optimum-rbln 0.8.2a4__py3-none-any.whl → 0.9.3rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +96 -9
- optimum/rbln/__version__.py +16 -3
- optimum/rbln/cli.py +660 -0
- optimum/rbln/configuration_utils.py +153 -42
- optimum/rbln/diffusers/__init__.py +7 -0
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +3 -3
- optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +1 -1
- optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +3 -3
- optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +4 -4
- optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +9 -4
- optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +9 -4
- optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +3 -3
- optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +3 -3
- optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +35 -19
- optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +14 -11
- optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +30 -20
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +13 -9
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +17 -13
- optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +17 -10
- optimum/rbln/diffusers/modeling_diffusers.py +30 -14
- optimum/rbln/diffusers/models/__init__.py +3 -13
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +31 -3
- optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +28 -3
- optimum/rbln/diffusers/models/autoencoders/vq_model.py +31 -3
- optimum/rbln/diffusers/models/transformers/prior_transformer.py +1 -1
- optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +9 -1
- optimum/rbln/diffusers/models/transformers/transformer_sd3.py +9 -1
- optimum/rbln/diffusers/models/unets/unet_2d_condition.py +6 -3
- optimum/rbln/diffusers/pipelines/__init__.py +11 -5
- optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
- optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +19 -16
- optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +14 -18
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +31 -1
- optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +31 -1
- optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
- optimum/rbln/modeling.py +71 -19
- optimum/rbln/modeling_base.py +99 -21
- optimum/rbln/ops/attn.py +158 -0
- optimum/rbln/ops/flash_attn.py +166 -0
- optimum/rbln/ops/kv_cache_update.py +5 -0
- optimum/rbln/ops/linear.py +7 -0
- optimum/rbln/transformers/__init__.py +92 -0
- optimum/rbln/transformers/configuration_generic.py +9 -7
- optimum/rbln/transformers/modeling_attention_utils.py +252 -0
- optimum/rbln/transformers/modeling_generic.py +51 -9
- optimum/rbln/transformers/modeling_outputs.py +37 -0
- optimum/rbln/transformers/models/__init__.py +91 -30
- optimum/rbln/transformers/models/auto/__init__.py +2 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +92 -17
- optimum/rbln/transformers/models/auto/modeling_auto.py +45 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +1 -3
- optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
- optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +8 -4
- optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +42 -11
- optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +94 -30
- optimum/rbln/transformers/models/clip/configuration_clip.py +10 -7
- optimum/rbln/transformers/models/clip/modeling_clip.py +27 -4
- optimum/rbln/transformers/models/colpali/colpali_architecture.py +3 -6
- optimum/rbln/transformers/models/colpali/configuration_colpali.py +37 -21
- optimum/rbln/transformers/models/colpali/modeling_colpali.py +113 -96
- optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
- optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
- optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
- optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
- optimum/rbln/transformers/models/decoderonly/__init__.py +3 -2
- optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +109 -37
- optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +318 -309
- optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +504 -0
- optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +111 -0
- optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +453 -897
- optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
- optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
- optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +25 -0
- optimum/rbln/transformers/models/exaone/modeling_exaone.py +42 -4
- optimum/rbln/transformers/models/gemma/__init__.py +2 -2
- optimum/rbln/transformers/models/gemma/configuration_gemma.py +9 -1
- optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +22 -1
- optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +49 -13
- optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +12 -2
- optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
- optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +201 -349
- optimum/rbln/transformers/models/gpt2/__init__.py +2 -2
- optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +31 -3
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +10 -8
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +18 -1
- optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
- optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
- optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
- optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1032 -0
- optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +35 -7
- optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +26 -27
- optimum/rbln/transformers/models/llama/__init__.py +2 -2
- optimum/rbln/transformers/models/llama/configuration_llama.py +9 -1
- optimum/rbln/transformers/models/llama/modeling_llama.py +22 -1
- optimum/rbln/transformers/models/llava/__init__.py +16 -0
- optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
- optimum/rbln/transformers/models/llava/modeling_llava.py +478 -0
- optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +15 -17
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +235 -375
- optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
- optimum/rbln/transformers/models/midm/modeling_midm.py +42 -4
- optimum/rbln/transformers/models/mistral/__init__.py +2 -2
- optimum/rbln/transformers/models/mistral/configuration_mistral.py +9 -1
- optimum/rbln/transformers/models/mistral/mistral_architecture.py +1 -1
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +26 -3
- optimum/rbln/transformers/models/opt/__init__.py +2 -2
- optimum/rbln/transformers/models/opt/configuration_opt.py +8 -1
