optimum-rbln 0.8.2a4__py3-none-any.whl → 0.9.3rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (167) hide show
  1. optimum/rbln/__init__.py +96 -9
  2. optimum/rbln/__version__.py +16 -3
  3. optimum/rbln/cli.py +660 -0
  4. optimum/rbln/configuration_utils.py +153 -42
  5. optimum/rbln/diffusers/__init__.py +7 -0
  6. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl.py +3 -3
  7. optimum/rbln/diffusers/configurations/models/configuration_autoencoder_kl_cosmos.py +1 -1
  8. optimum/rbln/diffusers/configurations/models/configuration_controlnet.py +3 -3
  9. optimum/rbln/diffusers/configurations/models/configuration_prior_transformer.py +4 -4
  10. optimum/rbln/diffusers/configurations/models/configuration_transformer_cosmos.py +9 -4
  11. optimum/rbln/diffusers/configurations/models/configuration_transformer_sd3.py +9 -4
  12. optimum/rbln/diffusers/configurations/models/configuration_unet_2d_condition.py +3 -3
  13. optimum/rbln/diffusers/configurations/models/configuration_vq_model.py +3 -3
  14. optimum/rbln/diffusers/configurations/pipelines/configuration_controlnet.py +35 -19
  15. optimum/rbln/diffusers/configurations/pipelines/configuration_cosmos.py +14 -11
  16. optimum/rbln/diffusers/configurations/pipelines/configuration_kandinsky2_2.py +30 -20
  17. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion.py +13 -9
  18. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_3.py +17 -13
  19. optimum/rbln/diffusers/configurations/pipelines/configuration_stable_diffusion_xl.py +17 -10
  20. optimum/rbln/diffusers/modeling_diffusers.py +30 -14
  21. optimum/rbln/diffusers/models/__init__.py +3 -13
  22. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl.py +31 -3
  23. optimum/rbln/diffusers/models/autoencoders/autoencoder_kl_cosmos.py +28 -3
  24. optimum/rbln/diffusers/models/autoencoders/vq_model.py +31 -3
  25. optimum/rbln/diffusers/models/transformers/prior_transformer.py +1 -1
  26. optimum/rbln/diffusers/models/transformers/transformer_cosmos.py +9 -1
  27. optimum/rbln/diffusers/models/transformers/transformer_sd3.py +9 -1
  28. optimum/rbln/diffusers/models/unets/unet_2d_condition.py +6 -3
  29. optimum/rbln/diffusers/pipelines/__init__.py +11 -5
  30. optimum/rbln/diffusers/pipelines/auto_pipeline.py +307 -0
  31. optimum/rbln/diffusers/pipelines/cosmos/configuration_cosmos_guardrail.py +19 -16
  32. optimum/rbln/diffusers/pipelines/cosmos/cosmos_guardrail.py +14 -18
  33. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_text2world.py +31 -1
  34. optimum/rbln/diffusers/pipelines/cosmos/pipeline_cosmos_video2world.py +31 -1
  35. optimum/rbln/diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -6
  36. optimum/rbln/modeling.py +71 -19
  37. optimum/rbln/modeling_base.py +99 -21
  38. optimum/rbln/ops/attn.py +158 -0
  39. optimum/rbln/ops/flash_attn.py +166 -0
  40. optimum/rbln/ops/kv_cache_update.py +5 -0
  41. optimum/rbln/ops/linear.py +7 -0
  42. optimum/rbln/transformers/__init__.py +92 -0
  43. optimum/rbln/transformers/configuration_generic.py +9 -7
  44. optimum/rbln/transformers/modeling_attention_utils.py +252 -0
  45. optimum/rbln/transformers/modeling_generic.py +51 -9
  46. optimum/rbln/transformers/modeling_outputs.py +37 -0
  47. optimum/rbln/transformers/models/__init__.py +91 -30
  48. optimum/rbln/transformers/models/auto/__init__.py +2 -0
  49. optimum/rbln/transformers/models/auto/auto_factory.py +92 -17
  50. optimum/rbln/transformers/models/auto/modeling_auto.py +45 -0
  51. optimum/rbln/transformers/models/bart/bart_architecture.py +1 -3
  52. optimum/rbln/transformers/models/bart/configuration_bart.py +2 -0
  53. optimum/rbln/transformers/models/bert/bert_architecture.py +16 -0
  54. optimum/rbln/transformers/models/bert/modeling_bert.py +8 -4
  55. optimum/rbln/transformers/models/blip_2/configuration_blip_2.py +42 -11
  56. optimum/rbln/transformers/models/blip_2/modeling_blip_2.py +94 -30
  57. optimum/rbln/transformers/models/clip/configuration_clip.py +10 -7
  58. optimum/rbln/transformers/models/clip/modeling_clip.py +27 -4
  59. optimum/rbln/transformers/models/colpali/colpali_architecture.py +3 -6
  60. optimum/rbln/transformers/models/colpali/configuration_colpali.py +37 -21
  61. optimum/rbln/transformers/models/colpali/modeling_colpali.py +113 -96
  62. optimum/rbln/transformers/models/colqwen2/__init__.py +2 -0
  63. optimum/rbln/transformers/models/colqwen2/colqwen2_architecture.py +233 -0
  64. optimum/rbln/transformers/models/colqwen2/configuration_colqwen2.py +74 -0
  65. optimum/rbln/transformers/models/colqwen2/modeling_colqwen2.py +446 -0
  66. optimum/rbln/transformers/models/decoderonly/__init__.py +3 -2
