
  max_cluster_size: NotRequired[int | None]
343
- clustering_method: NotRequired[Literal["density", "graph"]]
344
- min_cluster_distance: NotRequired[float]
345
383
  partitioning_method: NotRequired[Literal["ng", "rb", "cpm"]]
346
384
  resolution: NotRequired[float | None]
347
385
  num_iterations: NotRequired[int]
@@ -370,6 +408,7 @@ class MemorysetConceptAnalysisConfig(TypedDict):
370
408
  use_generative_naming: NotRequired[bool]
371
409
  naming_examples_count: NotRequired[int]
372
410
  naming_counterexample_count: NotRequired[int]
411
+ primary_label_pct_threshold: NotRequired[float]
373
412
  seed: NotRequired[int]
374
413
 
375
414
 
@@ -439,7 +478,7 @@ class NotFoundErrorResponse(TypedDict):
439
478
  "memory",
440
479
  "evaluation",
441
480
  "analysis",
442
- "task",
481
+ "job",
443
482
  "pretrained_embedding_model",
444
483
  "finetuned_embedding_model",
445
484
  "feedback_category",
@@ -553,6 +592,10 @@ class RegressionEvaluationRequest(TypedDict):
553
592
  datasource_value_column: str
554
593
  record_telemetry: NotRequired[bool]
555
594
  telemetry_tags: NotRequired[list[str] | None]
595
+ subsample: NotRequired[int | float | None]
596
+ ignore_unlabeled: NotRequired[bool]
597
+ datasource_partition_column: NotRequired[str | None]
598
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
556
599
 
557
600
 
558
601
  class RegressionMetrics(TypedDict):
@@ -595,12 +638,16 @@ class RegressionPredictionRequest(TypedDict):
595
638
  prompt: NotRequired[str | None]
596
639
  use_lookup_cache: NotRequired[bool]
597
640
  consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
641
+ ignore_unlabeled: NotRequired[bool]
642
+ partition_ids: NotRequired[str | list[str | None] | None]
643
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
598
644
 
599
645
 
600
646
  class ScorePredictionMemoryLookup(TypedDict):
601
647
  value: str | bytes
602
648
  embedding: list[float]
603
649
  source_id: str | None
650
+ partition_id: str | None
604
651
  metadata: dict[str, str | int | float | bool | None]
605
652
  memory_id: str
606
653
  memory_version: int
@@ -638,6 +685,7 @@ class ScoredMemory(TypedDict):
638
685
  value: str | bytes
639
686
  embedding: list[float]
640
687
  source_id: str | None
688
+ partition_id: str | None
641
689
  metadata: dict[str, str | int | float | bool | None]
642
690
  memory_id: str
643
691
  memory_version: int
@@ -653,6 +701,7 @@ class ScoredMemoryInsert(TypedDict):
653
701
  value: str | bytes
654
702
  metadata: NotRequired[dict[str, str | int | float | bool | None]]
655
703
  source_id: NotRequired[str | None]
704
+ partition_id: NotRequired[str | None]
656
705
  score: float | None
657
706
 
658
707
 
@@ -660,6 +709,7 @@ class ScoredMemoryLookup(TypedDict):
660
709
  value: str | bytes
661
710
  embedding: list[float]
662
711
  source_id: str | None
712
+ partition_id: str | None
663
713
  metadata: dict[str, str | int | float | bool | None]
664
714
  memory_id: str
665
715
  memory_version: int
@@ -676,6 +726,7 @@ class ScoredMemoryUpdate(TypedDict):
676
726
  value: NotRequired[str | bytes]
677
727
  metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
678
728
  source_id: NotRequired[str | None]
729
+ partition_id: NotRequired[str | None]
679
730
  metrics: NotRequired[MemoryMetrics | None]
680
731
  score: NotRequired[float | None]
681
732
 
@@ -684,6 +735,7 @@ class ScoredMemoryWithFeedbackMetrics(TypedDict):
684
735
  value: str | bytes
685
736
  embedding: list[float]
686
737
  source_id: str | None
738
+ partition_id: str | None
687
739
  metadata: dict[str, str | int | float | bool | None]
688
740
  memory_id: str
689
741
  memory_version: int
@@ -709,18 +761,6 @@ class SubConceptMetrics(TypedDict):
709
761
  memory_count: int
710
762
 
711
763
 
712
- TaskStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
713
-
714
-
715
- class TaskStatusInfo(TypedDict):
716
- status: TaskStatus
717
- steps_total: int | None
718
- steps_completed: int | None
719
- exception: str | None
720
- updated_at: str
721
- created_at: str
722
-
723
-
724
764
  TelemetryField = list
725
765
 
726
766
 
@@ -793,6 +833,10 @@ class DeleteMemorysetByNameOrIdParams(TypedDict):
793
833
  name_or_id: str
794
834
 
795
835
 
836
+ class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
837
+ name_or_id: str
838
+
839
+
796
840
  class GetMemorysetByNameOrIdMemoryByMemoryIdParams(TypedDict):
797
841
  name_or_id: str
798
842
  memory_id: str
@@ -825,20 +869,35 @@ class PostMemorysetByNameOrIdMemoriesDeleteParams(TypedDict):
825
869
  name_or_id: str
826
870
 
827
871
 
872
+ class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
873
+ name_or_id: str
874
+
875
+
876
+ class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
877
+ name_or_id: str
878
+
879
+
880
+ PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
881
+
882
+
883
+ class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
884
+ name_or_id: str
885
+
886
+
828
887
  class PostMemorysetByNameOrIdAnalysisParams(TypedDict):
829
888
  name_or_id: str
830
889
 
831
890
 
832
891
  class GetMemorysetByNameOrIdAnalysisParams(TypedDict):
833
892
  name_or_id: str
834
- status: NotRequired[TaskStatus | None]
893
+ status: NotRequired[JobStatus | None]
835
894
  limit: NotRequired[int | None]
836
895
  offset: NotRequired[int | None]
837
896
 
838
897
 
839
- class GetMemorysetByNameOrIdAnalysisByAnalysisTaskIdParams(TypedDict):
898
+ class GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams(TypedDict):
840
899
  name_or_id: str
841
- analysis_task_id: str
900
+ analysis_job_id: str
842
901
 
843
902
 
844
903
  class PostMemorysetByNameOrIdMemoryByMemoryIdCascadingEditsParams(TypedDict):
@@ -854,34 +913,42 @@ class DeleteFinetunedEmbeddingModelByNameOrIdParams(TypedDict):
854
913
  name_or_id: str
855
914
 
856
915
 
857
- class PostFinetunedEmbeddingModelByNameOrIdEvaluationParams(TypedDict):
916
+ class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
858
917
  name_or_id: str
859
918
 
860
919
 
861
- class GetFinetunedEmbeddingModelByNameOrIdEvaluationByTaskIdParams(TypedDict):
862
- name_or_id: str
863
- task_id: str
920
+ class GetPretrainedEmbeddingModelByModelNameParams(TypedDict):
921
+ model_name: PretrainedEmbeddingModelName
864
922
 
865
923
 
866
- class GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams(TypedDict):
867
- name_or_id: str
868
- datasource: NotRequired[str | None]
869
- value_column: NotRequired[str | None]
870
- label_column: NotRequired[str | None]
871
- score_column: NotRequired[str | None]
924
+ class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
925
+ model_name: PretrainedEmbeddingModelName
872
926
 
873
927
 
874
- class GetPretrainedEmbeddingModelByModelNameParams(TypedDict):
875
- model_name: PretrainedEmbeddingModelName
928
+ class PostFinetunedEmbeddingModelByNameOrIdEvaluationParams(TypedDict):
929
+ name_or_id: str
876
930
 
877
931
 
878
932
  class PostPretrainedEmbeddingModelByModelNameEvaluationParams(TypedDict):
879
933
  model_name: PretrainedEmbeddingModelName
880
934
 
881
935
 
882
- class GetPretrainedEmbeddingModelByModelNameEvaluationByTaskIdParams(TypedDict):
936
+ class GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams(TypedDict):
937
+ name_or_id: str
938
+ job_id: str
939
+
940
+
941
+ class GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams(TypedDict):
883
942
  model_name: PretrainedEmbeddingModelName
884
- task_id: str
943
+ job_id: str
944
+
945
+
946
+ class GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams(TypedDict):
947
+ name_or_id: str
948
+ datasource: NotRequired[str | None]
949
+ value_column: NotRequired[str | None]
950
+ label_column: NotRequired[str | None]
951
+ score_column: NotRequired[str | None]
885
952
 
886
953
 
887
954
  class GetPretrainedEmbeddingModelByModelNameEvaluationsParams(TypedDict):
@@ -911,6 +978,14 @@ class DeleteDatasourceByNameOrIdParams(TypedDict):
911
978
  name_or_id: str
912
979
 