- optimum/rbln/transformers/models/opt/modeling_opt.py +28 -16
- optimum/rbln/transformers/models/opt/opt_architecture.py +4 -4
- optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
- optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
- optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
- optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
- optimum/rbln/transformers/models/phi/__init__.py +2 -2
- optimum/rbln/transformers/models/phi/configuration_phi.py +9 -1
- optimum/rbln/transformers/models/phi/modeling_phi.py +10 -1
- optimum/rbln/transformers/models/phi/phi_architecture.py +11 -7
- optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
- optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
- optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +310 -0
- optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
- optimum/rbln/transformers/models/qwen2/__init__.py +2 -2
- optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +9 -1
- optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +27 -1
- optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +21 -6
- optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +15 -21
- optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +28 -7
- optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
- optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
- optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +514 -0
- optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
- optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +2 -2
- optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +86 -330
- optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +1 -245
- optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +20 -13
- optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +24 -3
- optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -2
- optimum/rbln/transformers/models/siglip/__init__.py +2 -6
- optimum/rbln/transformers/models/siglip/configuration_siglip.py +1 -1
- optimum/rbln/transformers/models/siglip/modeling_siglip.py +5 -16
- optimum/rbln/transformers/models/swin/__init__.py +16 -0
- optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
- optimum/rbln/transformers/models/swin/modeling_swin.py +341 -0
- optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +8 -1
- optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +3 -3
- optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -14
- optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +7 -1
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -0
- optimum/rbln/transformers/models/whisper/configuration_whisper.py +12 -13
- optimum/rbln/transformers/models/whisper/generation_whisper.py +28 -6
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +28 -3
- optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
- optimum/rbln/transformers/utils/rbln_quantization.py +391 -75
- optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
- optimum/rbln/utils/depreacate_utils.py +16 -0
- optimum/rbln/utils/runtime_utils.py +28 -18
- optimum/rbln/utils/submodule.py +31 -9
- {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/METADATA +8 -7
- {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/RECORD +167 -125
- optimum_rbln-0.9.3rc0.dist-info/entry_points.txt +2 -0
- {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/WHEEL +0 -0
- {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/licenses/LICENSE +0 -0
|
@@ -14,37 +14,67 @@
|
|
|
14
14
|
|
|
15
15
|
import glob
|
|
16
16
|
import os
|
|
17
|
-
from typing import Any, Dict, Optional, Union
|
|
17
|
+
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Type, Union
|
|
18
18
|
|
|
19
19
|
import torch
|
|
20
|
+
from huggingface_hub import hf_hub_download, list_repo_files
|
|
20
21
|
from safetensors.torch import load_file
|
|
21
22
|
from torch.nn import Linear, Parameter
|
|
22
23
|
from torch.nn import functional as F
|
|
24
|
+
from transformers import AutoConfig
|
|
25
|
+
from transformers.modeling_utils import get_state_dict_dtype, no_init_weights
|
|
23
26
|
|
|
24
27
|
from ...configuration_utils import RBLNSerializableConfigProtocol
|
|
25
28
|
from ...utils.logging import get_logger
|
|
26
29
|
|
|
27
30
|
|
|
31
|
+
if TYPE_CHECKING:
|
|
32
|
+
from transformers.models.auto.modeling_auto import _BaseAutoModelClass
|
|
33
|
+
|
|
28
34
|
logger = get_logger()
|
|
29
35
|
|
|
30
36
|
|
|
37
|
+
# Constants
|
|
38
|
+
QUANTIZED_WEIGHTS = {
|
|
39
|
+
"q_proj",
|
|
40
|
+
"k_proj",
|
|
41
|
+
"v_proj",
|
|
42
|
+
"o_proj",
|
|
43
|
+
"gate_proj",
|
|
44
|
+
"up_proj",
|
|
45
|
+
"down_proj",
|
|
46
|
+
}
|
|
47
|
+
|
|
48
|
+
# Common alias sets seen in community checkpoints
|
|
49
|
+
VARIANT_ALIASES: Dict[str, List[str]] = {
|
|
50
|
+
"weight_scale": ["weight_scale", "scales", "w_scale", "scale"],
|
|
51
|
+
"input_scale": ["input_scale", "act_scale", "activation_scale", "a_scale"],
|
|
52
|
+
"kv_scale": ["kv_scale", "kv_scales"],
|
|
53
|
+
"k_scale": ["k_scale", "k_scales"],
|
|
54
|
+
"v_scale": ["v_scale", "v_scales"],
|
|
55
|
+
}
|
|
56
|
+
|
|
57
|
+
|
|
31
58
|
class RBLNQuantizationConfig(RBLNSerializableConfigProtocol):
|
|
32
59
|
SUPPORTED_FORMATS = ["rbln"]
|
|
33
|
-
SUPPORTED_WEIGHTS = ["int4", "fp16"]
|
|
34
|
-
SUPPORTED_ACTIVATIONS = ["fp16"]
|
|
35
|
-
|
|
36
|
-
# The RBLN_QUANT_BITS environment variable defines the precision of each layer during the graph compilation process.
|
|
37
|
-
# It specifies the quantization bit depth. For instance, setting RBLN_QUANT_BITS=4 will apply 4-bit precision for quantization.
|
|
60
|
+
SUPPORTED_WEIGHTS = ["int4", "int8", "fp8", "fp16"]
|
|
61
|
+
SUPPORTED_ACTIVATIONS = ["int8", "fp8", "fp16"]
|
|
62
|
+
SUPPORTED_KVCACHES = ["fp8", "fp16"]
|
|
38
63
|
RBLN_QUANT_BITS_ENV = "RBLN_QUANT_BITS"
|
|
39
64
|
|
|
40
65
|
def __init__(
|
|
41
66
|
self,
|
|
42
67
|
format: Optional[str] = None,
|
|
43
|
-
precision: Optional[str] = None,
|
|
44
68
|
weights: Optional[str] = None,
|
|
45
69
|
activations: Optional[str] = None,
|
|
70
|
+
kv_caches: Optional[str] = None,
|
|
71
|
+
*,
|
|
72
|
+
precision: Optional[str] = None,
|
|
46
73
|
):
|
|
47
|
-
self.format = format
|
|
74
|
+
self.format = format or "rbln"
|
|
75
|
+
if self.format not in self.SUPPORTED_FORMATS:
|
|
76
|
+
raise ValueError(f"Invalid format: {self.format}, supported formats are: {self.SUPPORTED_FORMATS}")
|
|
77
|
+
|
|
48
78
|
if precision is not None:
|
|
49
79
|
logger.warning("The `precision` argument is deprecated. Use `weights` and `activations` instead.")
