optimum-rbln 0.8.2a4__py3-none-any.whl → 0.9.3rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (167) hide show
  1. optimum/rbln/__init__.py +96 -9
  2. optimum/rbln/__version__.py +16 -3
  3. optimum/rbln/cli.py +660 -0
  4. optimum/rbln/configuration_utils.py +153 -42
  5. optimum/rbln/diffusers/__init__.py +7 -0
  6. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +3 -3
  7. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +1 -1
  8. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +3 -3
  9. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +4 -4
  10. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +9 -4
  11. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +9 -4
  12. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +3 -3
  13. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +3 -3
  14. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +35 -19
  15. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +14 -11
  16. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +30 -20
  17. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +13 -9
  18. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +17 -13
  19. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +17 -10
  20. optimum/rbln/diffusers/modeling_diffusers.py +30 -14
  21. optimum/rbln/diffusers/models/__init__.py +3 -13
  22. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +31 -3
  23. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +28 -3
  24. optimum/rbln/diffusers/models/autoencoders/vq_model.py +31 -3
  25. optimum/rbln/diffusers/models/transformers/prior_transformer.py +1 -1
  26. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +9 -1
  27. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +9 -1
  28. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +6 -3
  29. optimum/rbln/diffusers/pipelines/__init__.py +11 -5
  30. optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
  31. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +19 -16
  32. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +14 -18
  33. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +31 -1
  34. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +31 -1
  35. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
  36. optimum/rbln/modeling.py +71 -19
  37. optimum/rbln/modeling_base.py +99 -21
  38. optimum/rbln/ops/attn.py +158 -0
  39. optimum/rbln/ops/flash_attn.py +166 -0
  40. optimum/rbln/ops/kv_cache_update.py +5 -0
  41. optimum/rbln/ops/linear.py +7 -0
  42. optimum/rbln/transformers/__init__.py +92 -0
  43. optimum/rbln/transformers/configuration_generic.py +9 -7
  44. optimum/rbln/transformers/modeling_attention_utils.py +252 -0
  45. optimum/rbln/transformers/modeling_generic.py +51 -9
  46. optimum/rbln/transformers/modeling_outputs.py +37 -0
  47. optimum/rbln/transformers/models/__init__.py +91 -30
  48. optimum/rbln/transformers/models/auto/__init__.py +2 -0
  49. optimum/rbln/transformers/models/auto/auto_factory.py +92 -17
  50. optimum/rbln/transformers/models/auto/modeling_auto.py +45 -0
  51. optimum/rbln/transformers/models/bart/bart_architecture.py +1 -3
  52. optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
  53. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  54. optimum/rbln/transformers/models/bert/modeling_bert.py +8 -4
  55. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +42 -11
  56. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +94 -30
  57. optimum/rbln/transformers/models/clip/configuration_clip.py +10 -7
  58. optimum/rbln/transformers/models/clip/modeling_clip.py +27 -4
  59. optimum/rbln/transformers/models/colpali/colpali_architecture.py +3 -6
  60. optimum/rbln/transformers/models/colpali/configuration_colpali.py +37 -21
  61. optimum/rbln/transformers/models/colpali/modeling_colpali.py +113 -96
  62. optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
  63. optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
  64. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
  65. optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
  66. optimum/rbln/transformers/models/decoderonly/__init__.py +3 -2
  67. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +109 -37
  68. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  69. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +318 -309
  70. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +504 -0
  71. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +111 -0
  72. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  73. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +453 -897
  74. optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
  75. optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
  76. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +25 -0
  77. optimum/rbln/transformers/models/exaone/modeling_exaone.py +42 -4
  78. optimum/rbln/transformers/models/gemma/__init__.py +2 -2
  79. optimum/rbln/transformers/models/gemma/configuration_gemma.py +9 -1
  80. optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
  81. optimum/rbln/transformers/models/gemma/modeling_gemma.py +22 -1
  82. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +49 -13
  83. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +12 -2
  84. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
  85. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +201 -349
  86. optimum/rbln/transformers/models/gpt2/__init__.py +2 -2
  87. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +31 -3
  88. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +10 -8
  89. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +18 -1
  90. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  91. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
  92. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
  93. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1032 -0
  94. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +35 -7
  95. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +26 -27
  96. optimum/rbln/transformers/models/llama/__init__.py +2 -2
  97. optimum/rbln/transformers/models/llama/configuration_llama.py +9 -1
  98. optimum/rbln/transformers/models/llama/modeling_llama.py +22 -1
  99. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  100. optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
  101. optimum/rbln/transformers/models/llava/modeling_llava.py +478 -0
  102. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +15 -17
  103. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +235 -375
  104. optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
  105. optimum/rbln/transformers/models/midm/modeling_midm.py +42 -4
  106. optimum/rbln/transformers/models/mistral/__init__.py +2 -2
  107. optimum/rbln/transformers/models/mistral/configuration_mistral.py +9 -1
  108. optimum/rbln/transformers/models/mistral/mistral_architecture.py +1 -1
  109. optimum/rbln/transformers/models/mistral/modeling_mistral.py +26 -3
  110. optimum/rbln/transformers/models/opt/__init__.py +2 -2
  111. optimum/rbln/transformers/models/opt/configuration_opt.py +8 -1
  112. optimum/rbln/transformers/models/opt/modeling_opt.py +28 -16
  113. optimum/rbln/transformers/models/opt/opt_architecture.py +4 -4
  114. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  115. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
  116. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
  117. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  118. optimum/rbln/transformers/models/phi/__init__.py +2 -2
  119. optimum/rbln/transformers/models/phi/configuration_phi.py +9 -1
  120. optimum/rbln/transformers/models/phi/modeling_phi.py +10 -1
  121. optimum/rbln/transformers/models/phi/phi_architecture.py +11 -7
  122. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  123. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  124. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +310 -0
  125. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  126. optimum/rbln/transformers/models/qwen2/__init__.py +2 -2
  127. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +9 -1
  128. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +27 -1
  129. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +21 -6
  130. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +15 -21
  131. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +28 -7
  132. optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  133. optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  134. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +514 -0
  135. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
  136. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +2 -2
  137. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +86 -330
  138. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +1 -245
  139. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +20 -13
  140. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +24 -3
  141. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -2
  142. optimum/rbln/transformers/models/siglip/__init__.py +2 -6
  143. optimum/rbln/transformers/models/siglip/configuration_siglip.py +1 -1
  144. optimum/rbln/transformers/models/siglip/modeling_siglip.py +5 -16
  145. optimum/rbln/transformers/models/swin/__init__.py +16 -0
  146. optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
  147. optimum/rbln/transformers/models/swin/modeling_swin.py +341 -0
  148. optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
  149. optimum/rbln/transformers/models/t5/t5_architecture.py +8 -1
  150. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +3 -3
  151. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -14
  152. optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +7 -1
  153. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -0
  154. optimum/rbln/transformers/models/whisper/configuration_whisper.py +12 -13
  155. optimum/rbln/transformers/models/whisper/generation_whisper.py +28 -6
  156. optimum/rbln/transformers/models/whisper/modeling_whisper.py +28 -3
  157. optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
  158. optimum/rbln/transformers/utils/rbln_quantization.py +391 -75
  159. optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
  160. optimum/rbln/utils/depreacate_utils.py +16 -0
  161. optimum/rbln/utils/runtime_utils.py +28 -18
  162. optimum/rbln/utils/submodule.py +31 -9
  163. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/METADATA +8 -7
  164. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/RECORD +167 -125
  165. optimum_rbln-0.9.3rc0.dist-info/entry_points.txt +2 -0
  166. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/WHEEL +0 -0
  167. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/licenses/LICENSE +0 -0
@@ -12,64 +12,57 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
 