913
980
 
981
+ class PostDatasourceByNameOrIdRowsParams(TypedDict):
982
+ name_or_id: str
983
+
984
+
985
+ class PostDatasourceByNameOrIdRowsCountParams(TypedDict):
986
+ name_or_id: str
987
+
988
+
914
989
  class GetDatasourceByNameOrIdEmbeddingModelEvaluationsParams(TypedDict):
915
990
  name_or_id: str
916
991
  value_column: NotRequired[str | None]
@@ -941,36 +1016,42 @@ class DeleteClassificationModelByNameOrIdParams(TypedDict):
941
1016
  name_or_id: str
942
1017
 
943
1018
 
944
- class PostClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
945
- model_name_or_id: str
1019
+ class PatchRegressionModelByNameOrIdParams(TypedDict):
1020
+ name_or_id: str
946
1021
 
947
1022
 
948
- class GetClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
949
- model_name_or_id: str
1023
+ class GetRegressionModelByNameOrIdParams(TypedDict):
1024
+ name_or_id: str
950
1025
 
951
1026
 
952
- class GetClassificationModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
953
- model_name_or_id: str
954
- task_id: str
1027
+ class DeleteRegressionModelByNameOrIdParams(TypedDict):
1028
+ name_or_id: str
955
1029
 
956
1030
 
957
- class DeleteClassificationModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
958
- model_name_or_id: str
959
- task_id: str
1031
+ class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
1032
+ name_or_id: str
960
1033
 
961
1034
 
962
- class PatchRegressionModelByNameOrIdParams(TypedDict):
1035
+ class PostClassificationModelByNameOrIdPredictionParams(TypedDict):
963
1036
  name_or_id: str
964
1037
 
965
1038
 
966
- class GetRegressionModelByNameOrIdParams(TypedDict):
1039
+ class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
967
1040
  name_or_id: str
968
1041
 
969
1042
 
970
- class DeleteRegressionModelByNameOrIdParams(TypedDict):
1043
+ class PostRegressionModelByNameOrIdPredictionParams(TypedDict):
971
1044
  name_or_id: str
972
1045
 
973
1046
 
1047
+ class PostClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
1048
+ model_name_or_id: str
1049
+
1050
+
1051
+ class GetClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
1052
+ model_name_or_id: str
1053
+
1054
+
974
1055
  class PostRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
975
1056
  model_name_or_id: str
976
1057
 
@@ -979,26 +1060,36 @@ class GetRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
979
1060
  model_name_or_id: str
980
1061
 
981
1062
 
982
- class GetRegressionModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
1063
+ class GetClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
983
1064
  model_name_or_id: str
984
- task_id: str
1065
+ job_id: str
985
1066
 
986
1067
 
987
- class DeleteRegressionModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
1068
+ class DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
988
1069
  model_name_or_id: str
989
- task_id: str
1070
+ job_id: str
990
1071
 
991
1072
 
992
- class GetTaskByTaskIdParams(TypedDict):
993
- task_id: str
1073
+ class GetRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
1074
+ model_name_or_id: str
1075
+ job_id: str
994
1076
 
995
1077
 
996
- class GetTaskByTaskIdStatusParams(TypedDict):
997
- task_id: str
1078
+ class DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
1079
+ model_name_or_id: str
1080
+ job_id: str
1081
+
1082
+
1083
+ class GetJobByJobIdParams(TypedDict):
1084
+ job_id: str
1085
+
998
1086
 
1087
+ class GetJobByJobIdStatusParams(TypedDict):
1088
+ job_id: str
999
1089
 
1000
- class GetTaskParams(TypedDict):
1001
- status: NotRequired[TaskStatus | list[TaskStatus] | None]
1090
+
1091
+ class GetJobParams(TypedDict):
1092
+ status: NotRequired[JobStatus | list[JobStatus] | None]
1002
1093
  type: NotRequired[str | list[str] | None]
1003
1094
  limit: NotRequired[int | None]
1004
1095
  offset: NotRequired[int]
@@ -1006,8 +1097,8 @@ class GetTaskParams(TypedDict):
1006
1097
  end_timestamp: NotRequired[str | None]
1007
1098
 
1008
1099
 
1009
- class DeleteTaskByTaskIdAbortParams(TypedDict):
1010
- task_id: str
1100
+ class DeleteJobByJobIdAbortParams(TypedDict):
1101
+ job_id: str
1011
1102
 
1012
1103
 
1013
1104
  class GetWorkerParams(TypedDict):
@@ -1063,43 +1154,8 @@ class DeleteTelemetryFeedbackCategoryByNameOrIdParams(TypedDict):
1063
1154
  PutTelemetryPredictionFeedbackRequest = list[PredictionFeedbackRequest]
1064
1155
 
1065
1156
 
1066
- class GetAgentsBootstrapClassificationModelByTaskIdParams(TypedDict):
1067
- task_id: str
1068
-
1069
-
1070
- class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
1071
- name_or_id: str
1072
-
1073
-
1074
- class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
1075
- name_or_id: str
1076
-
1077
-
1078
- class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
1079
- name_or_id: str
1080
-
1081
-
1082
- PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
1083
-
1084
-
1085
- class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
1086
- name_or_id: str
1087
-
1088
-
1089
- class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
1090
- name_or_id: str
1091
-
1092
-
1093
- class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
1094
- name_or_id: str
1095
-
1096
-
1097
- class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
1098
- name_or_id: str
1099
-
1100
-
1101
- class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
1102
- model_name: PretrainedEmbeddingModelName
1157
+ class GetAgentsBootstrapClassificationModelByJobIdParams(TypedDict):
1158
+ job_id: str
1103
1159
 
1104
1160
 
1105
1161
  class FieldValidationError(TypedDict):
@@ -1171,6 +1227,9 @@ class ClassificationPredictionRequest(TypedDict):
1171
1227
  prompt: NotRequired[str | None]
1172
1228
  use_lookup_cache: NotRequired[bool]
1173
1229
  consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
1230
+ ignore_unlabeled: NotRequired[bool]
1231
+ partition_ids: NotRequired[str | list[str | None] | None]
1232
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
1174
1233
 
1175
1234
 
1176
1235
  class CloneMemorysetRequest(TypedDict):
@@ -1187,6 +1246,7 @@ class ColumnInfo(TypedDict):
1187
1246
  name: str
1188
1247
  type: ColumnType
1189
1248
  enum_options: NotRequired[list[str] | None]
1249
+ string_values: NotRequired[list[str] | None]
1190
1250
  int_values: NotRequired[list[int] | None]
1191
1251
  contains_nones: NotRequired[bool]
1192
1252
 
@@ -1223,6 +1283,7 @@ class CreateMemorysetRequest(TypedDict):
1223
1283
  datasource_score_column: NotRequired[str | None]
1224
1284
  datasource_value_column: str
1225
1285
  datasource_source_id_column: NotRequired[str | None]
1286
+ datasource_partition_id_column: NotRequired[str | None]
1226
1287
  remove_duplicates: NotRequired[bool]
1227
1288
  pretrained_embedding_model_name: NotRequired[PretrainedEmbeddingModelName | None]
1228
1289
  finetuned_embedding_model_name_or_id: NotRequired[str | None]
@@ -1233,6 +1294,8 @@ class CreateMemorysetRequest(TypedDict):
1233
1294
  prompt: NotRequired[str]
1234
1295
  hidden: NotRequired[bool]
1235
1296
  batch_size: NotRequired[int]
1297
+ subsample: NotRequired[int | float | None]
1298
+ memory_type: NotRequired[MemoryType]
1236
1299
 
1237
1300
 
1238
1301
  class CreateRegressionModelRequest(TypedDict):
@@ -1257,48 +1320,52 @@ class DatasourceMetadata(TypedDict):
1257
1320
 
1258
1321
 
1259
1322
  class EmbeddingEvaluationResponse(TypedDict):
1260
- task_id: str
1323
+ job_id: str
1261
1324
  org_id: str
1262
1325
  finetuned_embedding_model_id: str | None
1263
1326
  pretrained_embedding_model_name: PretrainedEmbeddingModelName | None
1264
1327
  datasource_id: str
1265
- subsample: int | None
1328
+ subsample: int | float | None
1266
1329
  datasource_value_column: str
1267
1330
  datasource_label_column: NotRequired[str | None]
1268
1331
  datasource_score_column: NotRequired[str | None]
1269
1332
  neighbor_count: int
1270
1333
  weigh_memories: bool
1271
- status: TaskStatus
1334
+ status: JobStatus
1272
1335
  result: ClassificationMetrics | RegressionMetrics | None
1273
1336
  created_at: str
1274
1337
  updated_at: str
1338
+ task_id: str
1275
1339
 