  67. optimum/rbln/transformers/models/decoderonly/configuration_decoderonly.py +109 -37
  68. optimum/rbln/transformers/models/decoderonly/configuration_lora.py +411 -0
  69. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +318 -309
  70. optimum/rbln/transformers/models/decoderonly/decoderonly_runtime_utils.py +504 -0
  71. optimum/rbln/transformers/models/decoderonly/generation_decoderonly.py +111 -0
  72. optimum/rbln/transformers/models/decoderonly/lora_architecture.py +204 -0
  73. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +453 -897
  74. optimum/rbln/transformers/models/depth_anything/__init__.py +16 -0
  75. optimum/rbln/transformers/models/depth_anything/configuration_depth_anything.py +24 -0
  76. optimum/rbln/transformers/models/depth_anything/modeling_depth_anything.py +25 -0
  77. optimum/rbln/transformers/models/exaone/modeling_exaone.py +42 -4
  78. optimum/rbln/transformers/models/gemma/__init__.py +2 -2
  79. optimum/rbln/transformers/models/gemma/configuration_gemma.py +9 -1
  80. optimum/rbln/transformers/models/gemma/gemma_architecture.py +1 -4
  81. optimum/rbln/transformers/models/gemma/modeling_gemma.py +22 -1
  82. optimum/rbln/transformers/models/gemma3/configuration_gemma3.py +49 -13
  83. optimum/rbln/transformers/models/gemma3/gemma3_architecture.py +12 -2
  84. optimum/rbln/transformers/models/gemma3/gemma3_runtime_utils.py +245 -0
  85. optimum/rbln/transformers/models/gemma3/modeling_gemma3.py +201 -349
  86. optimum/rbln/transformers/models/gpt2/__init__.py +2 -2
  87. optimum/rbln/transformers/models/gpt2/configuration_gpt2.py +31 -3
  88. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +10 -8
  89. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +18 -1
  90. optimum/rbln/transformers/models/grounding_dino/__init__.py +10 -0
  91. optimum/rbln/transformers/models/grounding_dino/configuration_grounding_dino.py +92 -0
  92. optimum/rbln/transformers/models/grounding_dino/grounding_dino_architecture.py +599 -0
  93. optimum/rbln/transformers/models/grounding_dino/modeling_grounding_dino.py +1032 -0
  94. optimum/rbln/transformers/models/idefics3/configuration_idefics3.py +35 -7
  95. optimum/rbln/transformers/models/idefics3/modeling_idefics3.py +26 -27
  96. optimum/rbln/transformers/models/llama/__init__.py +2 -2
  97. optimum/rbln/transformers/models/llama/configuration_llama.py +9 -1
  98. optimum/rbln/transformers/models/llama/modeling_llama.py +22 -1
  99. optimum/rbln/transformers/models/llava/__init__.py +16 -0
  100. optimum/rbln/transformers/models/llava/configuration_llava.py +72 -0
  101. optimum/rbln/transformers/models/llava/modeling_llava.py +478 -0
  102. optimum/rbln/transformers/models/llava_next/configuration_llava_next.py +15 -17
  103. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +235 -375
  104. optimum/rbln/transformers/models/midm/midm_architecture.py +4 -1
  105. optimum/rbln/transformers/models/midm/modeling_midm.py +42 -4
  106. optimum/rbln/transformers/models/mistral/__init__.py +2 -2
  107. optimum/rbln/transformers/models/mistral/configuration_mistral.py +9 -1
  108. optimum/rbln/transformers/models/mistral/mistral_architecture.py +1 -1
  109. optimum/rbln/transformers/models/mistral/modeling_mistral.py +26 -3
  110. optimum/rbln/transformers/models/opt/__init__.py +2 -2
  111. optimum/rbln/transformers/models/opt/configuration_opt.py +8 -1
  112. optimum/rbln/transformers/models/opt/modeling_opt.py +28 -16
  113. optimum/rbln/transformers/models/opt/opt_architecture.py +4 -4
  114. optimum/rbln/transformers/models/pegasus/__init__.py +17 -0
  115. optimum/rbln/transformers/models/pegasus/configuration_pegasus.py +38 -0
  116. optimum/rbln/transformers/models/pegasus/modeling_pegasus.py +71 -0
  117. optimum/rbln/transformers/models/pegasus/pegasus_architecture.py +161 -0
  118. optimum/rbln/transformers/models/phi/__init__.py +2 -2
  119. optimum/rbln/transformers/models/phi/configuration_phi.py +9 -1
  120. optimum/rbln/transformers/models/phi/modeling_phi.py +10 -1
  121. optimum/rbln/transformers/models/phi/phi_architecture.py +11 -7
  122. optimum/rbln/transformers/models/pixtral/__init__.py +16 -0
  123. optimum/rbln/transformers/models/pixtral/configuration_pixtral.py +43 -0
  124. optimum/rbln/transformers/models/pixtral/modeling_pixtral.py +310 -0
  125. optimum/rbln/transformers/models/pixtral/pixtral_architecture.py +73 -0
  126. optimum/rbln/transformers/models/qwen2/__init__.py +2 -2
  127. optimum/rbln/transformers/models/qwen2/configuration_qwen2.py +9 -1
  128. optimum/rbln/transformers/models/qwen2/modeling_qwen2.py +27 -1