15
+ import importlib
15
16
  import inspect
16
17
  from pathlib import Path
17
- from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
18
+ from typing import TYPE_CHECKING, Any, Callable, List, Optional, Tuple, Union
18
19
 
19
20
  import numpy as np
20
21
  import torch
21
- from transformers import (
22
- AutoModelForVision2Seq,
23
- LlavaNextForConditionalGeneration,
24
- PretrainedConfig,
25
- PreTrainedModel,
26
- )
22
+ from transformers import AutoModelForVision2Seq, LlavaNextForConditionalGeneration, PretrainedConfig, PreTrainedModel
27
23
  from transformers.modeling_outputs import BaseModelOutputWithPooling
24
+ from transformers.modeling_utils import no_init_weights
25
+ from transformers.models.llava_next.modeling_llava_next import (
26
+ get_anyres_image_grid_shape,
27
+ image_size_to_num_patches,
28
+ unpad_image,
29
+ )
28
30
 
29
31
  from ....configuration_utils import RBLNCompileConfig, RBLNModelConfig
30
32
  from ....modeling import RBLNModel
31
33
  from ....utils.logging import get_logger
34
+ from ...utils.rbln_runtime_wrapper import LoopProcessor
35
+ from ..decoderonly.generation_decoderonly import RBLNDecoderOnlyGenerationMixin
32
36
  from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyOutput
33
37
 
34
38
 
35
39
  logger = get_logger(__name__)
36
40
 
37
41
  if TYPE_CHECKING:
38
- from transformers import (
39
- AutoFeatureExtractor,
40
- AutoProcessor,
41
- AutoTokenizer,
42
- PretrainedConfig,
43
- )
44
-
42
+ from transformers import AutoFeatureExtractor, AutoProcessor, AutoTokenizer, PretrainedConfig
45
43
 
46
- class LoopVisionTower:
47
- def __init__(self, vision_tower: RBLNModel) -> None:
48
- self.vision_tower = vision_tower
49
44
 