|
|
50
80
|
if any(precision_arg is not None for precision_arg in (weights, activations)):
|
|
@@ -58,6 +88,7 @@ class RBLNQuantizationConfig(RBLNSerializableConfigProtocol):
|
|
|
58
88
|
|
|
59
89
|
self.weights = weights or "fp16"
|
|
60
90
|
self.activations = activations or "fp16"
|
|
91
|
+
self.kv_caches = kv_caches or "fp16"
|
|
61
92
|
self._validate()
|
|
62
93
|
|
|
63
94
|
def _validate(self):
|
|
@@ -69,106 +100,126 @@ class RBLNQuantizationConfig(RBLNSerializableConfigProtocol):
|
|
|
69
100
|
raise ValueError(
|
|
70
101
|
f"Invalid activations: {self.activations}, supported activations are: {self.SUPPORTED_ACTIVATIONS}"
|
|
71
102
|
)
|
|
103
|
+
if self.kv_caches not in self.SUPPORTED_KVCACHES:
|
|
104
|
+
raise ValueError(
|
|
105
|
+
f"Invalid kv_caches: {self.kv_caches}, supported kv_caches are: {self.SUPPORTED_KVCACHES}"
|
|
106
|
+
)
|
|
72
107
|
if self.weights == "fp16" and self.activations == "fp16":
|
|
73
|
-
raise ValueError("weights and activations cannot be both fp16. It is meaningless.")
|
|
108
|
+
raise ValueError("weights and activations of QuantizationConfig cannot be both fp16. It is meaningless.")
|
|
74
109
|
|
|
75
110
|
def _prepare_for_serialization(self) -> Dict[str, Any]:
|
|
76
111
|
return {
|
|
77
112
|
"format": self.format,
|
|
78
113
|
"weights": self.weights,
|
|
79
114
|
"activations": self.activations,
|
|
115
|
+
"kv_caches": self.kv_caches,
|
|
80
116
|
}
|
|
81
117
|
|
|
82
118
|
def maybe_set_quantization_env(self):
|
|
83
|
-
quant_bits = None
|
|
84
119
|
if self.weights == "int4":
|
|
85
|
-
|
|
86
|
-
os.environ[self.RBLN_QUANT_BITS_ENV] = quant_bits
|
|
120
|
+
os.environ[self.RBLN_QUANT_BITS_ENV] = "4"
|
|
87
121
|
|
|
88
122
|
def maybe_reset_quantization_env(self):
|
|
89
123
|
if self.RBLN_QUANT_BITS_ENV in os.environ:
|
|
90
124
|
os.environ.pop(self.RBLN_QUANT_BITS_ENV)
|
|
91
125
|
|
|
92
126
|
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
"k_proj",
|
|
97
|
-
"v_proj",
|
|
98
|
-
"o_proj",
|
|
99
|
-
"gate_proj",
|
|
100
|
-
"up_proj",
|
|
101
|
-
"down_proj",
|
|
102
|
-
}
|
|
127
|
+
class QuantizedLayerFactory:
|
|
128
|
+
def __init__(self, quantization_config: RBLNQuantizationConfig):
|
|
129
|
+
self.quantization_config = quantization_config
|
|
103
130
|
|
|
131
|
+
def create_linear(self, layer: Linear) -> Linear:
|
|
132
|
+
if self.quantization_config.weights in ["int4", "int8"]:
|
|
133
|
+
return self.create_qlinear(layer)
|
|
134
|
+
elif self.quantization_config.weights == "fp8":
|
|
135
|
+
return self.create_fp8linear(layer)
|
|
136
|
+
else:
|
|
137
|
+
raise ValueError(f"Invalid quantization weights: {self.quantization_config.weights}")
|
|
104
138
|
|
|
105
|
-
def
|
|
106
|
-
|
|
139
|
+
def create_qlinear(self, layer: Linear) -> Linear:
|
|
140
|
+
return create_qlinear(layer, self.quantization_config)
|
|
141
|
+
|
|
142
|
+
def create_fp8linear(self, layer: Linear) -> Linear:
|
|
143
|
+
return create_fp8linear(layer, self.quantization_config)
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def get_quantized_model(
|
|
147
|
+
hf_auto_model_class: Type["_BaseAutoModelClass"],
|
|
107
148
|
model_id: str,
|
|
108
|
-
n_layer: Optional[int] = None,
|
|
109
149
|
use_auth_token: Optional[Union[bool, str]] = None,
|
|
110
150
|
revision: Optional[str] = None,
|
|
111
151
|
cache_dir: Optional[str] = None,
|
|
112
152
|
force_download: bool = False,
|
|
113
153
|
local_files_only: bool = False,
|
|
114
|
-
|
|
154
|
+
rbln_quantization: Optional[RBLNQuantizationConfig] = None,
|
|
155
|
+
**kwargs,
|
|
156
|
+
):
|
|
115
157
|
"""
|
|
116
|
-
|
|
158
|
+
Get a quantized model from a model class and model id.