  129. optimum/rbln/transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +21 -6
  130. optimum/rbln/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +15 -21
  131. optimum/rbln/transformers/models/qwen2_5_vl/qwen2_5_vl_architecture.py +28 -7
  132. optimum/rbln/transformers/models/qwen2_vl/__init__.py +19 -0
  133. optimum/rbln/transformers/models/qwen2_vl/configuration_qwen2_vl.py +88 -0
  134. optimum/rbln/transformers/models/qwen2_vl/modeling_qwen2_vl.py +514 -0
  135. optimum/rbln/transformers/models/qwen2_vl/qwen2_vl_architecture.py +165 -0
  136. optimum/rbln/transformers/models/qwen3/configuration_qwen3.py +2 -2
  137. optimum/rbln/transformers/models/qwen3/modeling_qwen3.py +86 -330
  138. optimum/rbln/transformers/models/qwen3/qwen3_architecture.py +1 -245
  139. optimum/rbln/transformers/models/seq2seq/configuration_seq2seq.py +20 -13
  140. optimum/rbln/transformers/models/seq2seq/modeling_seq2seq.py +24 -3
  141. optimum/rbln/transformers/models/seq2seq/seq2seq_architecture.py +2 -2
  142. optimum/rbln/transformers/models/siglip/__init__.py +2 -6
  143. optimum/rbln/transformers/models/siglip/configuration_siglip.py +1 -1
  144. optimum/rbln/transformers/models/siglip/modeling_siglip.py +5 -16
  145. optimum/rbln/transformers/models/swin/__init__.py +16 -0
  146. optimum/rbln/transformers/models/swin/configuration_swin.py +42 -0
  147. optimum/rbln/transformers/models/swin/modeling_swin.py +341 -0
  148. optimum/rbln/transformers/models/t5/configuration_t5.py +2 -0
  149. optimum/rbln/transformers/models/t5/t5_architecture.py +8 -1
  150. optimum/rbln/transformers/models/time_series_transformer/configuration_time_series_transformer.py +3 -3
  151. optimum/rbln/transformers/models/time_series_transformer/modeling_time_series_transformer.py +4 -14
  152. optimum/rbln/transformers/models/time_series_transformer/time_series_transformers_architecture.py +7 -1
  153. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +1 -0
  154. optimum/rbln/transformers/models/whisper/configuration_whisper.py +12 -13
  155. optimum/rbln/transformers/models/whisper/generation_whisper.py +28 -6
  156. optimum/rbln/transformers/models/whisper/modeling_whisper.py +28 -3
  157. optimum/rbln/transformers/models/xlm_roberta/__init__.py +2 -8
  158. optimum/rbln/transformers/utils/rbln_quantization.py +391 -75
  159. optimum/rbln/transformers/utils/rbln_runtime_wrapper.py +79 -0
  160. optimum/rbln/utils/depreacate_utils.py +16 -0
  161. optimum/rbln/utils/runtime_utils.py +28 -18
  162. optimum/rbln/utils/submodule.py +31 -9
  163. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/METADATA +8 -7
  164. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/RECORD +167 -125
  165. optimum_rbln-0.9.3rc0.dist-info/entry_points.txt +2 -0
  166. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/WHEEL +0 -0
  167. {optimum_rbln-0.8.2a4.dist-info → optimum_rbln-0.9.3rc0.dist-info}/licenses/LICENSE +0 -0
@@ -3,11 +3,9 @@ from typing import Tuple
3
3
 
4
4
  import torch
5
5
  import torch.nn as nn
6
+ from transformers import PreTrainedModel
6
7
 
7
- from ..decoderonly.decoderonly_architecture import (
8
- DecoderOnlyWrapper,
9
- apply_rotary_pos_emb,
10
- )
8
+ from ..decoderonly.decoderonly_architecture import DecoderOnlyWrapper, apply_rotary_pos_emb
11
9
 
12
10
 
13
11
  class Qwen2_5_VisionTransformerWrapper(nn.Module):
@@ -159,15 +157,16 @@ class Qwen2_5_VLVisionWindowAttention(nn.Module):
159
157
  class Qwen2_5_VL_LanguageModelWrapper(DecoderOnlyWrapper):
160
158
  def prepare_forward_args(self, *args):
161
159
  args = list(args)
162
- input_ids = None if self.use_inputs_embeds else args.pop(0)
163
- inputs_embeds = args.pop(0) if self.use_inputs_embeds else None
160
+ input_ids = None if self.rbln_config.use_inputs_embeds else args.pop(0)
161
+ inputs_embeds = args.pop(0) if self.rbln_config.use_inputs_embeds else None
164
162
  cache_position = args.pop(0)
165
163
  global_block_tables = args.pop(0)
166
164
  local_block_tables = None
167
165
  position_embeds = args.pop(0)
168
166
  query_position = args.pop(0) if self.phase == "prefill" else None
169
167
  position_ids = None
170
- attention_mask = args.pop(0) if self.use_attention_mask else None
168
+ lora_int_id = None
169
+ attention_mask = args.pop(0) if self.rbln_config.use_attention_mask else None
171
170
  past_key_values = args
172
171
 
173
172
  if len(past_key_values) != 2 * self.num_hidden_layers:
@@ -194,6 +193,28 @@ class Qwen2_5_VL_LanguageModelWrapper(DecoderOnlyWrapper):
194
193
  query_position,
195
194
  attention_mask,
196
195
  position_ids,
196
+ lora_int_id,
197
197
  past_key_values,
198
198
  position_embeds,
199
199
  )
200
+
201