50
- def forward(self, *args, **kwargs):
51
- # Loop instead of batch
52
- # shape of pixel_values : [batch, num_patches, num_channel, height, width]
53
- pixel_values = args[0]
45
+ class LoopVisionTower(LoopProcessor):
46
+ def __init__(self, vision_tower: "RBLNModel"):
47
+ super().__init__(model=vision_tower.model[0])
54
48
 
55
- batch_size = pixel_values.shape[0]
56
- outputs = []
57
- for i in range(batch_size):
58
- outputs.append(self.vision_tower.model[0](pixel_values[i : i + 1]))
49
+ def _get_batch_size(self, pixel_values, **kwargs):
50
+ return pixel_values.shape[0]
59
51
 
60
- last_hidden_states = [output[0] for output in outputs]
61
- pooler_output = [output[1] for output in outputs]
52
+ def _prepare_inputs_for_iteration(self, index, common_inputs, pixel_values, **kwargs):
53
+ pixel_values_item = pixel_values[index : index + 1]
54
+ out_buffer = [tensor[index : index + 1] for tensor in kwargs["out"]]
55
+ return ([pixel_values_item], {"out": out_buffer})
62
56
 
63
- # FIXME:: This can be optimized using out= API of rbln runtime.
64
- last_hidden_states = torch.cat(last_hidden_states, dim=0)
65
- pooler_output = torch.cat(pooler_output, dim=0)
57
+ def _process_outputs(self, outputs: list, **kwargs) -> "BaseModelOutputWithPooling":
58
+ output = kwargs["out"]
59
+ last_hidden_states = output[0]
60
+ pooler_output = output[1]
66
61
 
67
- hidden_states = [output[2:] for output in outputs] # batch x (hidden x 1)
68
-
69
- hidden_states = tuple(
70
- torch.cat(tuple((hidden_states[n][i] for n in range(batch_size))), dim=0)
71
- for i in range(len(hidden_states[0]))
72
- ) # hidden x (batch,)
62
+ if not output[2:]:
63
+ hidden_states = None
64
+ else:
65
+ hidden_states = tuple(output[2:])
73
66
 
74
67
  return BaseModelOutputWithPooling(
75
68
  last_hidden_state=last_hidden_states,
@@ -77,38 +70,25 @@ class LoopVisionTower:
77
70
  hidden_states=hidden_states,
78
71
  )
79
72
 
80
- def __call__(self, *args: Any, **kwds: Any) -> Any:
81
- return self.forward(*args, **kwds)
82
-
83
- def __repr__(self) -> str:
84
- return repr(self.vision_tower)
85
73
 
74
+ class LoopProjector(LoopProcessor):
75
+ def __init__(self, multi_modal_projector: "RBLNModel"):
76
+ super().__init__(model=multi_modal_projector)
86
77
 
87
- class LoopProjector:
88
- def __init__(self, multi_modal_projector) -> None:
89
- self.multi_modal_projector = multi_modal_projector
78
+ def _get_batch_size(self, image_feature, **kwargs):
79
+ return image_feature.shape[0]
90
80
 
91
- def forward(self, *args, **kwargs):
92
- # Loop instead of batch
93
- image_feature = args[0]
81
+ def _prepare_inputs_for_iteration(self, index, common_inputs, image_feature, **kwargs):
82
+ image_feature_item = image_feature[index : index + 1]
83
+ out_buffer = [tensor[index : index + 1] for tensor in kwargs["out"]]
84
+ return ([image_feature_item], {"out": out_buffer})
94
85
 
95
- batch_size = image_feature.shape[0]
96
- outputs = []
97
- for i in range(batch_size):
98
- outputs.append(self.multi_modal_projector(image_feature[i : i + 1]))
86
+ def _process_outputs(self, outputs: list, **kwargs):
87
+ output = kwargs["out"]
88
+ return output[0]
99
89
 
100
- # FIXME:: This can be optimized using out= API of rbln runtime.
101
- outputs = torch.cat(outputs, dim=0)
102
- return outputs
103
90
 
104
- def __call__(self, *args: Any, **kwds: Any) -> Any:
105
- return self.forward(*args, **kwds)
106
-
107
- def __repr__(self) -> str:
108
- return repr(self.multi_modal_projector)
109
-
110
-
111
- class RBLNLlavaNextForConditionalGeneration(RBLNModel):
91
+ class RBLNLlavaNextForConditionalGeneration(RBLNModel, RBLNDecoderOnlyGenerationMixin):
112
92
  """
113
93
  RBLNLlavaNextForConditionalGeneration is a multi-modal model that combines vision and language processing capabilities,
114
94
  optimized for RBLN NPUs. It is designed for conditional generation tasks that involve both image and text inputs.
@@ -158,6 +138,23 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
158
138
  def can_generate(self):
159
139
  return True
160
140
 