|
|
117
159
|
"""
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
160
|
+
# torch_dtype should not be passed to AutoConfig.from_pretrained
|
|
161
|
+
# since it doesn't support 'auto'
|
|
162
|
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
|
163
|
+
if torch_dtype is not None:
|
|
164
|
+
logger.warning(
|
|
165
|
+
"torch_dtype is not supported for quantized models. "
|
|
166
|
+
"It will be ignored and the dtype of the model will be determined by the weights."
|
|
167
|
+
)
|
|
168
|
+
torch_dtype = None
|
|
169
|
+
|
|
170
|
+
# get paths of safetensors files in the model repo
|
|
171
|
+
safetensor_files = load_weight_files(
|
|
121
172
|
model_id,
|
|
122
|
-
n_layer,
|
|
123
173
|
use_auth_token=use_auth_token,
|
|
124
174
|
revision=revision,
|
|
125
175
|
cache_dir=cache_dir,
|
|
126
176
|
force_download=force_download,
|
|
127
177
|
local_files_only=local_files_only,
|
|
128
178
|
)
|
|
129
|
-
return model
|
|
130
179
|
|
|
180
|
+
# load safetensors files into memory
|
|
181
|
+
safetensors = [load_file(safetensor_file) for safetensor_file in safetensor_files]
|
|
131
182
|
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
Updates specified linear layers to quantized (qlinear) layers in the given module.
|
|
135
|
-
"""
|
|
183
|
+
# get the dtype of the model from the first safetensor file
|
|
184
|
+
torch_dtype = get_state_dict_dtype(safetensors[0])
|
|
136
185
|
|
|
137
|
-
|
|
138
|
-
|
|
186
|
+
config = AutoConfig.from_pretrained(
|
|
187
|
+
model_id,
|
|
188
|
+
use_auth_token=use_auth_token,
|
|
189
|
+
revision=revision,
|
|
190
|
+
cache_dir=cache_dir,
|
|
191
|
+
force_download=force_download,
|
|
192
|
+
local_files_only=local_files_only,
|
|
193
|
+
**kwargs,
|
|
194
|
+
)
|
|
139
195
|
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
parent_module, layer_name = get_parent_and_child(module, name)
|
|
143
|
-
setattr(parent_module, layer_name, create_qlinear(layer))
|
|
144
|
-
processed_layers.append(name)
|
|
196
|
+
with no_init_weights():
|
|
197
|
+
model = hf_auto_model_class.from_config(config, torch_dtype=torch_dtype)
|
|
145
198
|
|
|
146
|
-
|
|
147
|
-
|
|
199
|
+
# Quantize the model
|
|
200
|
+
update_layers_to_quantize(model, rbln_quantization)
|
|
148
201
|
|
|
202
|
+
# Load weights into the model
|
|
203
|
+
load_weights_from_files(model, safetensors, rbln_quantization)
|
|
149
204
|
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
205
|
+
return model
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
def load_weight_files(
|
|
209
|
+
model_id: str,
|
|
210
|
+
use_auth_token: Optional[Union[bool, str]] = None,
|
|
211
|
+
revision: Optional[str] = None,
|
|
212
|
+
cache_dir: Optional[str] = None,
|
|
213
|
+
force_download: bool = False,
|
|
214
|
+
local_files_only: bool = False,
|
|
215
|
+
) -> list[str]:
|
|
160
216
|
"""
|
|
161
|
-
|
|
217
|
+
Discover and download safetensors files for the given model id.
|
|
162
218
|
"""
|
|
163
219
|
|
|
164
|
-
model_params = dict(model.named_parameters(recurse=True))
|
|
165
|
-
model_buffers = dict(model.named_buffers(recurse=True))
|
|
166
|
-
|
|
167
220
|
if os.path.isdir(model_id):
|
|
168
221
|
safetensor_files = glob.glob(f"{model_id}/*.safetensors")
|
|
169
222
|
else:
|
|
170
|
-
from huggingface_hub import hf_hub_download, list_repo_files
|
|
171
|
-
|
|
172
223
|
try:
|
|
173
224
|
# List all files in the repository
|
|
174
225
|
repo_files = list_repo_files(model_id, revision=revision, token=use_auth_token)
|
|
@@ -195,27 +246,226 @@ def load_weights(
|
|
|
195
246
|
if not safetensor_files:
|
|
196
247
|
raise FileNotFoundError(f"No safetensors files found for model_id: {model_id}")
|
|
197
248
|
|
|
198
|
-
|
|
249
|
+
return safetensor_files
|
|
199
250
|
|
|
200
|
-
unloaded_keys = []
|
|
201
|
-
for safetensor_file in safetensor_files:
|
|
202
|
-
file_data = load_file(safetensor_file)
|
|
203
|
-
for key, value in file_data.items():
|
|
204
|
-
if target_layers is not None:
|
|
205
|
-
parts = key.split(".")
|
|
206
251
|
|
|
207
|
-
|
|
208
|
-
|
|
252
|
+
def update_layers_to_quantize(
|
|
253
|
+
module: torch.nn.Module,
|
|
254
|
+
rbln_quantization: Optional[RBLNQuantizationConfig] = None,
|
|
255
|
+
) -> None:
|
|
256
|
+
"""
|
|
257
|
+
Updates specified linear layers to quantized (qlinear) layers in the given module.