1276
1340
 
1277
1341
  class EvaluationResponse(TypedDict):
1278
- task_id: str
1342
+ job_id: str
1279
1343
  org_id: str
1280
- status: TaskStatus
1344
+ status: JobStatus
1281
1345
  result: ClassificationMetrics | RegressionMetrics | None
1282
1346
  created_at: str
1283
1347
  updated_at: str
1348
+ task_id: str
1284
1349
 
1285
1350
 
1286
1351
  class EvaluationResponseClassificationMetrics(TypedDict):
1287
- task_id: str
1352
+ job_id: str
1288
1353
  org_id: str
1289
- status: TaskStatus
1354
+ status: JobStatus
1290
1355
  result: ClassificationMetrics | None
1291
1356
  created_at: str
1292
1357
  updated_at: str
1358
+ task_id: str
1293
1359
 
1294
1360
 
1295
1361
  class EvaluationResponseRegressionMetrics(TypedDict):
1296
- task_id: str
1362
+ job_id: str
1297
1363
  org_id: str
1298
- status: TaskStatus
1364
+ status: JobStatus
1299
1365
  result: RegressionMetrics | None
1300
1366
  created_at: str
1301
1367
  updated_at: str
1368
+ task_id: str
1302
1369
 
1303
1370
 
1304
1371
  class FinetuneEmbeddingModelRequest(TypedDict):
@@ -1307,7 +1374,8 @@ class FinetuneEmbeddingModelRequest(TypedDict):
1307
1374
  train_memoryset_name_or_id: NotRequired[str | None]
1308
1375
  train_datasource_name_or_id: NotRequired[str | None]
1309
1376
  eval_datasource_name_or_id: NotRequired[str | None]
1310
- label_column: NotRequired[str]
1377
+ label_column: NotRequired[str | None]
1378
+ score_column: NotRequired[str | None]
1311
1379
  value_column: NotRequired[str]
1312
1380
  training_method: NotRequired[EmbeddingFinetuningMethod]
1313
1381
  training_args: NotRequired[dict[str, str | int | float | bool]]
@@ -1324,8 +1392,9 @@ class FinetunedEmbeddingModelMetadata(TypedDict):
1324
1392
  created_at: str
1325
1393
  updated_at: str
1326
1394
  base_model: PretrainedEmbeddingModelName
1395
+ finetuning_job_id: str
1396
+ finetuning_status: JobStatus
1327
1397
  finetuning_task_id: str
1328
- finetuning_status: TaskStatus
1329
1398
 
1330
1399
 
1331
1400
  class HTTPValidationError(TypedDict):
@@ -1337,10 +1406,28 @@ class InvalidInputErrorResponse(TypedDict):
1337
1406
  validation_issues: list[FieldValidationError]
1338
1407
 
1339
1408
 
1409
+ class Job(TypedDict):
1410
+ status: JobStatus
1411
+ steps_total: int | None
1412
+ steps_completed: int | None
1413
+ exception: str | None
1414
+ updated_at: str
1415
+ created_at: str
1416
+ id: str
1417
+ org_id: str
1418
+ worker_id: str | None
1419
+ type: str
1420
+ payload: BaseModel
1421
+ result: BaseModel | None
1422
+ depends_on: NotRequired[list[str]]
1423
+ lease_token: str | None
1424
+
1425
+
1340
1426
  class LabelPredictionMemoryLookup(TypedDict):
1341
1427
  value: str | bytes
1342
1428
  embedding: list[float]
1343
1429
  source_id: str | None
1430
+ partition_id: str | None
1344
1431
  metadata: dict[str, str | int | float | bool | None]
1345
1432
  memory_id: str
1346
1433
  memory_version: int
@@ -1382,6 +1469,7 @@ class LabeledMemory(TypedDict):
1382
1469
  value: str | bytes
1383
1470
  embedding: list[float]
1384
1471
  source_id: str | None
1472
+ partition_id: str | None
1385
1473
  metadata: dict[str, str | int | float | bool | None]
1386
1474
  memory_id: str
1387
1475
  memory_version: int
@@ -1397,6 +1485,7 @@ class LabeledMemoryLookup(TypedDict):
1397
1485
  value: str | bytes
1398
1486
  embedding: list[float]
1399
1487
  source_id: str | None
1488
+ partition_id: str | None
1400
1489
  metadata: dict[str, str | int | float | bool | None]
1401
1490
  memory_id: str
1402
1491
  memory_version: int
@@ -1414,6 +1503,7 @@ class LabeledMemoryUpdate(TypedDict):
1414
1503
  value: NotRequired[str | bytes]
1415
1504
  metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
1416
1505
  source_id: NotRequired[str | None]
1506
+ partition_id: NotRequired[str | None]
1417
1507
  metrics: NotRequired[MemoryMetrics | None]
1418
1508
  label: NotRequired[int | None]
1419
1509
 
@@ -1422,6 +1512,7 @@ class LabeledMemoryWithFeedbackMetrics(TypedDict):
1422
1512
  value: str | bytes
1423
1513
  embedding: list[float]
1424
1514
  source_id: str | None
1515
+ partition_id: str | None
1425
1516
  metadata: dict[str, str | int | float | bool | None]
1426
1517
  memory_id: str
1427
1518
  memory_version: int
@@ -1441,7 +1532,8 @@ class ListPredictionsRequest(TypedDict):
1441
1532
  prediction_ids: NotRequired[list[str] | None]
1442
1533
  start_timestamp: NotRequired[str | None]
1443
1534
  end_timestamp: NotRequired[str | None]
1444
- limit: NotRequired[int | None]
1535
+ memory_id: NotRequired[str | None]
1536
+ limit: NotRequired[int]
1445
1537
  offset: NotRequired[int | None]
1446
1538
  sort: NotRequired[PredictionSort]
1447
1539
  expected_label_match: NotRequired[bool | None]
@@ -1462,6 +1554,7 @@ class MemorysetAnalysisRequest(TypedDict):
1462
1554
  batch_size: NotRequired[int]
1463
1555
  clear_metrics: NotRequired[bool]
1464
1556
  configs: MemorysetAnalysisConfigs
1557
+ partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
1465
1558
 
1466
1559
 
1467
1560
  class MemorysetConceptMetrics(TypedDict):
@@ -1480,6 +1573,13 @@ class MemorysetMetrics(TypedDict):
1480
1573
  concepts: NotRequired[MemorysetConceptMetrics | None]
1481
1574
 
1482
1575
 
1576
+ class PaginatedJob(TypedDict):
1577
+ items: list[Job]
1578
+ total: int
1579
+ offset: int
1580
+ limit: int
1581
+
1582
+
1483
1583
  class PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics(TypedDict):
1484
1584
  items: list[LabeledMemoryWithFeedbackMetrics | ScoredMemoryWithFeedbackMetrics]
1485
1585
  total: int
@@ -1497,23 +1597,6 @@ class PretrainedEmbeddingModelMetadata(TypedDict):
1497
1597
  num_params: int
1498
1598
 
1499
1599
 
1500
- class Task(TypedDict):
1501
- status: TaskStatus
1502
- steps_total: int | None
1503
- steps_completed: int | None
1504
- exception: str | None
1505
- updated_at: str
1506
- created_at: str
1507
- id: str
1508
- org_id: str
1509
- worker_id: str | None
1510
- type: str
1511
- payload: BaseModel
1512
- result: BaseModel | None
1513
- depends_on: list[str]
1514
- lease_token: str | None
1515
-
1516
-
1517
1600
  class TelemetryMemoriesRequest(TypedDict):
1518
1601
  memoryset_id: str
1519
1602
  offset: NotRequired[int]
@@ -1545,10 +1628,10 @@ class CascadingEditSuggestion(TypedDict):
1545
1628
 
1546
1629
 
1547
1630
  class MemorysetAnalysisResponse(TypedDict):
1548
- task_id: str
1631
+ job_id: str
1549
1632
  org_id: str
1550
1633
  memoryset_id: str
1551
- status: TaskStatus
1634
+ status: JobStatus
1552
1635
  lookup_count: int
1553
1636
  batch_size: int
1554
1637
  clear_metrics: bool
@@ -1556,6 +1639,7 @@ class MemorysetAnalysisResponse(TypedDict):
1556
1639
  results: MemorysetMetrics | None
1557
1640
  created_at: str
1558
1641
  updated_at: str
1642
+ task_id: str
1559
1643
 