141
+ @classmethod
142
+ def get_pytorch_model(cls, *args, **kwargs):
143
+ model = super().get_pytorch_model(*args, **kwargs)
144
+
145
+ with no_init_weights():
146
+ model_cls_name = model.model.language_model.__class__.__name__
147
+ causal_model_cls_name = model_cls_name.replace("Model", "ForCausalLM")
148
+ causal_model_cls = getattr(importlib.import_module("transformers"), causal_model_cls_name)
149
+ new_language_model = causal_model_cls(model.model.language_model.config)
150
+
151
+ new_language_model.lm_head = model.lm_head
152
+ new_language_model.model = model.model.language_model
153
+ model.model.language_model = new_language_model
154
+ model.lm_head = None
155
+ del model.lm_head
156
+ return model
157
+
161
158
  @classmethod
162
159
  def save_torch_artifacts(
163
160
  cls,
@@ -169,7 +166,7 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
169
166
  # If you are unavoidably running on a CPU rather than an RBLN device,
170
167
  # store the torch tensor, weight, etc. in this function.
171
168
  save_dict = {}
172
- save_dict["image_newline"] = model.image_newline
169
+ save_dict["image_newline"] = model.model.image_newline
173
170
  torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
174
171
 
175
172
  def __post_init__(self, **kwargs):
@@ -216,7 +213,11 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
216
213
  selected_image_feature_dim = num_positions
217
214
 
218
215
  input_info = [
219
- ("image_features", [rbln_config.batch_size, selected_image_feature_dim, feature_size], "float32")
216
+ (
217
+ "image_features",
218
+ [rbln_config.vision_tower.batch_size, selected_image_feature_dim, feature_size],
219
+ "float32",
220
+ )
220
221
  ]
221
222
  rbln_compile_config = RBLNCompileConfig(input_info=input_info)
222
223
  rbln_config.set_compile_cfgs([rbln_compile_config])
@@ -227,89 +228,62 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
227
228
  input_ids,
228
229
  inputs_embeds=None,
229
230
  pixel_values=None,
230
- image_sizes=None,
231
231
  attention_mask=None,
232
+ cache_position=None,
233
+ image_sizes=None,
232
234
  generate_idx=None,
233
235
  **kwargs,
234
236
  ):
235
- # Prepare HF generation
236
237
  is_prefill_phase = generate_idx is None
237
- batch_size = input_ids.shape[0]
238
-
239
- model_inputs = self.language_model.prepare_inputs_for_generation(
240
- input_ids=input_ids,
241
- inputs_embeds=inputs_embeds,
242
- generate_idx=generate_idx, # Not affect
243
- attention_mask=attention_mask,
244
- **kwargs,
245
- )
238
+ model_inputs = {}
246
239
 
247
240
  if is_prefill_phase:
248
- model_inputs["generate_idx"] = torch.zeros((batch_size, 1), dtype=torch.int32)
249
- model_inputs.update(
250
- {
251
- "pixel_values": pixel_values,
252
- "image_sizes": image_sizes,
253
- }
254
- )
241
+ generate_idx = attention_mask.sum(dim=-1, keepdim=True).int()
242
+ cache_position = None
243
+ pixel_values = pixel_values
244
+ model_inputs.update({"image_sizes": image_sizes})
245
+ else:
246
+ if inputs_embeds is not None:
247
+ raise NotImplementedError("Specifying inputs_embeds in decoder phase is not supported.")
255
248
 
256
- model_inputs["attention_mask"] = attention_mask
249
+ pixel_values = None
250
+ input_ids = input_ids[:, -1:]
251
+ cache_position = generate_idx
252
+ generate_idx = generate_idx + 1
253
+ model_inputs.update({"input_ids": input_ids})
254
+
255
+ if inputs_embeds is not None:
256
+ if self.rbln_config.use_inputs_embeds:
257
+ model_inputs.update({"inputs_embeds": inputs_embeds})
258
+ else:
259
+ raise ValueError(
260
+ "The specifying inputs_embeds is only supported when using a compiled RBLN model with 'rbln_use_inputs_embeds' set to True."
261
+ )
262
+ else:
263
+ model_inputs.update({"input_ids": input_ids})
264
+
265
+ model_inputs.update(
266
+ {
267
+ "attention_mask": attention_mask,
268
+ "pixel_values": pixel_values,
269
+ "cache_position": cache_position,
270
+ "generate_idx": generate_idx,
271
+ }
272
+ )
257
273
  return model_inputs
258
274
 
259
- def _update_model_kwargs_for_generation(
260
- self,
261
- outputs: RBLNDecoderOnlyOutput,
262
- model_kwargs: Dict[str, Any],
263
- **kwargs,
264
- ) -> Dict[str, Any]:
275
+ def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
265
276
  # update generate_idx
266
277
  model_kwargs["generate_idx"] = outputs.generate_idx
267
-
268
278
  return model_kwargs
269
279
 