|
|
258
|
+
"""
|
|
259
|
+
|
|
260
|
+
processed_layers = []
|
|
261
|
+
quantized_layer_factory = QuantizedLayerFactory(rbln_quantization)
|
|
262
|
+
|
|
263
|
+
for name, layer in module.named_modules():
|
|
264
|
+
if is_target_for_qlinear_replacement(name, layer):
|
|
265
|
+
parent_module, layer_name = get_parent_and_child(module, name)
|
|
266
|
+
setattr(parent_module, layer_name, quantized_layer_factory.create_linear(layer))
|
|
267
|
+
processed_layers.append(name)
|
|
209
268
|
|
|
269
|
+
if processed_layers:
|
|
270
|
+
logger.debug(f"Updated the following linear layers to quantized layers:\n {{{', '.join(processed_layers)}}}")
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
def _last_segment(key: str) -> str:
|
|
274
|
+
parts = key.split(".")
|
|
275
|
+
return parts[-1]
|
|
276
|
+
|
|
277
|
+
|
|
278
|
+
def _replace_last_with(key: str, new_tail: str) -> str:
|
|
279
|
+
parts = key.split(".")
|
|
280
|
+
return ".".join(parts[:-1] + new_tail.split("."))
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
def _matches_any_alias(key: str, kind: str) -> bool:
|
|
284
|
+
tail = _last_segment(key)
|
|
285
|
+
return tail in VARIANT_ALIASES.get(kind, [])
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
def _reduce_to_scalar(t: torch.Tensor) -> torch.Tensor:
|
|
289
|
+
if t.ndim == 0:
|
|
290
|
+
return t
|
|
291
|
+
return t.reshape(-1).amax()
|
|
292
|
+
|
|
293
|
+
|
|
294
|
+
def _coerce_per_out_channel_scale(scale: torch.Tensor, out_features: int) -> torch.Tensor:
|
|
295
|
+
s = scale
|
|
296
|
+
if s.ndim == 0:
|
|
297
|
+
# scalar -> expand to [out_features, 1]
|
|
298
|
+
return s.reshape(1, 1).expand(out_features, 1).contiguous()
|
|
299
|
+
if s.ndim == 1:
|
|
300
|
+
if s.numel() == 1:
|
|
301
|
+
return s.reshape(1, 1).expand(out_features, 1).contiguous()
|
|
302
|
+
if s.numel() == out_features:
|
|
303
|
+
return s.reshape(out_features, 1).contiguous()
|
|
304
|
+
# fallback: reduce to scalar then expand
|
|
305
|
+
v = _reduce_to_scalar(s)
|
|
306
|
+
return v.reshape(1, 1).expand(out_features, 1).contiguous()
|
|
307
|
+
if s.ndim == 2:
|
|
308
|
+
if s.shape == (out_features, 1):
|
|
309
|
+
return s.contiguous()
|
|
310
|
+
if s.shape == (1, out_features):
|
|
311
|
+
return s.transpose(0, 1).contiguous()
|
|
312
|
+
# fallback: reduce to [out_features] on non-out dims if possible
|
|
313
|
+
if s.shape[0] == out_features:
|
|
314
|
+
v = s
|
|
315
|
+
while v.ndim > 2:
|
|
316
|
+
v = v.amax(dim=-1)
|
|
317
|
+
if v.shape[-1] != 1:
|
|
318
|
+
v = v.amax(dim=-1, keepdim=True)
|
|
319
|
+
return v.contiguous()
|
|
320
|
+
# otherwise reduce to scalar then expand
|
|
321
|
+
v = _reduce_to_scalar(s)
|
|
322
|
+
return v.reshape(1, 1).expand(out_features, 1).contiguous()
|
|
323
|
+
# high-rank: reduce to scalar then expand
|
|
324
|
+
v = _reduce_to_scalar(s)
|
|
325
|
+
return v.reshape(1, 1).expand(out_features, 1).contiguous()
|
|
326
|
+
|
|
327
|
+
|
|
328
|
+
def _kv_split_items(base_key: str, tensor: torch.Tensor) -> List[Tuple[str, torch.Tensor]]:
|
|
329
|
+
# base_key is the original key whose last token was 'kv_scale'
|
|
330
|
+
# We produce keys with 'k_proj.k_scale' and 'v_proj.v_scale'
|
|
331
|
+
if tensor.ndim == 1 and tensor.numel() >= 2:
|
|
332
|
+
tk, tv = tensor[0], tensor[1]
|
|
333
|
+
elif tensor.ndim == 2 and tensor.shape[0] >= 2 and tensor.shape[1] == 1:
|
|
334
|
+
tk, tv = tensor[0, 0], tensor[1, 0]
|
|
335
|
+
else:
|
|
336
|
+
tk = tv = tensor
|
|
337
|
+
k_key = _replace_last_with(base_key, "k_proj.k_scale")
|
|
338
|
+
v_key = _replace_last_with(base_key, "v_proj.v_scale")
|
|
339
|
+
return [(k_key, tk), (v_key, tv)]
|
|
340
|
+
|
|
341
|
+
|
|
342
|
+
def canonicalize_checkpoint_items(
|
|
343
|
+
model: torch.nn.Module,
|
|
344
|
+
items: Iterable[Tuple[str, torch.Tensor]],
|
|
345
|
+
rbln_quantization: Optional[RBLNQuantizationConfig],
|
|
346
|
+
) -> List[Tuple[str, torch.Tensor]]:
|
|
347
|
+
params = dict(model.named_parameters(recurse=True))
|
|
348
|
+
results: List[Tuple[str, torch.Tensor]] = []
|
|
349
|
+
|
|
350
|
+
for key, value in items:
|
|
351
|
+
t = value
|
|
352
|
+
# Normalize weight scale variants
|
|
353
|
+
if _matches_any_alias(key, "weight_scale"):
|
|
354
|
+