+ def convert_to_rbln_class(self, model: PreTrainedModel, max_seq_len: int):
202
+ new_layers = []
203
+
204
+ for layer_idx, layer in enumerate(model.model.language_model.layers):
205
+ is_sliding = layer_idx in self.rbln_config.sliding_window_layers
206
+ new_self_attn = self.get_rbln_attn_class()(
207
+ self.get_attn_layer(layer), self.rbln_config, is_sliding=is_sliding
208
+ )
209
+ new_layer = self.get_rbln_layer_class()(layer, new_self_attn)
210
+ new_layers.append(new_layer)
211
+
212
+ new_model = self.get_rbln_model_class()(
213
+ model.model.language_model,
214
+ new_layers,
215
+ self.rbln_config,
216
+ use_learned_pos_emb=self.__class__._use_learned_pos_emb,
217
+ )
218
+
219
+ new_model = self.get_rbln_causal_lm_class()(model.model, new_model)
220
+ return new_model
@@ -0,0 +1,19 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .configuration_qwen2_vl import (
16
+ RBLNQwen2VisionTransformerPretrainedModelConfig,
17
+ RBLNQwen2VLForConditionalGenerationConfig,
18
+ )
19
+ from .modeling_qwen2_vl import RBLNQwen2VisionTransformerPretrainedModel, RBLNQwen2VLForConditionalGeneration
@@ -0,0 +1,88 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Any, Dict, List, Optional, Union
16
+
17
+ from ....configuration_utils import RBLNModelConfig
18
+ from ..decoderonly.configuration_decoderonly import RBLNDecoderOnlyModelForCausalLMConfig
19
+
20
+
21
+ class RBLNQwen2VLForConditionalGenerationConfig(RBLNDecoderOnlyModelForCausalLMConfig):
22
+ submodules = ["visual"]
23
+
24
+ def __init__(
25
+ self,
26
+ use_inputs_embeds: bool = True,
27
+ visual: Optional[RBLNModelConfig] = None,
28
+ **kwargs: Dict[str, Any],
29
+ ):
30
+ """
31
+ Args:
32
+ use_inputs_embeds (bool): Whether or not to use `inputs_embeds` as input. Defaults to `True`.
33
+ visual (Optional[RBLNModelConfig]): Configuration for the vision encoder component.
34
+ kwargs: Additional arguments passed to the parent `RBLNDecoderOnlyModelForCausalLMConfig`.
35
+
36
+ Raises:
37
+ ValueError: If `use_inputs_embeds` is False.
38
+ ValueError: If the visual configuration is provided but contains invalid settings, such as an invalid max_seq_lens (e.g., not a positive integer or insufficient for the expected resolution).
39
+ ValueError: If visual is None and no default vision configuration can be inferred for the model architecture.
40
+ ValueError: If any inherited parameters violate constraints defined in the parent class, such as batch_size not being a positive integer, prefill_chunk_size not being divisible by 64, or max_seq_len not meeting requirements for Flash Attention.
41
+ """
42
+ super().__init__(use_inputs_embeds=use_inputs_embeds, **kwargs)
43
+ if not self.use_inputs_embeds:
44
+ raise ValueError(
45
+ "RBLNQwen2VLForConditionalGenerationConfig does not allow `use_inputs_embeds` to be set to False, "
46
+ "as RBLNQwen2VLForConditionalGeneration accepts only `inputs_embeds` as input."
47
+ )
48
+ self.visual = visual
49
+
50
+
51
+ class RBLNQwen2VisionTransformerPretrainedModelConfig(RBLNModelConfig):
52
+ def __init__(self, max_seq_lens: Union[int, List[int]] = None, **kwargs: Dict[str, Any]):
53
+ """
54
+ Args:
55
+ max_seq_lens (Optional[Union[int, List[int]]]): Maximum sequence lengths for Vision
56
+ Transformer attention. Can be an integer or list of integers, each indicating
57
+ the number of patches in a sequence for an image or video. For example, an image
58
+ of 224x224 pixels with patch size 14 results in (224/14) * (224/14) = 256 patches,
59
+ so `max_seq_lens` must be at least 256. RBLN optimization runs inference per image
60
+ or video frame, so set `max_seq_lens` to match the maximum expected resolution to
61
+ optimize computation. If not provided, a `ValueError` is raised.
62
+ kwargs: Additional arguments passed to the parent RBLNModelConfig.
63
+
64
+ Raises:
65
+ ValueError: If batch_size is not a positive integer.
66
+ ValueError: If `max_seq_lens` (or any value in the list) is not a positive integer.
67
+ ValueError: If `max_seq_lens` is insufficient for the expected image/video resolution.
68
+ ValueError: If `batch_size` (inherited from RBLNModelConfig) is not a positive integer.
69
+
70
+ Max Seq Lens:
71
+ Since `Qwen2VLForConditionalGeneration` performs inference on a per-image or per-frame basis,
72
+ `max_seq_lens` should be set based on the maximum expected resolution of the input images or video frames.
73
+
74
+ The value must be greater than or equal to the number of patches generated from the input image.
75
+ For example, a 224x224 image with a patch size of 14 results in (224 / 14) * (224 / 14) = 256 patches.
76
+ Therefore, `max_seq_lens` must be at least 256.