270
- def text_embedding(
280
+ def get_image_features(
271
281
  self,
272
- input_ids: torch.LongTensor,
273
- ) -> torch.Tensor:
274
- for_inputs_embeds_ids = input_ids.clone()
275
- for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0
276
- inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids)
277
-
278
- return inputs_embeds
279
-
280
- def image_embedding(
281
- self,
282
- image_sizes: torch.Tensor,
283
282
  pixel_values: torch.FloatTensor,
284
- vision_feature_layer: int,
283
+ image_sizes: torch.Tensor,
284
+ vision_feature_layer: Union[int, List[int]],
285
285
  vision_feature_select_strategy: str,
286
286
  ):
287
- vision_feature_layer = (
288
- vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
289
- )
290
- vision_feature_select_strategy = (
291
- vision_feature_select_strategy
292
- if vision_feature_select_strategy is not None
293
- else self.config.vision_feature_select_strategy
294
- )
295
-
296
- """
297
- Obtains image last hidden states from the vision tower and apply multimodal projection.
298
-
299
- Args:
300
- pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_patches, channels, height, width)`)
301
- The tensors corresponding to the input images.
302
- image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
303
- Actual image size of each images (H, W).
304
- vision_feature_layer (`int`):
305
- The index of the layer to select the vision feature.
306
- vision_feature_select_strategy (`str`):
307
- The feature selection strategy used to select the vision feature from the vision backbone.
308
- Can be one of `"default"` or `"full"`
309
- Returns:
310
- image_features (List[`torch.Tensor`]): List of image feature tensor, each contains all the visual feature of all patches
311
- and are of shape `(num_patches, image_length, embed_dim)`).
312
- """
313
287
  # ! infer image_num_patches from image_sizes
314
288
  image_num_patches = [
315
289
  image_size_to_num_patches(
@@ -319,6 +293,26 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
319
293
  )
320
294
  for imsize in image_sizes
321
295
  ]
296
+
297
+ # prepare out buffer for pre-allocation
298
+ vision_out_size = [
299
+ pixel_values.shape[0] * pixel_values.shape[1],
300
+ (self.config.vision_config.image_size // self.config.vision_config.patch_size) ** 2 + 1,
301
+ self.config.vision_config.hidden_size,
302
+ ]
303
+ pooler_out_size = [pixel_values.shape[0] * pixel_values.shape[1], self.config.vision_config.hidden_size]
304
+ vision_out_buffer = []
305
+ for i in range(self.config.vision_config.num_hidden_layers + 2):
306
+ vision_out_buffer.append(torch.empty(size=vision_out_size, dtype=torch.float32, device="cpu"))
307
+ vision_out_buffer.insert(1, torch.empty(size=pooler_out_size, dtype=torch.float32, device="cpu"))
308
+
309
+ projector_out_size = [
310
+ pixel_values.shape[0] * pixel_values.shape[1],
311
+ (self.config.vision_config.image_size // self.config.vision_config.patch_size) ** 2,
312
+ self.config.text_config.hidden_size,
313
+ ]
314
+ projector_out_buffer = [torch.empty(size=projector_out_size, dtype=torch.float32, device="cpu")]
315
+
322
316
  if pixel_values.dim() == 5:
323
317
  # stacked if input is (batch_size, num_patches, num_channels, height, width)
324
318
  _pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
@@ -327,118 +321,25 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
327
321
  # otherwise has to be stacked from list of (num_patches, num_channels, height, width)
328
322
  raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
329
323
 
330
- image_features = self.vision_tower(pixel_values, output_hidden_states=True)
331
- selected_image_feature = image_features.hidden_states[vision_feature_layer]
324
+ image_features = self.vision_tower(pixel_values, output_hidden_states=True, out=vision_out_buffer)
325
+ # If we have one vision feature layer, return the corresponding hidden states,
326
+ # otherwise, select the hidden states of each feature layer and concatenate them
327
+ if isinstance(vision_feature_layer, int):
328
+ selected_image_feature = image_features.hidden_states[vision_feature_layer]
329
+ else:
330
+ hs_pool = [image_features.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
331
+ selected_image_feature = torch.cat(hs_pool, dim=-1)
332
+
332
333
  if vision_feature_select_strategy == "default":
333
334
  selected_image_feature = selected_image_feature[:, 1:]
334
335
  elif vision_feature_select_strategy == "full":
335
336
  selected_image_feature = selected_image_feature
336
- image_features = self.multi_modal_projector(selected_image_feature)
337
- image_features = torch.split(image_features, image_num_patches, dim=0)
338
-
339
- # NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
340
- image_features, feature_lens = self.pack_image_features(
341
- image_features,
342
- image_sizes,
343
- vision_feature_select_strategy=vision_feature_select_strategy,
344
- image_newline=self.image_newline,
345
- )
346
-
347
- return image_features, feature_lens
348
-
349
- def forward(
350
- self,
351
- input_ids: torch.LongTensor = None,
352
- attention_mask: torch.LongTensor = None,
353
- pixel_values: torch.FloatTensor = None,
354
- image_sizes: Optional[torch.LongTensor] = None,
355
- inputs_embeds: Optional[torch.FloatTensor] = None,
356
- vision_feature_layer: Optional[int] = None,
357
- vision_feature_select_strategy: Optional[str] = None,
358
- cache_position: torch.Tensor = None,
359
- generate_idx: Optional[torch.Tensor] = None,
360
- batch_idx: Optional[int] = None,
361
- **kwargs,
362
- ) -> Union[Tuple, RBLNDecoderOnlyOutput]:
363
- vision_feature_layer = (
364
- vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
365
- )
366
- vision_feature_select_strategy = (
367
- vision_feature_select_strategy
368
- if vision_feature_select_strategy is not None
369
- else self.config.vision_feature_select_strategy
370
- )
371
-
372
- if inputs_embeds is not None:
373
- raise NotImplementedError("Specifying inputs_embeds is not supported.")
374
- inputs_embeds = self.get_input_embeddings()(input_ids)
375
-
376
- if pixel_values is not None and pixel_values.size(0) > 0:
377
- image_features, _ = self.image_embedding(
378
- pixel_values=pixel_values,
379
- image_sizes=image_sizes,
380
- vision_feature_layer=vision_feature_layer,
381
- vision_feature_select_strategy=vision_feature_select_strategy,
382
- )
383
-
384
- n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
385
- n_image_features = image_features.shape[0]
386
- if n_image_tokens != n_image_features:
387
- raise ValueError(
388
- f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
389
- )
390
- special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
391
- special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
392
- image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
393
- inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
394
337
 