# rename last token to the canonical weight scale key
|
|
355
|
+
target_key = _replace_last_with(key, "weight_scale")
|
|
356
|
+
|
|
357
|
+
# Determine associated weight param to infer shape
|
|
358
|
+
weight_key = _replace_last_with(target_key, "weight")
|
|
359
|
+
out_features = None
|
|
360
|
+
if weight_key in params:
|
|
361
|
+
wshape = params[weight_key].shape
|
|
362
|
+
if len(wshape) == 2:
|
|
363
|
+
out_features = int(wshape[0])
|
|
364
|
+
|
|
365
|
+
if rbln_quantization.weights in ["int4", "int8"] and out_features is not None:
|
|
366
|
+
t = _coerce_per_out_channel_scale(t.to(torch.float32), out_features)
|
|
367
|
+
elif rbln_quantization.weights == "fp8":
|
|
368
|
+
# Use a conservative scalar scale to ensure broadcastability
|
|
369
|
+
t = _reduce_to_scalar(t.to(torch.float32))
|
|
370
|
+
else:
|
|
371
|
+
t = t.to(torch.float32)
|
|
372
|
+
|
|
373
|
+
results.append((target_key, t))
|
|
374
|
+
continue
|
|
375
|
+
|
|
376
|
+
# Normalize input/activation scale variants
|
|
377
|
+
if _matches_any_alias(key, "input_scale"):
|
|
378
|
+
target_key = _replace_last_with(key, "input_scale")
|
|
379
|
+
t = _reduce_to_scalar(t.to(torch.float32))
|
|
380
|
+
results.append((target_key, t))
|
|
381
|
+
continue
|
|
382
|
+
|
|
383
|
+
# KV scale handling
|
|
384
|
+
if _matches_any_alias(key, "kv_scale"):
|
|
385
|
+
# For quark-like formats, expand to k/v
|
|
386
|
+
kv_items = _kv_split_items(key, t.to(torch.float32))
|
|
387
|
+
for k2, v2 in kv_items:
|
|
388
|
+
results.append((k2, v2))
|
|
389
|
+
continue
|
|
390
|
+
|
|
391
|
+
if _matches_any_alias(key, "k_scale") or _matches_any_alias(key, "v_scale"):
|
|
392
|
+
results.append((key, t.to(torch.float32)))
|
|
393
|
+
continue
|
|
394
|
+
|
|
395
|
+
# Default: passthrough
|
|
396
|
+
results.append((key, t))
|
|
397
|
+
|
|
398
|
+
return results
|
|
399
|
+
|
|
400
|
+
|
|
401
|
+
def load_weights_from_files(
|
|
402
|
+
model: torch.nn.Module,
|
|
403
|
+
safetensors: List[Dict[str, torch.Tensor]],
|
|
404
|
+
rbln_quantization: Optional[RBLNQuantizationConfig] = None,
|
|
405
|
+
):
|
|
406
|
+
"""
|
|
407
|
+
Load safetensor file data directly into the model from provided safetensor files.
|
|
408
|
+
"""
|
|
409
|
+
|
|
410
|
+
model_params = dict(model.named_parameters(recurse=True))
|
|
411
|
+
model_buffers = dict(model.named_buffers(recurse=True))
|
|
412
|
+
|
|
413
|
+
unloaded_keys = []
|
|
414
|
+
loaded_input_scale = False
|
|
415
|
+
loaded_kv_scale = False
|
|
416
|
+
loaded_weight_scale = False
|
|
417
|
+
|
|
418
|
+
for safetensor in safetensors:
|
|
419
|
+
# Normalize all (key, tensor) pairs to the internal schema
|
|
420
|
+
normalized_items = canonicalize_checkpoint_items(
|
|
421
|
+
model=model,
|
|
422
|
+
items=safetensor.items(),
|
|
423
|
+
rbln_quantization=rbln_quantization,
|
|
424
|
+
)
|
|
425
|
+
|
|
426
|
+
for key, value in normalized_items:
|
|
427
|
+
# Track which types of scales were observed (post-normalization)
|
|
428
|
+
if key.endswith("input_scale"):
|
|
429
|
+
loaded_input_scale = True
|
|
430
|
+
if key.endswith("weight_scale"):
|
|
431
|
+
loaded_weight_scale = True
|
|
432
|
+
if key.endswith("k_scale") or key.endswith("v_scale"):
|
|
433
|
+
loaded_kv_scale = True
|
|
434
|
+
|
|
435
|
+
# Copy into parameters or buffers
|
|
210
436
|
if key in model_params:
|
|
437
|
+
# Ensure dtype compatibility
|
|
438
|
+
if model_params[key].dtype != value.dtype:
|
|
439
|
+
value = value.to(model_params[key].dtype)
|
|
211
440
|
model_params[key].data.copy_(value)
|
|
212
441
|
elif key in model_buffers:
|
|
442
|
+
if model_buffers[key].dtype != value.dtype:
|
|
443
|
+
value = value.to(model_buffers[key].dtype)
|
|
213
444
|
model_buffers[key].data.copy_(value)
|
|
214
445
|
else:
|
|
215
446
|
unloaded_keys.append(key)
|
|
216
447
|
|
|
217
448
|
if len(unloaded_keys) > 0:
|
|
218
449
|
logger.warning(f"There are unexpected parameters/buffers on the checkpoint: {unloaded_keys}")
|
|
450
|
+
if not loaded_input_scale and rbln_quantization.activations == "fp8":
|
|
451
|
+
raise ValueError(
|
|
452
|
+
"No input_scale found in the checkpoint. Did you use the correct quantization config? "
|
|
453
|
+
"If you are using fp8 quantization, you need to use the correct quantization config."