77
+ """
78
+ super().__init__(**kwargs)
79
+
80
+ if max_seq_lens is not None:
81
+ if isinstance(max_seq_lens, int):
82
+ max_seq_lens = [max_seq_lens]
83
+ elif isinstance(max_seq_lens, list):
84
+ max_seq_lens.sort(reverse=True)
85
+ else:
86
+ raise ValueError("'max_seq_lens' must be specified.")
87
+
88
+ self.max_seq_lens = max_seq_lens
@@ -0,0 +1,514 @@
1
+ # Copyright 2025 Rebellions Inc. All rights reserved.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from pathlib import Path
17
+ from typing import TYPE_CHECKING, Any, Callable, Optional, Union
18
+
19
+ import torch
20
+ from transformers import (
21
+ AutoModelForVision2Seq,
22
+ PretrainedConfig,
23
+ PreTrainedModel,
24
+ Qwen2VLForConditionalGeneration,
25
+ )
26
+ from transformers.modeling_utils import no_init_weights
27
+ from transformers.models.qwen2_vl.modeling_qwen2_vl import (
28
+ PatchEmbed,
29
+ Qwen2VisionTransformerPretrainedModel,
30
+ Qwen2VLModel,
31
+ Qwen2VLRotaryEmbedding,
32
+ VisionRotaryEmbedding,
33
+ )
34
+
35
+ from ....configuration_utils import RBLNCompileConfig
36
+ from ....modeling import RBLNModel
37
+ from ....utils.logging import get_logger
38
+ from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyModelForCausalLM, RBLNDecoderOnlyOutput
39
+ from .configuration_qwen2_vl import (
40
+ RBLNQwen2VisionTransformerPretrainedModelConfig,
41
+ RBLNQwen2VLForConditionalGenerationConfig,
42
+ )
43
+ from .qwen2_vl_architecture import Qwen2VisionTransformerWrapper, Qwen2VL_LanguageModelWrapper
44
+
45
+
46
+ logger = get_logger(__name__)
47
+
48
+ if TYPE_CHECKING:
49
+ from transformers import (
50
+ AutoFeatureExtractor,
51
+ AutoProcessor,
52
+ AutoTokenizer,
53
+ PretrainedConfig,
54
+ )
55
+
56
+
57
+ class RBLNQwen2VisionTransformerPretrainedModel(RBLNModel):
58
+ auto_model_class = None
59
+
60
+ def __post_init__(self, **kwargs):
61
+ self.transformer = self.model[0]
62
+ self.max_seq_lens = torch.tensor(sorted(self.rbln_config.max_seq_lens, reverse=False))
63
+ config = self.config
64
+
65
+ self.patch_size = config.spatial_patch_size
66
+ self.spatial_merge_size = config.spatial_merge_size
67
+ self.spatial_merge_unit = config.spatial_merge_size * config.spatial_merge_size
68
+ self.rotary_pos_emb = VisionRotaryEmbedding((config.embed_dim // config.num_heads) // 2)
69
+ with no_init_weights():
70
+ self.patch_embed = PatchEmbed(
71
+ patch_size=config.patch_size,
72
+ temporal_patch_size=config.temporal_patch_size,
73
+ in_channels=config.in_channels,
74
+ embed_dim=config.embed_dim,
75
+ ).eval()
76
+ artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
77
+ self.patch_embed.load_state_dict(artifacts["patch_embed"])
78
+
79
+ @classmethod
80
+ def save_torch_artifacts(
81
+ cls,
82
+ model: "Qwen2VLForConditionalGeneration",
83
+ save_dir_path: Path,
84
+ subfolder: str,
85
+ rbln_config: RBLNQwen2VisionTransformerPretrainedModelConfig,
86
+ ):
87
+ save_dict = {}
88
+ save_dict["patch_embed"] = model.patch_embed.state_dict()
89
+ torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
90
+
91
+ @classmethod
92
+ def wrap_model_if_needed(
93
+ cls, model: "PreTrainedModel", rbln_config: RBLNQwen2VisionTransformerPretrainedModelConfig
94
+ ):
95
+ return Qwen2VisionTransformerWrapper(model).eval()
96
+
97
+ def __getattr__(self, __name: str) -> Any:
98
+ def redirect(func):
99
+ return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
100
+
101
+ val = getattr(Qwen2VisionTransformerPretrainedModel, __name)
102
+
103
+ if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
104
+ return redirect(val)
105
+ return val
106
+
107
+ @classmethod
108
+ def _update_rbln_config(
109
+ cls,
110
+ preprocessors: Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"],
111
+ model: Optional["PreTrainedModel"] = None,
112
+ model_config: "PretrainedConfig" = None,
113
+ rbln_config: Optional[RBLNQwen2VisionTransformerPretrainedModelConfig] = None,
114
+ ) -> RBLNQwen2VisionTransformerPretrainedModelConfig:
115
+ hidden_size = getattr(model_config, "embed_dim")
116
+ num_heads = getattr(model_config, "num_heads")
117
+ head_dim = hidden_size // num_heads
118
+
119
+ input_infos = []
120
+ for max_seq_len in rbln_config.max_seq_lens:
121
+ input_info = [
122
+ ("hidden_states", [max_seq_len, hidden_size], "float32"),
123
+ ("full_attn_masks", [1, 1, max_seq_len, max_seq_len], "float32"),
124
+ (
125
+ "cos",
126
+ [1, 1, max_seq_len, head_dim],
127
+ "float32",
128
+ ),
129