395
- is_prefill_phase = not generate_idx.bool().all()
396
-
397
- if is_prefill_phase:
398
- logits = []
399
- batch_size = input_ids.shape[0]
400
- inputs_embeds = [inputs_embeds[i : i + 1, attention_mask[i].bool()] for i in range(batch_size)]
401
- for batch_idx in range(batch_size):
402
- generate_idx[batch_idx] = inputs_embeds[batch_idx].shape[-2]
403
- output = self.language_model.prefill_decoder(
404
- inputs_embeds=inputs_embeds[batch_idx],
405
- batch_idx=batch_idx,
406
- cache_position=torch.arange(
407
- 0,
408
- generate_idx[batch_idx].item(),
409
- dtype=torch.int32,
410
- ).unsqueeze(0),
411
- )
412
-
413
- logits.append(output.logits)
414
- logits = torch.cat(logits, dim=0)
415
- else:
416
- output = self.language_model.decoder(
417
- inputs_embeds=inputs_embeds,
418
- cache_position=cache_position,
419
- )
420
- logits = output.logits
421
- return RBLNDecoderOnlyOutput(logits=logits, generate_idx=generate_idx)
338
+ image_features = self.multi_modal_projector(selected_image_feature, out=projector_out_buffer)
339
+ image_features = torch.split(image_features, image_num_patches, dim=0)
340
+ return image_features
422
341
 
423
- # Almost copied from : https://github.com/huggingface/transformers/blob/6b550462139655d488d4c663086a63e98713c6b9/src/transformers/models/llava_next/modeling_llava_next.py
424
342
  def pack_image_features(self, image_features, image_sizes, vision_feature_select_strategy, image_newline=None):
425
- """
426
- Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.
427
-
428
- Args:
429
- image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
430
- List of image feature tensor, each contains all the visual feature of all patches.
431
- image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
432
- Actual image size of each images (H, W).
433
- vision_feature_select_strategy (`str`)
434
- The feature selection strategy used to select the vision feature from the vision backbone.
435
- image_newline (`torch.Tensor` of shape `(embed_dim)`)
436
- New line embedding vector.
437
- Returns:
438
- image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
439
- feature_lens (`List[int]`)
440
- token length of each image in image_features
441
- """
442
343
  new_image_features = []
443
344
  feature_lens = []
444
345
  for image_idx, image_feature in enumerate(image_features):
@@ -447,18 +348,22 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
447
348
  image_feature = image_feature[1:]
448
349
  height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
449
350
 
450
- if vision_feature_select_strategy == "default":
451
- expected_num_patches = height * width
452
- elif vision_feature_select_strategy == "full":
453
- expected_num_patches = height * width + 1
454
- if expected_num_patches != base_image_feature.shape[0]:
455
- raise ValueError("The number of patches is not consistent with the image size.")
456
-
457
351
  num_patch_height, num_patch_width = get_anyres_image_grid_shape(
458
352
  image_sizes[image_idx],
459
353
  self.config.image_grid_pinpoints,
460
354
  self.config.vision_config.image_size,
461
355
  )
356
+
357
+ if (
358
+ np.prod(image_feature.shape) % (num_patch_height * num_patch_width * height * width) != 0
359
+ and vision_feature_select_strategy == "default"
360
+ ):
361
+ logger.warning_once(
362
+ "Image feature shape does not line up with the provided patch size. "
363
+ "You may be using the `default` vision_feature_select_strategy with a"
364
+ " visual encoder that does not have CLS."
365
+ )
366
+
462
367
  image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
463
368
  image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
464
369
  image_feature = image_feature.flatten(1, 2).flatten(2, 3)
@@ -485,151 +390,106 @@ class RBLNLlavaNextForConditionalGeneration(RBLNModel):
485
390
  feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
486
391
  return image_features, feature_lens
487
392
 