1560
1644
 
1561
1645
  class MemorysetMetadata(TypedDict):
@@ -1571,8 +1655,8 @@ class MemorysetMetadata(TypedDict):
1571
1655
  created_at: str
1572
1656
  updated_at: str
1573
1657
  memories_updated_at: str
1574
- insertion_task_id: str
1575
- insertion_status: TaskStatus
1658
+ insertion_job_id: str
1659
+ insertion_status: JobStatus
1576
1660
  metrics: MemorysetMetrics
1577
1661
  memory_type: MemoryType
1578
1662
  label_names: list[str] | None
@@ -1582,13 +1666,7 @@ class MemorysetMetadata(TypedDict):
1582
1666
  document_prompt_override: str | None
1583
1667
  query_prompt_override: str | None
1584
1668
  hidden: bool
1585
-
1586
-
1587
- class PaginatedTask(TypedDict):
1588
- items: list[Task]
1589
- total: int
1590
- offset: int
1591
- limit: int
1669
+ insertion_task_id: str
1592
1670
 
1593
1671
 
1594
1672
  class PaginatedWorkerInfo(TypedDict):
@@ -1606,11 +1684,12 @@ class BootstrapClassificationModelMeta(TypedDict):
1606
1684
 
1607
1685
 
1608
1686
  class BootstrapClassificationModelResponse(TypedDict):
1609
- task_id: str
1687
+ job_id: str
1610
1688
  org_id: str
1611
- status: TaskStatus
1689
+ status: JobStatus
1612
1690
  result: BootstrapClassificationModelMeta | None
1613
1691
  input: BootstrapClassificationModelRequest | None
1692
+ task_id: str
1614
1693
 
1615
1694
 
1616
1695
  class OrcaAsyncClient(AsyncClient):
@@ -1889,9 +1968,9 @@ class OrcaAsyncClient(AsyncClient):
1889
1968
  @overload
1890
1969
  async def GET(
1891
1970
  self,
1892
- path: Literal["/memoryset/{name_or_id}/analysis/{analysis_task_id}"],
1971
+ path: Literal["/memoryset/{name_or_id}/analysis/{analysis_job_id}"],
1893
1972
  *,
1894
- params: GetMemorysetByNameOrIdAnalysisByAnalysisTaskIdParams,
1973
+ params: GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams,
1895
1974
  parse_as: Literal["json"] = "json",
1896
1975
  headers: HeaderTypes | None = None,
1897
1976
  cookies: CookieTypes | None = None,
@@ -1939,9 +2018,9 @@ class OrcaAsyncClient(AsyncClient):
1939
2018
  @overload
1940
2019
  async def GET(
1941
2020
  self,
1942
- path: Literal["/finetuned_embedding_model/{name_or_id}/evaluation/{task_id}"],
2021
+ path: Literal["/pretrained_embedding_model"],
1943
2022
  *,
1944
- params: GetFinetunedEmbeddingModelByNameOrIdEvaluationByTaskIdParams,
2023
+ params: None = None,
1945
2024
  parse_as: Literal["json"] = "json",
1946
2025
  headers: HeaderTypes | None = None,
1947
2026
  cookies: CookieTypes | None = None,
@@ -1949,16 +2028,16 @@ class OrcaAsyncClient(AsyncClient):
1949
2028
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1950
2029
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1951
2030
  extensions: RequestExtensions | None = None,
1952
- ) -> EmbeddingEvaluationResponse:
1953
- """Get evaluation results for a finetuned embedding model by task ID."""
2031
+ ) -> list[PretrainedEmbeddingModelMetadata]:
2032
+ """List all available pretrained embedding models."""
1954
2033
  pass
1955
2034
 
1956
2035
  @overload
1957
2036
  async def GET(
1958
2037
  self,
1959
- path: Literal["/finetuned_embedding_model/{name_or_id}/evaluations"],
2038
+ path: Literal["/pretrained_embedding_model/{model_name}"],
1960
2039
  *,
1961
- params: GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams,
2040
+ params: GetPretrainedEmbeddingModelByModelNameParams,
1962
2041
  parse_as: Literal["json"] = "json",
1963
2042
  headers: HeaderTypes | None = None,
1964
2043
  cookies: CookieTypes | None = None,
@@ -1966,16 +2045,16 @@ class OrcaAsyncClient(AsyncClient):
1966
2045
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1967
2046
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1968
2047
  extensions: RequestExtensions | None = None,
1969
- ) -> list[EmbeddingEvaluationResponse]:
1970
- """List all evaluation results for a finetuned embedding model."""
2048
+ ) -> PretrainedEmbeddingModelMetadata:
2049
+ """Get metadata for a specific pretrained embedding model."""
1971
2050
  pass
1972
2051
 
1973
2052
  @overload
1974
2053
  async def GET(
1975
2054
  self,
1976
- path: Literal["/pretrained_embedding_model"],
2055
+ path: Literal["/finetuned_embedding_model/{name_or_id}/evaluation/{job_id}"],
1977
2056
  *,
1978
- params: None = None,
2057
+ params: GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams,
1979
2058
  parse_as: Literal["json"] = "json",
1980
2059
  headers: HeaderTypes | None = None,
1981
2060
  cookies: CookieTypes | None = None,
@@ -1983,16 +2062,16 @@ class OrcaAsyncClient(AsyncClient):
1983
2062
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1984
2063
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1985
2064
  extensions: RequestExtensions | None = None,
1986
- ) -> list[PretrainedEmbeddingModelMetadata]:
1987
- """List all available pretrained embedding models."""
2065
+ ) -> EmbeddingEvaluationResponse:
2066
+ """Get evaluation results for a finetuned embedding model by job ID."""
1988
2067
  pass
1989
2068
 
1990
2069
  @overload
1991
2070
  async def GET(
1992
2071
  self,
1993
- path: Literal["/pretrained_embedding_model/{model_name}"],
2072
+ path: Literal["/pretrained_embedding_model/{model_name}/evaluation/{job_id}"],
1994
2073
  *,
1995
- params: GetPretrainedEmbeddingModelByModelNameParams,
2074
+ params: GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams,
1996
2075
  parse_as: Literal["json"] = "json",
1997
2076
  headers: HeaderTypes | None = None,
1998
2077
  cookies: CookieTypes | None = None,
@@ -2000,16 +2079,16 @@ class OrcaAsyncClient(AsyncClient):
2000
2079
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2001
2080
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2002
2081
  extensions: RequestExtensions | None = None,
2003
- ) -> PretrainedEmbeddingModelMetadata:
2004
- """Get metadata for a specific pretrained embedding model."""
2082
+ ) -> EmbeddingEvaluationResponse:
2083
+ """Get evaluation results for a pretrained embedding model by job ID."""
2005
2084
  pass
2006
2085
 
2007
2086
  @overload
2008
2087
  async def GET(
2009
2088
  self,
2010
- path: Literal["/pretrained_embedding_model/{model_name}/evaluation/{task_id}"],
2089
+ path: Literal["/finetuned_embedding_model/{name_or_id}/evaluations"],
2011
2090
  *,
2012
- params: GetPretrainedEmbeddingModelByModelNameEvaluationByTaskIdParams,
2091
+ params: GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams,
2013
2092
  parse_as: Literal["json"] = "json",
2014
2093
  headers: HeaderTypes | None = None,
2015
2094
  cookies: CookieTypes | None = None,
@@ -2017,8 +2096,8 @@ class OrcaAsyncClient(AsyncClient):
2017
2096
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2018
2097
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2019
2098
  extensions: RequestExtensions | None = None,
2020
- ) -> EmbeddingEvaluationResponse:
2021
- """Get evaluation results for a pretrained embedding model by task ID."""
2099
+ ) -> list[EmbeddingEvaluationResponse]:
2100
+ """List all evaluation results for a finetuned embedding model."""
2022
2101
  pass
2023
2102
 
2024
2103
  @overload
@@ -2143,7 +2222,7 @@ class OrcaAsyncClient(AsyncClient):
2143
2222
  @overload
2144
2223
  async def GET(
2145
2224
  self,
2146
- path: Literal["/predictive_model"],
2225
+ path: Literal["/classification_model"],
2147
2226
  *,
2148
2227
  params: None = None,
2149
2228
  parse_as: Literal["json"] = "json",
@@ -2153,13 +2232,13 @@ class OrcaAsyncClient(AsyncClient):
2153
2232
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2154
2233
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2155
2234
  extensions: RequestExtensions | None = None,
2156
- ) -> list[ClassificationModelMetadata | RegressionModelMetadata]:
2235
+ ) -> list[ClassificationModelMetadata]:
2157
2236
  pass
2158
2237
 
2159
2238
  @overload
2160
2239
  async def GET(
2161
2240
  self,
2162
- path: Literal["/classification_model"],
2241
+ path: Literal["/regression_model"],
2163
2242
  *,
2164
2243
  params: None = None,
2165
2244
  parse_as: Literal["json"] = "json",
@@ -2169,7 +2248,7 @@ class OrcaAsyncClient(AsyncClient):
2169
2248
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2170
2249
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2171
2250
  extensions: RequestExtensions | None = None,
2172
- ) -> list[ClassificationModelMetadata]:
2251
+ ) -> list[RegressionModelMetadata]:
2173
2252
  pass
2174
2253
 