|
|
454
|
+
)
|
|
455
|
+
if not loaded_weight_scale and rbln_quantization.weights == "fp8":
|
|
456
|
+
raise ValueError(
|
|
457
|
+
"No weight_scale found in the checkpoint. Did you use the correct quantization config? "
|
|
458
|
+
"If you are using fp8 quantization, you need to use the correct quantization config."
|
|
459
|
+
)
|
|
460
|
+
if not loaded_kv_scale and rbln_quantization.kv_caches == "fp8":
|
|
461
|
+
raise ValueError(
|
|
462
|
+
"No kv_scale found in the checkpoint. Did you use the correct quantization config? "
|
|
463
|
+
"If you are using fp8 quantization, you need to use the correct quantization config."
|
|
464
|
+
)
|
|
465
|
+
if loaded_kv_scale and rbln_quantization.kv_caches != "fp8":
|
|
466
|
+
logger.warning(
|
|
467
|
+
"kv_scale found in the checkpoint, but kv_caches of quantization config is not fp8. Ignoring kv_scale."
|
|
468
|
+
)
|
|
219
469
|
|
|
220
470
|
|
|
221
471
|
def is_target_for_qlinear_replacement(layer_name: str, layer: torch.nn.Module) -> bool:
|
|
@@ -225,6 +475,10 @@ def is_target_for_qlinear_replacement(layer_name: str, layer: torch.nn.Module) -
|
|
|
225
475
|
return layer_name.split(".")[-1] in QUANTIZED_WEIGHTS and isinstance(layer, torch.nn.Linear)
|
|
226
476
|
|
|
227
477
|
|
|
478
|
+
def is_target_for_adding_kv_scales(layer_name: str) -> bool:
|
|
479
|
+
return layer_name.split(".")[-1] in ["self_attn"]
|
|
480
|
+
|
|
481
|
+
|
|
228
482
|
def get_parent_and_child(module: torch.nn.Module, full_name: str) -> tuple:
|
|
229
483
|
"""
|
|
230
484
|
Splits the full layer name to retrieve the parent module and the child layer.
|
|
@@ -243,22 +497,84 @@ def access_attribute(obj: Any, attributes: list[str]) -> Any:
|
|
|
243
497
|
return obj
|
|
244
498
|
|
|
245
499
|
|
|
246
|
-
def create_qlinear(layer: Linear) -> Linear:
|
|
500
|
+
def create_qlinear(layer: Linear, rbln_quantization: RBLNQuantizationConfig) -> Linear:
|
|
247
501
|
"""
|
|
248
502
|
Converts a standard linear layer to a quantized linear (qlinear) layer with a custom forward pass.
|
|
249
503
|
"""
|
|
250
504
|
|
|
251
505
|
def qlinear_forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
|
252
|
-
|
|
253
|
-
|
|
506
|
+
weight_scale = self.weight_scale
|
|
507
|
+
if inputs.dtype != weight_scale.dtype:
|
|
508
|
+
raise TypeError(f"Expected input dtype {weight_scale.dtype}, but got {inputs.dtype}")
|
|
254
509
|
|
|
255
510
|
w_fp = self.weight.type(inputs.dtype)
|
|
256
|
-
w_fp *=
|
|
511
|
+
w_fp *= weight_scale.view(-1, 1)
|
|
257
512
|
return F.linear(inputs, w_fp, self.bias)
|
|
258
513
|
|
|
259
514
|
# Convert weight to int8 and add scale parameter
|
|
260
515
|
layer.weight = Parameter(layer.weight.to(torch.int8), requires_grad=False)
|
|
261
|
-
layer.
|
|
516
|
+
layer.weight_scale = Parameter(torch.ones(layer.out_features, 1, dtype=torch.float32), requires_grad=False)
|
|
262
517
|
layer.forward = lambda inputs: qlinear_forward(layer, inputs)
|
|
263
518
|
|
|
264
519
|
return layer
|
|
520
|
+
|
|
521
|
+
|
|
522
|
+
def create_fp8linear(layer: Linear, rbln_quantization: RBLNQuantizationConfig) -> Linear:
|
|
523
|
+
"""
|
|
524
|
+
Converts a standard linear layer to a fp8 linear layer with a custom forward pass.