393
+ def _preprocess_prefill(
394
+ self,
395
+ input_ids: torch.LongTensor = None,
396
+ pixel_values: torch.FloatTensor = None,
397
+ image_sizes: Optional[torch.LongTensor] = None,
398
+ inputs_embeds: Optional[torch.FloatTensor] = None,
399
+ vision_feature_layer: Optional[int] = None,
400
+ vision_feature_select_strategy: Optional[str] = None,
401
+ **kwargs,
402
+ ):
403
+ vision_feature_layer = (
404
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
405
+ )
488
406
 
489
- # Almost copied from : https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/llava_next/modeling_llava_next.py
490
- def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
491
- """
492
- Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
493
-
494
- Args:
495
- image_size (`tuple`):
496
- The size of the input image in the format (width, height).
497
- grid_pinpoints (`List`):
498
- A list containing possible resolutions. Each item in the list should be a tuple or list
499
- of the form `(height, width)`.
500
- patch_size (`int`):
501
- The size of each image patch.
502
-
503
- Returns:
504
- tuple: The shape of the image patch grid in the format (width, height).
505
- """
506
- if not isinstance(grid_pinpoints, list):
507
- raise TypeError("grid_pinpoints should be a list of tuples or lists")
508
-
509
- # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
510
- if not isinstance(image_size, (list, tuple)):
511
- if not isinstance(image_size, (torch.Tensor, np.ndarray)):
512
- raise TypeError(
513
- f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
514
- )
515
- image_size = image_size.tolist()
516
-
517
- height, width = select_best_resolution(image_size, grid_pinpoints)
518
- return height // patch_size, width // patch_size
519
-
520
-
521
- # Almost copied from : https://github.com/huggingface/transformers/blob/1feebb5b4150882deabddd190a541f336f3be817/src/transformers/models/llava_next/modeling_llava_next.py#L115C1-L152C1
522
- def unpad_image(tensor, original_size):
523
- """
524
- Unpads a PyTorch tensor of a padded and resized image.
407
+ vision_feature_select_strategy = (
408
+ vision_feature_select_strategy
409
+ if vision_feature_select_strategy is not None
410
+ else self.config.vision_feature_select_strategy
411
+ )
525
412
 
526
- Args:
527
- tensor (`torch.Tensor`):
528
- The image tensor, assumed to be of shape (num_channels, height, width).
529
- original_size (`tuple`):
530
- The original size of the image (height, width).
413
+ if (input_ids is None) ^ (inputs_embeds is not None):
414
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
531
415
 
532
- Returns:
533
- `torch.Tensor`: The unpadded image tensor.
534
- """
535
- if not isinstance(original_size, (list, tuple)):
536
- if not isinstance(original_size, (torch.Tensor, np.ndarray)):
537
- raise TypeError(
538
- f"image_size invalid type: {type(original_size)} not valid, should be either list, tuple, np.ndarray or tensor"
416
+ if pixel_values is not None and inputs_embeds is not None:
417
+ raise ValueError(
418
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
539
419
  )
540
- original_size = original_size.tolist()
541
- original_height, original_width = original_size
542
- current_height, current_width = tensor.shape[1:]
543
-
544
- original_aspect_ratio = original_width / original_height
545
- current_aspect_ratio = current_width / current_height
546
420
 
547
- if original_aspect_ratio > current_aspect_ratio:
548
- scale_factor = current_width / original_width
549
- new_height = int(round(original_height * scale_factor, 7))
550
- padding = (current_height - new_height) // 2
551
- unpadded_tensor = tensor[:, padding : current_height - padding, :]
552
- else:
553
- scale_factor = current_height / original_height
554
- new_width = int(round(original_width * scale_factor, 7))
555
- padding = (current_width - new_width) // 2
556
- unpadded_tensor = tensor[:, :, padding : current_width - padding]
421
+ if inputs_embeds is None:
422
+ inputs_embeds = self.get_input_embeddings()(input_ids)
557
423
 
558
- return unpadded_tensor
559
-
560
-
561
- # Almost copied from : https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/llava_next/modeling_llava_next.py
562
- def select_best_resolution(original_size: tuple, possible_resolutions: list) -> tuple:
563
- """
564
- Selects the best resolution from a list of possible resolutions based on the original size.
565
-
566
- This is done by calculating the effective and wasted resolution for each possible resolution.
424
+ if pixel_values is not None and pixel_values.size(0) > 0:
425
+ image_features = self.get_image_features(
426
+ pixel_values,
427
+ image_sizes,
428
+ vision_feature_layer=vision_feature_layer,
429
+ vision_feature_select_strategy=vision_feature_select_strategy,
430
+ )
567
431
 