2175
2254
  @overload
@@ -2191,9 +2270,9 @@ class OrcaAsyncClient(AsyncClient):
2191
2270
  @overload
2192
2271
  async def GET(
2193
2272
  self,
2194
- path: Literal["/classification_model/{model_name_or_id}/evaluation"],
2273
+ path: Literal["/regression_model/{name_or_id}"],
2195
2274
  *,
2196
- params: GetClassificationModelByModelNameOrIdEvaluationParams,
2275
+ params: GetRegressionModelByNameOrIdParams,
2197
2276
  parse_as: Literal["json"] = "json",
2198
2277
  headers: HeaderTypes | None = None,
2199
2278
  cookies: CookieTypes | None = None,
@@ -2201,15 +2280,15 @@ class OrcaAsyncClient(AsyncClient):
2201
2280
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2202
2281
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2203
2282
  extensions: RequestExtensions | None = None,
2204
- ) -> list[EvaluationResponseClassificationMetrics]:
2283
+ ) -> RegressionModelMetadata:
2205
2284
  pass
2206
2285
 
2207
2286
  @overload
2208
2287
  async def GET(
2209
2288
  self,
2210
- path: Literal["/classification_model/{model_name_or_id}/evaluation/{task_id}"],
2289
+ path: Literal["/predictive_model"],
2211
2290
  *,
2212
- params: GetClassificationModelByModelNameOrIdEvaluationByTaskIdParams,
2291
+ params: None = None,
2213
2292
  parse_as: Literal["json"] = "json",
2214
2293
  headers: HeaderTypes | None = None,
2215
2294
  cookies: CookieTypes | None = None,
@@ -2217,15 +2296,15 @@ class OrcaAsyncClient(AsyncClient):
2217
2296
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2218
2297
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2219
2298
  extensions: RequestExtensions | None = None,
2220
- ) -> EvaluationResponseClassificationMetrics:
2299
+ ) -> list[ClassificationModelMetadata | RegressionModelMetadata]:
2221
2300
  pass
2222
2301
 
2223
2302
  @overload
2224
2303
  async def GET(
2225
2304
  self,
2226
- path: Literal["/regression_model"],
2305
+ path: Literal["/classification_model/{model_name_or_id}/evaluation"],
2227
2306
  *,
2228
- params: None = None,
2307
+ params: GetClassificationModelByModelNameOrIdEvaluationParams,
2229
2308
  parse_as: Literal["json"] = "json",
2230
2309
  headers: HeaderTypes | None = None,
2231
2310
  cookies: CookieTypes | None = None,
@@ -2233,15 +2312,15 @@ class OrcaAsyncClient(AsyncClient):
2233
2312
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2234
2313
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2235
2314
  extensions: RequestExtensions | None = None,
2236
- ) -> list[RegressionModelMetadata]:
2315
+ ) -> list[EvaluationResponseClassificationMetrics]:
2237
2316
  pass
2238
2317
 
2239
2318
  @overload
2240
2319
  async def GET(
2241
2320
  self,
2242
- path: Literal["/regression_model/{name_or_id}"],
2321
+ path: Literal["/regression_model/{model_name_or_id}/evaluation"],
2243
2322
  *,
2244
- params: GetRegressionModelByNameOrIdParams,
2323
+ params: GetRegressionModelByModelNameOrIdEvaluationParams,
2245
2324
  parse_as: Literal["json"] = "json",
2246
2325
  headers: HeaderTypes | None = None,
2247
2326
  cookies: CookieTypes | None = None,
@@ -2249,15 +2328,15 @@ class OrcaAsyncClient(AsyncClient):
2249
2328
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2250
2329
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2251
2330
  extensions: RequestExtensions | None = None,
2252
- ) -> RegressionModelMetadata:
2331
+ ) -> list[EvaluationResponseRegressionMetrics]:
2253
2332
  pass
2254
2333
 
2255
2334
  @overload
2256
2335
  async def GET(
2257
2336
  self,
2258
- path: Literal["/regression_model/{model_name_or_id}/evaluation"],
2337
+ path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
2259
2338
  *,
2260
- params: GetRegressionModelByModelNameOrIdEvaluationParams,
2339
+ params: GetClassificationModelByModelNameOrIdEvaluationByJobIdParams,
2261
2340
  parse_as: Literal["json"] = "json",
2262
2341
  headers: HeaderTypes | None = None,
2263
2342
  cookies: CookieTypes | None = None,
@@ -2265,15 +2344,15 @@ class OrcaAsyncClient(AsyncClient):
2265
2344
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2266
2345
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2267
2346
  extensions: RequestExtensions | None = None,
2268
- ) -> list[EvaluationResponseRegressionMetrics]:
2347
+ ) -> EvaluationResponseClassificationMetrics:
2269
2348
  pass
2270
2349
 
2271
2350
  @overload
2272
2351
  async def GET(
2273
2352
  self,
2274
- path: Literal["/regression_model/{model_name_or_id}/evaluation/{task_id}"],
2353
+ path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
2275
2354
  *,
2276
- params: GetRegressionModelByModelNameOrIdEvaluationByTaskIdParams,
2355
+ params: GetRegressionModelByModelNameOrIdEvaluationByJobIdParams,
2277
2356
  parse_as: Literal["json"] = "json",
2278
2357
  headers: HeaderTypes | None = None,
2279
2358
  cookies: CookieTypes | None = None,
@@ -2287,9 +2366,9 @@ class OrcaAsyncClient(AsyncClient):
2287
2366
  @overload
2288
2367
  async def GET(
2289
2368
  self,
2290
- path: Literal["/task/{task_id}"],
2369
+ path: Literal["/job/{job_id}"],
2291
2370
  *,
2292
- params: GetTaskByTaskIdParams,
2371
+ params: GetJobByJobIdParams,
2293
2372
  parse_as: Literal["json"] = "json",
2294
2373
  headers: HeaderTypes | None = None,
2295
2374
  cookies: CookieTypes | None = None,
@@ -2297,15 +2376,15 @@ class OrcaAsyncClient(AsyncClient):
2297
2376
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2298
2377
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2299
2378
  extensions: RequestExtensions | None = None,
2300
- ) -> Task:
2379
+ ) -> Job:
2301
2380
  pass
2302
2381
 
2303
2382
  @overload
2304
2383
  async def GET(
2305
2384
  self,
2306
- path: Literal["/task/{task_id}/status"],
2385
+ path: Literal["/job/{job_id}/status"],
2307
2386
  *,
2308
- params: GetTaskByTaskIdStatusParams,
2387
+ params: GetJobByJobIdStatusParams,
2309
2388
  parse_as: Literal["json"] = "json",
2310
2389
  headers: HeaderTypes | None = None,
2311
2390
  cookies: CookieTypes | None = None,
@@ -2313,15 +2392,15 @@ class OrcaAsyncClient(AsyncClient):
2313
2392
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2314
2393
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2315
2394
  extensions: RequestExtensions | None = None,
2316
- ) -> TaskStatusInfo:
2395
+ ) -> JobStatusInfo:
2317
2396
  pass
2318
2397
 
2319
2398
  @overload
2320
2399
  async def GET(
2321
2400
  self,
2322
- path: Literal["/task"],
2401
+ path: Literal["/job"],
2323
2402
  *,
2324
- params: GetTaskParams,
2403
+ params: GetJobParams,
2325
2404
  parse_as: Literal["json"] = "json",
2326
2405
  headers: HeaderTypes | None = None,
2327
2406
  cookies: CookieTypes | None = None,
@@ -2329,7 +2408,7 @@ class OrcaAsyncClient(AsyncClient):
2329
2408
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2330
2409
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2331
2410
  extensions: RequestExtensions | None = None,
2332
- ) -> PaginatedTask:
2411
+ ) -> PaginatedJob:
2333
2412
  pass
2334
2413
 
2335
2414
  @overload
@@ -2480,9 +2559,9 @@ class OrcaAsyncClient(AsyncClient):
2480
2559
  @overload
2481
2560
  async def GET(
2482
2561
  self,
2483
- path: Literal["/agents/bootstrap_classification_model/{task_id}"],
2562
+ path: Literal["/agents/bootstrap_classification_model/{job_id}"],
2484
2563
  *,
2485
- params: GetAgentsBootstrapClassificationModelByTaskIdParams,
2564
+ params: GetAgentsBootstrapClassificationModelByJobIdParams,
2486
2565
  parse_as: Literal["json"] = "json",
2487
2566
  headers: HeaderTypes | None = None,
2488
2567
  cookies: CookieTypes | None = None,
@@ -2491,7 +2570,7 @@ class OrcaAsyncClient(AsyncClient):
2491
2570
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2492
2571
  extensions: RequestExtensions | None = None,
2493
2572
  ) -> BootstrapClassificationModelResponse:
2494
- """Get the status of a bootstrap classification model task"""
2573
+ """Get the status of a bootstrap classification model job"""
2495
2574
  pass
2496
2575
 