+ (
130
+ "sin",
131
+ [1, 1, max_seq_len, head_dim],
132
+ "float32",
133
+ ),
134
+ ]
135
+ input_infos.append(input_info)
136
+
137
+ rbln_compile_config = RBLNCompileConfig(input_info=input_infos)
138
+ rbln_config.set_compile_cfgs([rbln_compile_config])
139
+
140
+ return rbln_config
141
+
142
+ @staticmethod
143
+ def _pad_for_full_attn_layers(hidden_state, cos, sin, max_seq_len):
144
+ if hidden_state.shape[0] < max_seq_len:
145
+ full_padding_size = max_seq_len - hidden_state.shape[0]
146
+ full_padding_hidden = torch.zeros(
147
+ full_padding_size,
148
+ hidden_state.shape[-1],
149
+ dtype=hidden_state.dtype,
150
+ )
151
+ hidden_state_full_padded = torch.cat([hidden_state, full_padding_hidden], dim=0)
152
+ full_padding_pos = torch.zeros(
153
+ full_padding_size,
154
+ cos.shape[-1],
155
+ dtype=cos.dtype,
156
+ )
157
+ cos_full_padded = torch.cat([cos, full_padding_pos], dim=0)
158
+ sin_full_padded = torch.cat([sin, full_padding_pos], dim=0)
159
+ else:
160
+ hidden_state_full_padded = hidden_state
161
+ cos_full_padded = cos
162
+ sin_full_padded = sin
163
+
164
+ full_attn_masks = torch.ones(
165
+ 1,
166
+ 1,
167
+ max_seq_len,
168
+ max_seq_len,
169
+ dtype=torch.float32,
170
+ )
171
+
172
+ full_attn_masks[:, :, hidden_state.shape[0] : max_seq_len, :] = 0
173
+ full_attn_masks[:, :, :, hidden_state.shape[0] : max_seq_len] = 0
174
+ return hidden_state_full_padded, cos_full_padded, sin_full_padded, full_attn_masks
175
+
176
+ def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
177
+ # Processes a batch of images (or frames) through the vision transformer.
178
+ # Each image is handled independently for padding and attention mask generation.
179
+
180
+ hidden_states = self.patch_embed(hidden_states)
181
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
182
+ emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
183
+ position_embeddings = (emb.cos(), emb.sin())
184
+
185
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
186
+ dim=0,
187
+ dtype=torch.int32,
188
+ )
189
+ cu_seqlens = torch.nn.functional.pad(cu_seqlens, (1, 0), value=0)
190
+
191
+ num_images = len(cu_seqlens) - 1
192
+ output_hidden_states = []
193
+
194
+ # Process each image in the sequence
195
+ for i in range(num_images):
196
+ image_s, image_e = cu_seqlens[i], cu_seqlens[i + 1]
197
+
198
+ # Select the nearest higher max_seq_len from the available compiled models.
199
+ cu_seq_len = image_e - image_s
200
+ try:
201
+ cu_index = torch.searchsorted(self.max_seq_lens, cu_seq_len).item()
202
+ max_seq_len = self.max_seq_lens[cu_index]
203
+ except Exception:
204
+ raise ValueError(
205
+ f"Required seq_len({cu_seq_len}) is larger than available max_seq_lens({self.max_seq_lens.tolist()})."
206
+ )
207
+
208
+ # Padding for Full Attention Layers
209
+ hidden_state_full_padded, cos_full_padded, sin_full_padded, full_attn_masks = (
210
+ self._pad_for_full_attn_layers(
211
+ hidden_states[image_s:image_e],
212
+ position_embeddings[0][image_s:image_e],
213
+ position_embeddings[1][image_s:image_e],
214
+ max_seq_len,
215
+ )
216
+ )
217
+
218
+ # RBLN run with the compiled model
219
+ output = self.transformer(
220
+ hidden_state_full_padded,
221
+ full_attn_masks,
222
+ cos_full_padded[None, None, :, :],
223
+ sin_full_padded[None, None, :, :],
224
+ )
225
+ # Depadding
226
+ depadded_output = output[: cu_seq_len // self.spatial_merge_unit]
227
+ output_hidden_states.append(depadded_output)
228
+
229
+ hidden_states = torch.cat(output_hidden_states)
230
+ return hidden_states
231
+
232
+
233
+ class RBLNQwen2VLForConditionalGeneration(RBLNDecoderOnlyModelForCausalLM):
234
+ """
235
+ RBLNQwen2VLForConditionalGeneration is a multi-modal model that integrates vision and language processing capabilities,
236
+ optimized for RBLN NPUs. It is designed for conditional generation tasks that involve both image and text inputs.
237
+
238
+ This model inherits from [`RBLNDecoderOnlyModelForCausalLM`]. Check the superclass documentation for the generic methods the library implements for all its models.
239
+
240
+ Important Note:
241
+ This model includes a Large Language Model (LLM). For optimal performance, it is highly recommended to use
242
+ tensor parallelism for the language model. This can be achieved by using the `rbln_config` parameter in the
243
+ `from_pretrained` method. Refer to the `from_pretrained` documentation and the RBLNQwen2VLForConditionalGenerationConfig class for details.