568
- The best fit resolution is the one that maximizes the effective resolution and minimizes the wasted resolution.
432
+ # NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
433
+ image_features, feature_lens = self.pack_image_features(
434
+ image_features,
435
+ image_sizes,
436
+ vision_feature_select_strategy=vision_feature_select_strategy,
437
+ image_newline=self.image_newline,
438
+ )
569
439
 
570
- Args:
571
- original_size (tuple):
572
- The original size of the image in the format (height, width).
573
- possible_resolutions (list):
574
- A list of possible resolutions in the format [(height1, width1), (height2, width2), ...].
440
+ special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
441
+ special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
442
+ image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
443
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
575
444
 
576
- Returns:
577
- tuple: The best fit resolution in the format (height, width).
578
- """
579
- original_height, original_width = original_size
580
- best_fit = None
581
- max_effective_resolution = 0
582
- min_wasted_resolution = float("inf")
445
+ return inputs_embeds
583
446
 
584
- for height, width in possible_resolutions:
585
- scale = min(width / original_width, height / original_height)
586
- downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
587
- effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
588
- wasted_resolution = (width * height) - effective_resolution
447
+ def forward(
448
+ self,
449
+ input_ids: torch.LongTensor = None,
450
+ attention_mask: torch.LongTensor = None,
451
+ pixel_values: torch.FloatTensor = None,
452
+ image_sizes: Optional[torch.LongTensor] = None,
453
+ inputs_embeds: Optional[torch.FloatTensor] = None,
454
+ cache_position: torch.Tensor = None,
455
+ generate_idx: Optional[torch.Tensor] = None,
456
+ return_dict: Optional[bool] = None,
457
+ **kwargs,
458
+ ) -> Union[Tuple, RBLNDecoderOnlyOutput]:
459
+ # Prefill
460
+ if cache_position is None:
461
+ inputs_embeds = self._preprocess_prefill(
462
+ input_ids=input_ids, inputs_embeds=inputs_embeds, pixel_values=pixel_values, image_sizes=image_sizes
463
+ )
464
+ logits = []
465
+ inputs = inputs_embeds if inputs_embeds is not None else input_ids
466
+ batch_size = inputs.shape[0]
589
467
 
590
- if effective_resolution > max_effective_resolution or (
591
- effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution
592
- ):
593
- max_effective_resolution = effective_resolution
594
- min_wasted_resolution = wasted_resolution
595
- best_fit = (height, width)
468
+ for b_idx in range(batch_size):
469
+ cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
470
+ output = self.language_model.prefill_decoder(
471
+ input_ids=inputs[b_idx : b_idx + 1] if inputs_embeds is None else None,
472
+ inputs_embeds=inputs[b_idx : b_idx + 1] if inputs_embeds is not None else None,
473
+ attention_mask=attention_mask[b_idx] if attention_mask is not None else None,
474
+ cache_position=cache_position,
475
+ batch_idx=b_idx,
476
+ )
477
+ logits.append(output.logits)
596
478
 
597
- return best_fit
479
+ logits = torch.cat(logits, dim=0)
598
480
 
481
+ # Decoder
482
+ else:
483
+ logits = self.language_model.decoder(
484
+ input_ids=input_ids,
485
+ inputs_embeds=inputs_embeds,
486
+ cache_position=cache_position,
487
+ ).logits
599
488
 
600
- # Almost copied from : https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/llava_next/modeling_llava_next.py
601
- def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
602
- """
603
- Calculate the number of patches after the preprocessing for images of any resolution.
604
-
605
- Args:
606
- image_size (`torch.LongTensor` or `np.ndarray` or `Tuple[int, int]`):
607
- The size of the input image in the format (height, width). ?
608
- grid_pinpoints (`List`):
609
- A list containing possible resolutions. Each item in the list should be a tuple or list
610
- of the form `(height, width)`.
611
- patch_size (`int`):
612
- The size of each image patch.
613
-
614
- Returns:
615
- int: the number of patches
616
- """
617
- if not isinstance(grid_pinpoints, list):
618
- raise TypeError("grid_pinpoints should be a list of tuples or lists")
619
-
620
- # ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
621
- if not isinstance(image_size, (list, tuple)):
622
- if not isinstance(image_size, (torch.Tensor, np.ndarray)):
623
- raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
624
- image_size = image_size.tolist()
625
-
626
- best_resolution = select_best_resolution(image_size, grid_pinpoints)
627
- height, width = best_resolution
628
- num_patches = 0
629
- # consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
630
- for i in range(0, height, patch_size):
631
- for j in range(0, width, patch_size):
632
- num_patches += 1
633
- # add the base patch
634
- num_patches += 1
635
- return num_patches
489
+ if not return_dict:
490
+ return logits, generate_idx
491
+ else:
492
+ return RBLNDecoderOnlyOutput(
493
+ logits=logits,
494
+ generate_idx=generate_idx,
495
+ )