2497
2576
  async def GET(
@@ -2661,9 +2740,9 @@ class OrcaAsyncClient(AsyncClient):
2661
2740
  @overload
2662
2741
  async def DELETE(
2663
2742
  self,
2664
- path: Literal["/classification_model/{model_name_or_id}/evaluation/{task_id}"],
2743
+ path: Literal["/regression_model/{name_or_id}"],
2665
2744
  *,
2666
- params: DeleteClassificationModelByModelNameOrIdEvaluationByTaskIdParams,
2745
+ params: DeleteRegressionModelByNameOrIdParams,
2667
2746
  parse_as: Literal["json"] = "json",
2668
2747
  headers: HeaderTypes | None = None,
2669
2748
  cookies: CookieTypes | None = None,
@@ -2677,9 +2756,9 @@ class OrcaAsyncClient(AsyncClient):
2677
2756
  @overload
2678
2757
  async def DELETE(
2679
2758
  self,
2680
- path: Literal["/regression_model/{name_or_id}"],
2759
+ path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
2681
2760
  *,
2682
- params: DeleteRegressionModelByNameOrIdParams,
2761
+ params: DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams,
2683
2762
  parse_as: Literal["json"] = "json",
2684
2763
  headers: HeaderTypes | None = None,
2685
2764
  cookies: CookieTypes | None = None,
@@ -2693,9 +2772,9 @@ class OrcaAsyncClient(AsyncClient):
2693
2772
  @overload
2694
2773
  async def DELETE(
2695
2774
  self,
2696
- path: Literal["/regression_model/{model_name_or_id}/evaluation/{task_id}"],
2775
+ path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
2697
2776
  *,
2698
- params: DeleteRegressionModelByModelNameOrIdEvaluationByTaskIdParams,
2777
+ params: DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams,
2699
2778
  parse_as: Literal["json"] = "json",
2700
2779
  headers: HeaderTypes | None = None,
2701
2780
  cookies: CookieTypes | None = None,
@@ -2709,9 +2788,9 @@ class OrcaAsyncClient(AsyncClient):
2709
2788
  @overload
2710
2789
  async def DELETE(
2711
2790
  self,
2712
- path: Literal["/task/{task_id}/abort"],
2791
+ path: Literal["/job/{job_id}/abort"],
2713
2792
  *,
2714
- params: DeleteTaskByTaskIdAbortParams,
2793
+ params: DeleteJobByJobIdAbortParams,
2715
2794
  parse_as: Literal["json"] = "json",
2716
2795
  headers: HeaderTypes | None = None,
2717
2796
  cookies: CookieTypes | None = None,
@@ -2872,6 +2951,26 @@ class OrcaAsyncClient(AsyncClient):
2872
2951
  ) -> None:
2873
2952
  pass
2874
2953
 
2954
+ @overload
2955
+ async def POST(
2956
+ self,
2957
+ path: Literal["/gpu/memoryset/{name_or_id}/lookup"],
2958
+ *,
2959
+ params: PostGpuMemorysetByNameOrIdLookupParams,
2960
+ json: LookupRequest,
2961
+ data: None = None,
2962
+ files: None = None,
2963
+ content: None = None,
2964
+ parse_as: Literal["json"] = "json",
2965
+ headers: HeaderTypes | None = None,
2966
+ cookies: CookieTypes | None = None,
2967
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2968
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2969
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2970
+ extensions: RequestExtensions | None = None,
2971
+ ) -> list[list[LabeledMemoryLookup | ScoredMemoryLookup]]:
2972
+ pass
2973
+
2875
2974
  @overload
2876
2975
  async def POST(
2877
2976
  self,
@@ -2932,6 +3031,26 @@ class OrcaAsyncClient(AsyncClient):
2932
3031
  ) -> None:
2933
3032
  pass
2934
3033
 
3034
+ @overload
3035
+ async def POST(
3036
+ self,
3037
+ path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3038
+ *,
3039
+ params: PostGpuMemorysetByNameOrIdMemoryParams,
3040
+ json: PostGpuMemorysetByNameOrIdMemoryRequest,
3041
+ data: None = None,
3042
+ files: None = None,
3043
+ content: None = None,
3044
+ parse_as: Literal["json"] = "json",
3045
+ headers: HeaderTypes | None = None,
3046
+ cookies: CookieTypes | None = None,
3047
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3048
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3049
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3050
+ extensions: RequestExtensions | None = None,
3051
+ ) -> list[str]:
3052
+ pass
3053
+
2935
3054
  @overload
2936
3055
  async def POST(
2937
3056
  self,
@@ -2993,6 +3112,48 @@ class OrcaAsyncClient(AsyncClient):
2993
3112
  """Create a finetuned embedding model."""
2994
3113
  pass
2995
3114
 
3115
+ @overload
3116
+ async def POST(
3117
+ self,
3118
+ path: Literal["/gpu/finetuned_embedding_model/{name_or_id}/embedding"],
3119
+ *,
3120
+ params: PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams,
3121
+ json: EmbedRequest,
3122
+ data: None = None,
3123
+ files: None = None,
3124
+ content: None = None,
3125
+ parse_as: Literal["json"] = "json",
3126
+ headers: HeaderTypes | None = None,
3127
+ cookies: CookieTypes | None = None,
3128
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3129
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3130
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3131
+ extensions: RequestExtensions | None = None,
3132
+ ) -> list[list[float]]:
3133
+ """Embed values using a finetuned embedding model."""
3134
+ pass
3135
+
3136
+ @overload
3137
+ async def POST(
3138
+ self,
3139
+ path: Literal["/gpu/pretrained_embedding_model/{model_name}/embedding"],
3140
+ *,
3141
+ params: PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams,
3142
+ json: EmbedRequest,
3143
+ data: None = None,
3144
+ files: None = None,
3145
+ content: None = None,
3146
+ parse_as: Literal["json"] = "json",
3147
+ headers: HeaderTypes | None = None,
3148
+ cookies: CookieTypes | None = None,
3149
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3150
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3151
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3152
+ extensions: RequestExtensions | None = None,
3153
+ ) -> list[list[float]]:
3154
+ """Embed values using a pretrained embedding model."""
3155
+ pass
3156
+
2996
3157
  @overload
2997
3158
  async def POST(
2998
3159
  self,
@@ -3092,10 +3253,10 @@ class OrcaAsyncClient(AsyncClient):
3092
3253
  @overload
3093
3254
  async def POST(
3094
3255
  self,
3095
- path: Literal["/classification_model"],
3256
+ path: Literal["/datasource/{name_or_id}/rows"],
3096
3257
  *,
3097
- params: None = None,
3098
- json: CreateClassificationModelRequest,
3258
+ params: PostDatasourceByNameOrIdRowsParams,
3259
+ json: GetDatasourceRowsRequest,
3099
3260
  data: None = None,
3100
3261
  files: None = None,
3101
3262
  content: None = None,
@@ -3106,16 +3267,17 @@ class OrcaAsyncClient(AsyncClient):
3106
3267
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3107
3268
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3108
3269
  extensions: RequestExtensions | None = None,
3109
- ) -> ClassificationModelMetadata:
3270
+ ) -> list[dict[str, Any]]:
3271
+ """Get rows from a specific datasource with optional filtering."""
3110
3272
  pass
3111
3273
 
3112
3274
  @overload
3113
3275
  async def POST(
3114
3276
  self,
3115
- path: Literal["/classification_model/{model_name_or_id}/evaluation"],
3277
+ path: Literal["/datasource/{name_or_id}/rows/count"],
3116
3278
  *,
3117
- params: PostClassificationModelByModelNameOrIdEvaluationParams,
3118
- json: ClassificationEvaluationRequest,
3279
+ params: PostDatasourceByNameOrIdRowsCountParams,
3280
+ json: GetDatasourceRowCountRequest,
3119
3281
  data: None = None,
3120
3282
  files: None = None,
3121
3283
  content: None = None,
@@ -3126,16 +3288,17 @@ class OrcaAsyncClient(AsyncClient):
3126
3288
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3127
3289
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3128
3290
  extensions: RequestExtensions | None = None,
3129
- ) -> EvaluationResponse:
3291
+ ) -> int:
3292
+ """Get row count from a specific datasource with optional filtering."""
3130
3293
  pass
3131
3294
 