|
|
525
|
+
"""
|
|
526
|
+
|
|
527
|
+
def static_per_tensor_quantize(tensor: torch.Tensor, inv_scale: float) -> torch.Tensor:
|
|
528
|
+
finfo = torch.finfo(torch.float8_e4m3fn)
|
|
529
|
+
qweight = (tensor / inv_scale).clamp(min=finfo.min, max=finfo.max)
|
|
530
|
+
return qweight
|
|
531
|
+
|
|
532
|
+
def fp8_gemm(A: torch.Tensor, A_scale, B: torch.Tensor, B_scale, bias, out_dtype: torch.dtype):
|
|
533
|
+
A = A.type(out_dtype)
|
|
534
|
+
B = B.type(out_dtype)
|
|
535
|
+
|
|
536
|
+
if A_scale is not None:
|
|
537
|
+
A *= A_scale
|
|
538
|
+
if B_scale is not None:
|
|
539
|
+
B *= B_scale.to(out_dtype)
|
|
540
|
+
|
|
541
|
+
output = torch.nn.functional.linear(A, B, bias=bias)
|
|
542
|
+
return output
|
|
543
|
+
|
|
544
|
+
def fp8linear_forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
545
|
+
if self.input_scale:
|
|
546
|
+
input = static_per_tensor_quantize(x, self.input_scale)
|
|
547
|
+
else:
|
|
548
|
+
input = x
|
|
549
|
+
|
|
550
|
+
if self.weight_scale:
|
|
551
|
+
# broadcast weight_scale to vector
|
|
552
|
+
weight_scale = self.weight_scale.broadcast_to(self.weight.shape[-1:])
|
|
553
|
+
else:
|
|
554
|
+
weight_scale = None
|
|
555
|
+
output = fp8_gemm(
|
|
556
|
+
A=input,
|
|
557
|
+
A_scale=self.input_scale,
|
|
558
|
+
B=self.weight,
|
|
559
|
+
B_scale=weight_scale,
|
|
560
|
+
bias=self.bias,
|
|
561
|
+
out_dtype=x.dtype,
|
|
562
|
+
)
|
|
563
|
+
|
|
564
|
+
return output
|
|
565
|
+
|
|
566
|
+
layer.weight = Parameter(layer.weight.to(torch.float8_e4m3fn), requires_grad=False)
|
|
567
|
+
layer.weight_scale = Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False)
|
|
568
|
+
|
|
569
|
+
if rbln_quantization.activations == "fp8":
|
|
570
|
+
layer.input_scale = Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False)
|
|
571
|
+
else:
|
|
572
|
+
layer.input_scale = None
|
|
573
|
+
|
|
574
|
+
if rbln_quantization.kv_caches == "fp8":
|
|
575
|
+
layer.k_scale = Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False)
|
|
576
|
+
layer.v_scale = Parameter(torch.tensor(1, dtype=torch.float32), requires_grad=False)
|
|
577
|
+
|
|
578
|
+
layer.forward = lambda inputs: fp8linear_forward(layer, inputs)
|
|
579
|
+
|
|
580
|
+
return layer
|
|
@@ -0,0 +1,79 @@
|
|
|
1
|
+
# Copyright 2025 Rebellions Inc. All rights reserved.
|
|
2
|
+
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at:
|
|
6
|
+
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
from abc import ABC, abstractmethod
|
|
17
|
+
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union
|
|
18
|
+
|
|
19
|
+
from torch.nn import Module
|
|
20
|
+
|
|
21
|
+
from ...modeling import RBLNModel
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
if TYPE_CHECKING:
|
|
25
|
+
import rebel
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class LoopProcessor(Module, ABC):
|
|
29
|
+
def __init__(self, model: Union[RBLNModel, "rebel.Runtime"]):
|
|
30
|
+
super().__init__()
|
|
31
|
+
self.model = model
|
|
32
|
+
|
|
33
|
+
def __repr__(self) -> str:
|
|
34
|
+
return repr(self.model)
|
|
35
|
+
|
|
36
|
+
def _is_batch_implemented(self) -> bool:
|
|
37
|
+
return self._forward_batch.__func__ is not LoopProcessor._forward_batch
|
|
38
|
+
|
|
39
|
+
def forward(self, *args, force_loop: bool = False, **kwargs) -> Any:
|
|
40
|
+
if not force_loop and self._is_batch_implemented():
|
|
41
|
+
return self._forward_batch(*args, **kwargs)
|
|
42
|
+
else:
|
|
43
|
+
return self._forward_loop(*args, **kwargs)
|
|
44
|
+
|
|
45
|
+
def _forward_loop(self, *args, **kwargs) -> Any:
|
|
46
|
+
batch_size = self._get_batch_size(*args, **kwargs)
|
|
47
|
+
|
|
48
|
+
if not isinstance(batch_size, int) or batch_size == 0:
|
|
49
|
+
return self._process_outputs([])
|
|
50
|
+
|
|
51
|
+
common_inputs = self._prepare_inputs_before_loop(*args, **kwargs)
|
|
52
|
+
|
|
53
|
+
outputs = []
|
|
54
|
+
for i in range(batch_size):
|
|
55
|
+
item_args, item_kwargs = self._prepare_inputs_for_iteration(i, common_inputs, *args, **kwargs)
|
|
56
|
+
item_output = self.model(*item_args, **item_kwargs)
|
|
57
|
+
outputs.append(item_output)
|
|
58
|
+
|
|
59
|
+
return self._process_outputs(outputs, **kwargs)
|
|
60
|
+
|
|
61
|
+
def _forward_batch(self, *args, **kwargs) -> Any:
|
|
62
|
+
raise NotImplementedError("The batch processing logic (_forward_batch) is not implemented in this class.")
|
|
63
|
+
|
|
64
|
+
@abstractmethod
|
|
65
|
+
def _get_batch_size(self, *args, **kwargs) -> int:
|
|
66
|
+
pass
|
|
67
|
+
|
|
68
|
+
@abstractmethod
|
|
69
|
+
def _prepare_inputs_for_iteration(
|
|
70
|
+
self, index: int, common_inputs: Dict[str, Any], *args, **kwargs
|
|
71
|
+
) -> Tuple[List[Any], Dict[str, Any]]:
|
|
72
|
+
pass
|
|
73
|
+
|
|
74
|
+
def _prepare_inputs_before_loop(self, *args, **kwargs) -> Dict[str, Any]:
|
|
75
|
+
pass
|
|
76
|
+
|
|
77
|
+
@abstractmethod
|
|
78
|
+
def _process_outputs(self, outputs: List[Any], **kwargs) -> Any:
|
|
79
|
+
pass
|