244
+
245
+ Examples:
246
+ ```python
247
+ from optimum.rbln import RBLNQwen2VLForConditionalGeneration
248
+
249
+ model = RBLNQwen2VLForConditionalGeneration.from_pretrained(
250
+ "Qwen/Qwen2-VL-7B-Instruct",
251
+ export=True,
252
+ rbln_config={
253
+ "visual": {
254
+ "max_seq_lens": 6400,
255
+ "device": 0,
256
+ },
257
+ "tensor_parallel_size": 8,
258
+ "max_seq_len": 32_768,
259
+ "device": [0, 1, 2, 3, 4, 5, 6, 7],
260
+ },
261
+ )
262
+
263
+ model.save_pretrained("compiled-qwen2-vl-7b-instruct")
264
+ ```
265
+ """
266
+
267
+ auto_model_class = AutoModelForVision2Seq
268
+ _rbln_submodules = [
269
+ {"name": "visual"},
270
+ ]
271
+ _decoder_wrapper_cls = Qwen2VL_LanguageModelWrapper
272
+ _use_rotary_emb = False
273
+
274
+ def __post_init__(self, **kwargs):
275
+ super().__post_init__(**kwargs)
276
+ self.visual = self.rbln_submodules[0]
277
+ self.mrope_section = self.config.rope_scaling["mrope_section"]
278
+ self.rotary_emb = Qwen2VLRotaryEmbedding(self.config)
279
+ self.rope_deltas = torch.zeros(self.rbln_config.batch_size)
280
+
281
+ def can_generate(self):
282
+ return True
283
+
284
+ @classmethod
285
+ def get_pytorch_model(cls, *args, **kwargs):
286
+ model = super().get_pytorch_model(*args, **kwargs)
287
+ model.model.lm_head = model.lm_head
288
+ model.lm_head = None
289
+ del model.lm_head
290
+ return model
291
+
292
+ @classmethod
293
+ def get_input_info(
294
+ cls,
295
+ batch_size: int,
296
+ query_length: int,
297
+ rbln_config: RBLNQwen2VLForConditionalGenerationConfig,
298
+ model_config: PretrainedConfig,
299
+ ):
300
+ input_info = super().get_input_info(batch_size, query_length, rbln_config, model_config)
301
+ pos_idx = 3
302
+ input_info.insert(
303
+ pos_idx,
304
+ (
305
+ "position_emb",
306
+ [2, batch_size, 1, query_length, model_config.hidden_size // model_config.num_attention_heads],
307
+ "float32",
308
+ ),
309
+ )
310
+
311
+ return input_info
312
+
313
+ def prepare_inputs_for_generation(
314
+ self,
315
+ input_ids: torch.LongTensor,
316
+ generate_idx: Optional[torch.Tensor] = None,
317
+ attention_mask: Optional[torch.LongTensor] = None,
318
+ inputs_embeds: Optional[torch.Tensor] = None,
319
+ pixel_values=None,
320
+ pixel_values_videos=None,
321
+ image_grid_thw=None,
322
+ video_grid_thw=None,
323
+ **kwargs,
324
+ ):
325
+ model_inputs = super().prepare_inputs_for_generation(
326
+ input_ids,
327
+ generate_idx,
328
+ attention_mask,
329
+ inputs_embeds,
330
+ **kwargs,
331
+ )
332
+
333
+ is_prefill_phase = generate_idx is None
334
+ if is_prefill_phase:
335
+ model_inputs.update({"input_ids": input_ids})
336
+
337
+ model_inputs.update(
338
+ {
339
+ "pixel_values": pixel_values,
340
+ "pixel_values_videos": pixel_values_videos,
341
+ "image_grid_thw": image_grid_thw,
342
+ "video_grid_thw": video_grid_thw,
343
+ }
344
+ )
345
+
346
+ return model_inputs
347
+
348
+ def _get_position_embeddings(self, hidden_states, position_ids):
349
+ cos, sin = self.rotary_emb(hidden_states, position_ids)
350
+ mrope_section = self.mrope_section * 2
351
+ cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(1)
352
+ sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(1)
353
+ return torch.stack([cos, sin])
354
+
355
+ def _preprocess_prefill(
356
+ self,
357
+ input_ids: torch.LongTensor = None,
358
+ attention_mask: torch.Tensor = None,
359
+ pixel_values: torch.Tensor = None,
360
+ pixel_values_videos: torch.FloatTensor = None,
361
+ image_grid_thw: torch.LongTensor = None,
362
+ video_grid_thw: torch.LongTensor = None,
363
+ ):
364
+ batch_size = input_ids.shape[0]
365
+ inputs_embeds = self.embed_tokens(input_ids)
366
+
367
+ if pixel_values is not None:
368
+ image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
369
+ n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
370
+ n_image_features = image_embeds.shape[0]
371
+ if n_image_tokens != n_image_features:
372
+ raise ValueError(
373
+ f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
374
+ )
375
+
376
+ mask = input_ids == self.config.image_token_id
377
+ mask_unsqueezed = mask.unsqueeze(-1)
378
+ mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
379
+
380
+ image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
381
+ inputs_embeds = inputs_embeds.masked_scatter(mask_expanded, image_embeds)
382
+
383
+ if pixel_values_videos is not None:
384
+ video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
385
+ n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
386
+ n_video_features = video_embeds.shape[0]
387
+ if n_video_tokens != n_video_features:
388
+ raise ValueError(
389
+ f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
390
+ )
391
+
392
+ mask = input_ids == self.config.video_token_id
393
+ mask_unsqueezed = mask.unsqueeze(-1)
394
+ mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
395
+ inputs_embeds = inputs_embeds.masked_scatter(mask_expanded, video_embeds)
396
+
397
+ max_inputs_len = input_ids.shape[1]
398
+
399
+ head_dim = getattr(self.config, "head_dim", None) or self.config.hidden_size // self.config.num_attention_heads
400
+ all_position_embeds = torch.zeros(2, batch_size, 1, max_inputs_len, head_dim)
401
+ all_rope_deltas = []
402
+
403
+ image_token_id = self.config.image_token_id
404
+ video_token_id = self.config.video_token_id
405
+ vision_start_token_id = self.config.vision_start_token_id
406
+ image_idx, video_idx = 0, 0
407
+
408
+ for b_idx in range(batch_size):
409
+ input_id = input_ids[b_idx : b_idx + 1][:, attention_mask[b_idx].bool()]
410
+ vision_start_indices = torch.argwhere(input_id == vision_start_token_id).squeeze(1)
411
+ vision_tokens = input_id[0][vision_start_indices + 1]
412
+ image_nums = (vision_tokens == image_token_id).sum()
413
+ video_nums = (vision_tokens == video_token_id).sum()
414
+ position_ids, rope_deltas = Qwen2VLModel.get_rope_index(
415
+ self,
416
+ input_id,
417
+ image_grid_thw[image_idx : image_idx + image_nums] if image_grid_thw is not None else None,
418
+ video_grid_thw[video_idx : video_idx + video_nums] if video_grid_thw is not None else None,
419
+ )
420
+ image_idx += image_nums
421
+ video_idx += video_nums
422
+
423
+ position_embed = self._get_position_embeddings(inputs_embeds, position_ids)
424
+ mask_indices = torch.nonzero(attention_mask[b_idx], as_tuple=True)[0]
425
+ all_position_embeds[:, b_idx : b_idx + 1].index_copy_(dim=-2, index=mask_indices, source=position_embed)
426
+ all_rope_deltas.append(rope_deltas)
427
+
428
+ rope_deltas = torch.stack(all_rope_deltas)
429
+
430
+ return inputs_embeds, all_position_embeds, rope_deltas
431
+
432
+ def _preprocess_decoder(
433
+ self,
434
+ input_ids: torch.LongTensor = None,
435
+ cache_position: torch.LongTensor = None,
436
+ ):
437
+ if self.rbln_config.batch_size != cache_position.shape[0]:
438
+ raise RuntimeError(
439
+ f"Cache position size mismatch: got {cache_position.shape[0]}, expected {self.rbln_config.batch_size}."
440
+ )
441
+
442
+ inputs_embeds = self.embed_tokens(input_ids)
443
+ position_embeds = []
444
+ for b_idx in range(self.rbln_config.batch_size):
445
+ delta = cache_position[b_idx] + self.rope_deltas[b_idx]
446
+ position_ids = torch.arange(1).view(1, -1)
447
+ position_ids = position_ids.add(delta)
448
+ position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
449
+ position_embed = self._get_position_embeddings(torch.zeros(1, dtype=torch.float32), position_ids)
450
+ position_embeds.append(position_embed)
451
+
452
+ position_embeds = torch.cat(position_embeds, dim=1)
453
+
454
+ return inputs_embeds, position_embeds
455
+
456
+ def forward(
457
+ self,
458
+ input_ids: Optional[torch.LongTensor] = None,
459
+ inputs_embeds: Optional[torch.FloatTensor] = None,
460
+ attention_mask: Optional[torch.Tensor] = None,
461
+ pixel_values: Optional[torch.Tensor] = None,
462
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
463
+ image_grid_thw: Optional[torch.LongTensor] = None,
464
+ video_grid_thw: Optional[torch.LongTensor] = None,
465
+ cache_position: Optional[torch.LongTensor] = None,
466
+ generate_idx: Optional[torch.Tensor] = None,
467
+ return_dict: Optional[bool] = None,
468
+ **kwargs,
469
+ ) -> RBLNDecoderOnlyOutput:
470
+ # Prefill
471
+ if cache_position is None:
472
+ inputs_embeds, position_embed, rope_deltas = self._preprocess_prefill(
473
+ input_ids,
474
+ attention_mask,
475
+ pixel_values,
476
+ pixel_values_videos,
477
+ image_grid_thw,
478
+ video_grid_thw,
479
+ )
480
+
481
+ self.rope_deltas = rope_deltas
482
+ batch_size = inputs_embeds.shape[0]
483
+
484
+ logits = []
485
+ for b_idx in range(batch_size):
486
+ cache_position = torch.arange(0, generate_idx[b_idx].item(), dtype=torch.int32).unsqueeze(0)
487
+
488
+ output = self.prefill_decoder(
489
+ inputs_embeds=inputs_embeds[b_idx : b_idx + 1],
490
+ attention_mask=attention_mask[b_idx] if attention_mask is not None else None,
491
+ cache_position=cache_position,
492
+ batch_idx=b_idx,
493
+ position_embed=position_embed[:, b_idx : b_idx + 1],
494
+ )
495
+ logits.append(output.logits)
496
+ logits = torch.cat(logits, dim=0)
497
+
498
+ # Decoder
499
+ else:
500
+ inputs_embeds, position_embed = self._preprocess_decoder(input_ids, cache_position)
501
+ output = self.decoder(
502
+ inputs_embeds=inputs_embeds,
503
+ cache_position=cache_position,
504
+ position_embed=position_embed,
505
+ )
506
+ logits = output.logits
507
+
508
+ if not return_dict:
509
+ return logits, generate_idx
510
+ else:
511
+ return RBLNDecoderOnlyOutput(
512
+ logits=logits,
513
+ generate_idx=generate_idx,
514
+ )