3132
3295
  @overload
3133
3296
  async def POST(
3134
3297
  self,
3135
- path: Literal["/regression_model"],
3298
+ path: Literal["/classification_model"],
3136
3299
  *,
3137
3300
  params: None = None,
3138
- json: CreateRegressionModelRequest,
3301
+ json: CreateClassificationModelRequest,
3139
3302
  data: None = None,
3140
3303
  files: None = None,
3141
3304
  content: None = None,
@@ -3146,16 +3309,16 @@ class OrcaAsyncClient(AsyncClient):
3146
3309
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3147
3310
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3148
3311
  extensions: RequestExtensions | None = None,
3149
- ) -> RegressionModelMetadata:
3312
+ ) -> ClassificationModelMetadata:
3150
3313
  pass
3151
3314
 
3152
3315
  @overload
3153
3316
  async def POST(
3154
3317
  self,
3155
- path: Literal["/regression_model/{model_name_or_id}/evaluation"],
3318
+ path: Literal["/regression_model"],
3156
3319
  *,
3157
- params: PostRegressionModelByModelNameOrIdEvaluationParams,
3158
- json: RegressionEvaluationRequest,
3320
+ params: None = None,
3321
+ json: CreateRegressionModelRequest,
3159
3322
  data: None = None,
3160
3323
  files: None = None,
3161
3324
  content: None = None,
@@ -3166,16 +3329,16 @@ class OrcaAsyncClient(AsyncClient):
3166
3329
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3167
3330
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3168
3331
  extensions: RequestExtensions | None = None,
3169
- ) -> EvaluationResponse:
3332
+ ) -> RegressionModelMetadata:
3170
3333
  pass
3171
3334
 
3172
3335
  @overload
3173
3336
  async def POST(
3174
3337
  self,
3175
- path: Literal["/telemetry/prediction"],
3338
+ path: Literal["/gpu/classification_model/{name_or_id}/prediction"],
3176
3339
  *,
3177
- params: None = None,
3178
- json: ListPredictionsRequest | None = None,
3340
+ params: PostGpuClassificationModelByNameOrIdPredictionParams,
3341
+ json: ClassificationPredictionRequest,
3179
3342
  data: None = None,
3180
3343
  files: None = None,
3181
3344
  content: None = None,
@@ -3186,17 +3349,16 @@ class OrcaAsyncClient(AsyncClient):
3186
3349
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3187
3350
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3188
3351
  extensions: RequestExtensions | None = None,
3189
- ) -> list[LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback]:
3190
- """List predictions with optional filtering and sorting."""
3352
+ ) -> list[BaseLabelPredictionResult]:
3191
3353
  pass
3192
3354
 
3193
3355
  @overload
3194
3356
  async def POST(
3195
3357
  self,
3196
- path: Literal["/telemetry/prediction/count"],
3358
+ path: Literal["/classification_model/{name_or_id}/prediction"],
3197
3359
  *,
3198
- params: None = None,
3199
- json: CountPredictionsRequest | None = None,
3360
+ params: PostClassificationModelByNameOrIdPredictionParams,
3361
+ json: ClassificationPredictionRequest,
3200
3362
  data: None = None,
3201
3363
  files: None = None,
3202
3364
  content: None = None,
@@ -3207,17 +3369,16 @@ class OrcaAsyncClient(AsyncClient):
3207
3369
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3208
3370
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3209
3371
  extensions: RequestExtensions | None = None,
3210
- ) -> int:
3211
- """Count predictions with optional filtering."""
3372
+ ) -> list[BaseLabelPredictionResult]:
3212
3373
  pass
3213
3374
 
3214
3375
  @overload
3215
3376
  async def POST(
3216
3377
  self,
3217
- path: Literal["/telemetry/memories"],
3378
+ path: Literal["/gpu/regression_model/{name_or_id}/prediction"],
3218
3379
  *,
3219
- params: None = None,
3220
- json: TelemetryMemoriesRequest,
3380
+ params: PostGpuRegressionModelByNameOrIdPredictionParams,
3381
+ json: RegressionPredictionRequest,
3221
3382
  data: None = None,
3222
3383
  files: None = None,
3223
3384
  content: None = None,
@@ -3228,21 +3389,16 @@ class OrcaAsyncClient(AsyncClient):
3228
3389
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3229
3390
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3230
3391
  extensions: RequestExtensions | None = None,
3231
- ) -> PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics:
3232
- """
3233
- List memories with feedback metrics.
3234
- **Note**: This endpoint will ONLY return memories that have been used in a prediction.
3235
- If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
3236
- """
3392
+ ) -> list[BaseScorePredictionResult]:
3237
3393
  pass
3238
3394
 
3239
3395
  @overload
3240
3396
  async def POST(
3241
3397
  self,
3242
- path: Literal["/agents/bootstrap_classification_model"],
3398
+ path: Literal["/regression_model/{name_or_id}/prediction"],
3243
3399
  *,
3244
- params: None = None,
3245
- json: BootstrapClassificationModelRequest,
3400
+ params: PostRegressionModelByNameOrIdPredictionParams,
3401
+ json: RegressionPredictionRequest,
3246
3402
  data: None = None,
3247
3403
  files: None = None,
3248
3404
  content: None = None,
@@ -3253,30 +3409,16 @@ class OrcaAsyncClient(AsyncClient):
3253
3409
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3254
3410
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3255
3411
  extensions: RequestExtensions | None = None,
3256
- ) -> BootstrapClassificationModelResponse:
3257
- """
3258
- Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
3259
-
3260
- This endpoint uses the bootstrap_classification_model agent to generate:
3261
- 1. Memoryset configuration with appropriate settings
3262
- 2. Model configuration with optimal parameters
3263
- 3. High-quality training memories for each label
3264
-
3265
- The process involves:
3266
- 1. Calling the agent to generate configurations and memories
3267
- 2. Creating a datasource from the generated memories
3268
- 3. Creating a memoryset from the datasource
3269
- 4. Creating a classification model from the memoryset
3270
- """
3412
+ ) -> list[BaseScorePredictionResult]:
3271
3413
  pass
3272
3414
 
3273
3415
  @overload
3274
3416
  async def POST(
3275
3417
  self,
3276
- path: Literal["/gpu/memoryset/{name_or_id}/lookup"],
3418
+ path: Literal["/classification_model/{model_name_or_id}/evaluation"],
3277
3419
  *,
3278
- params: PostGpuMemorysetByNameOrIdLookupParams,
3279
- json: LookupRequest,
3420
+ params: PostClassificationModelByModelNameOrIdEvaluationParams,
3421
+ json: ClassificationEvaluationRequest,
3280
3422
  data: None = None,
3281
3423
  files: None = None,
3282
3424
  content: None = None,
@@ -3287,16 +3429,16 @@ class OrcaAsyncClient(AsyncClient):
3287
3429
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3288
3430
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3289
3431
  extensions: RequestExtensions | None = None,
3290
- ) -> list[list[LabeledMemoryLookup | ScoredMemoryLookup]]:
3432
+ ) -> EvaluationResponse:
3291
3433
  pass
3292
3434
 
3293
3435
  @overload
3294
3436
  async def POST(
3295
3437
  self,
3296
- path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3438
+ path: Literal["/regression_model/{model_name_or_id}/evaluation"],
3297
3439
  *,
3298
- params: PostGpuMemorysetByNameOrIdMemoryParams,
3299
- json: PostGpuMemorysetByNameOrIdMemoryRequest,
3440
+ params: PostRegressionModelByModelNameOrIdEvaluationParams,
3441
+ json: RegressionEvaluationRequest,
3300
3442
  data: None = None,
3301
3443
  files: None = None,
3302
3444
  content: None = None,
@@ -3307,16 +3449,16 @@ class OrcaAsyncClient(AsyncClient):
3307
3449
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3308
3450
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3309
3451
  extensions: RequestExtensions | None = None,
3310
- ) -> list[str]:
3452
+ ) -> EvaluationResponse:
3311
3453
  pass
3312
3454
 
3313
3455
  @overload
3314
3456
  async def POST(
3315
3457
  self,
3316
- path: Literal["/gpu/classification_model/{name_or_id}/prediction"],
3458
+ path: Literal["/telemetry/prediction"],
3317
3459
  *,
3318
- params: PostGpuClassificationModelByNameOrIdPredictionParams,
3319
- json: ClassificationPredictionRequest,
3460
+ params: None = None,
3461
+ json: ListPredictionsRequest | None = None,
3320
3462
  data: None = None,
3321
3463
  files: None = None,
3322
3464
  content: None = None,
@@ -3327,16 +3469,17 @@ class OrcaAsyncClient(AsyncClient):
3327
3469
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3328
3470
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3329
3471
  extensions: RequestExtensions | None = None,
3330
- ) -> list[BaseLabelPredictionResult]:
3472
+ ) -> list[LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback]:
3473
+ """List predictions with optional filtering and sorting."""
3331
3474
  pass
3332
3475
 
3333
3476
  @overload
3334
3477
  async def POST(
3335
3478
  self,
3336
- path: Literal["/gpu/regression_model/{name_or_id}/prediction"],
3479
+ path: Literal["/telemetry/prediction/count"],
3337
3480
  *,
3338
- params: PostGpuRegressionModelByNameOrIdPredictionParams,
3339
- json: RegressionPredictionRequest,
3481
+ params: None = None,
3482
+ json: CountPredictionsRequest | None = None,
3340
3483
  data: None = None,
3341
3484
  files: None = None,
3342
3485
  content: None = None,
@@ -3347,16 +3490,17 @@ class OrcaAsyncClient(AsyncClient):
3347
3490
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3348
3491
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3349
3492
  extensions: RequestExtensions | None = None,
3350
- ) -> list[BaseScorePredictionResult]:
3493
+ ) -> int:
3494
+ """Count predictions with optional filtering."""
3351
3495
  pass
3352
3496
 
3353
3497
  @overload
3354
3498
  async def POST(
3355
3499
  self,
3356
- path: Literal["/gpu/finetuned_embedding_model/{name_or_id}/embedding"],
3500
+ path: Literal["/telemetry/memories"],
3357
3501
  *,
3358
- params: PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams,
3359
- json: EmbedRequest,
3502
+ params: None = None,
3503
+ json: TelemetryMemoriesRequest,
3360
3504
  data: None = None,
3361
3505
  files: None = None,
3362
3506
  content: None = None,
@@ -3367,17 +3511,21 @@ class OrcaAsyncClient(AsyncClient):
3367
3511
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3368
3512
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3369
3513
  extensions: RequestExtensions | None = None,
3370
- ) -> list[list[float]]:
3371
- """Embed values using a finetuned embedding model."""
3514
+ ) -> PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics:
3515
+ """
3516
+ List memories with feedback metrics.
3517
+ **Note**: This endpoint will ONLY return memories that have been used in a prediction.
3518
+ If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
3519
+ """
3372
3520
  pass
3373
3521
 
3374
3522
  @overload
3375
3523
  async def POST(
3376
3524
  self,
3377
- path: Literal["/gpu/pretrained_embedding_model/{model_name}/embedding"],
3525
+ path: Literal["/agents/bootstrap_classification_model"],
3378
3526
  *,
3379
- params: PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams,
3380
- json: EmbedRequest,
3527
+ params: None = None,
3528
+ json: BootstrapClassificationModelRequest,
3381
3529
  data: None = None,
3382
3530
  files: None = None,
3383
3531
  content: None = None,
@@ -3388,8 +3536,21 @@ class OrcaAsyncClient(AsyncClient):
3388
3536
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3389
3537
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3390
3538
  extensions: RequestExtensions | None = None,
3391
- ) -> list[list[float]]:
3392
- """Embed values using a pretrained embedding model."""
3539
+ ) -> BootstrapClassificationModelResponse:
3540
+ """
3541
+ Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
3542
+
3543
+ This endpoint uses the bootstrap_classification_model agent to generate:
3544
+ 1. Memoryset configuration with appropriate settings
3545
+ 2. Model configuration with optimal parameters
3546
+ 3. High-quality training memories for each label
3547
+
3548
+ The process involves:
3549
+ 1. Calling the agent to generate configurations and memories
3550
+ 2. Creating a datasource from the generated memories
3551
+ 3. Creating a memoryset from the datasource
3552
+ 4. Creating a classification model from the memoryset
3553
+ """
3393
3554
  pass
3394
3555
 
3395
3556
  async def POST(
@@ -3535,10 +3696,10 @@ class OrcaAsyncClient(AsyncClient):
3535
3696
  @overload
3536
3697
  async def PATCH(
3537
3698
  self,
3538
- path: Literal["/classification_model/{name_or_id}"],
3699
+ path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3539
3700
  *,
3540
- params: PatchClassificationModelByNameOrIdParams,
3541
- json: PredictiveModelUpdate,
3701
+ params: PatchGpuMemorysetByNameOrIdMemoryParams,
3702
+ json: PatchGpuMemorysetByNameOrIdMemoryRequest,
3542
3703
  data: None = None,
3543
3704
  files: None = None,
3544
3705
  content: None = None,
@@ -3549,16 +3710,16 @@ class OrcaAsyncClient(AsyncClient):
3549
3710
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3550
3711
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3551
3712
  extensions: RequestExtensions | None = None,
3552
- ) -> ClassificationModelMetadata:
3713
+ ) -> LabeledMemory | ScoredMemory:
3553
3714
  pass
3554
3715
 
3555
3716
  @overload
3556
3717
  async def PATCH(
3557
3718
  self,
3558
- path: Literal["/regression_model/{name_or_id}"],
3719
+ path: Literal["/gpu/memoryset/{name_or_id}/memories"],
3559
3720
  *,
3560
- params: PatchRegressionModelByNameOrIdParams,
3561
- json: PredictiveModelUpdate,
3721
+ params: PatchGpuMemorysetByNameOrIdMemoriesParams,
3722
+ json: PatchGpuMemorysetByNameOrIdMemoriesRequest,
3562
3723
  data: None = None,
3563
3724
  files: None = None,
3564
3725
  content: None = None,
@@ -3569,16 +3730,16 @@ class OrcaAsyncClient(AsyncClient):
3569
3730
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3570
3731
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3571
3732
  extensions: RequestExtensions | None = None,
3572
- ) -> RegressionModelMetadata:
3733
+ ) -> list[LabeledMemory] | list[ScoredMemory]:
3573
3734
  pass
3574
3735
 
3575
3736
  @overload
3576
3737
  async def PATCH(
3577
3738
  self,
3578
- path: Literal["/telemetry/prediction/{prediction_id}"],
3739
+ path: Literal["/classification_model/{name_or_id}"],
3579
3740
  *,
3580
- params: PatchTelemetryPredictionByPredictionIdParams,
3581
- json: UpdatePredictionRequest,
3741
+ params: PatchClassificationModelByNameOrIdParams,
3742
+ json: PredictiveModelUpdate,
3582
3743
  data: None = None,
3583
3744
  files: None = None,
3584
3745
  content: None = None,
@@ -3589,17 +3750,16 @@ class OrcaAsyncClient(AsyncClient):
3589
3750
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3590
3751
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3591
3752
  extensions: RequestExtensions | None = None,
3592
- ) -> Any:
3593
- """Update a prediction with new expected values, tags, or memory ID."""
3753
+ ) -> ClassificationModelMetadata:
3594
3754
  pass
3595
3755
 
3596
3756
  @overload
3597
3757
  async def PATCH(
3598
3758
  self,
3599
- path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3759
+ path: Literal["/regression_model/{name_or_id}"],
3600
3760
  *,
3601
- params: PatchGpuMemorysetByNameOrIdMemoryParams,
3602
- json: PatchGpuMemorysetByNameOrIdMemoryRequest,
3761
+ params: PatchRegressionModelByNameOrIdParams,
3762
+ json: PredictiveModelUpdate,
3603
3763
  data: None = None,
3604
3764
  files: None = None,
3605
3765
  content: None = None,
@@ -3610,16 +3770,16 @@ class OrcaAsyncClient(AsyncClient):
3610
3770
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3611
3771
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3612
3772
  extensions: RequestExtensions | None = None,
3613
- ) -> LabeledMemory | ScoredMemory:
3773
+ ) -> RegressionModelMetadata:
3614
3774
  pass
3615
3775
 
3616
3776
  @overload
3617
3777
  async def PATCH(
3618
3778
  self,
3619
- path: Literal["/gpu/memoryset/{name_or_id}/memories"],
3779
+ path: Literal["/telemetry/prediction/{prediction_id}"],
3620
3780
  *,
3621
- params: PatchGpuMemorysetByNameOrIdMemoriesParams,
3622
- json: PatchGpuMemorysetByNameOrIdMemoriesRequest,
3781
+ params: PatchTelemetryPredictionByPredictionIdParams,
3782
+ json: UpdatePredictionRequest,
3623
3783
  data: None = None,
3624
3784
  files: None = None,
3625
3785
  content: None = None,
@@ -3630,7 +3790,8 @@ class OrcaAsyncClient(AsyncClient):
3630
3790
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3631
3791
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3632
3792
  extensions: RequestExtensions | None = None,
3633
- ) -> list[LabeledMemory] | list[ScoredMemory]:
3793
+ ) -> Any:
3794
+ """Update a prediction with new expected values, tags, or memory ID."""
3634
3795
  pass
3635
3796
 
3636
3797
  async def PATCH(