optimum-rbln 0.1.9__py3-none-any.whl → 0.1.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. optimum/rbln/__init__.py +37 -2
  2. optimum/rbln/__version__.py +1 -1
  3. optimum/rbln/diffusers/models/autoencoder_kl.py +36 -29
  4. optimum/rbln/diffusers/models/controlnet.py +56 -40
  5. optimum/rbln/diffusers/models/unet_2d_condition.py +40 -28
  6. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +22 -15
  7. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +22 -15
  8. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +23 -17
  9. optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +24 -18
  10. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +22 -11
  11. optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +22 -11
  12. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +24 -14
  13. optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +24 -14
  14. optimum/rbln/modeling_alias.py +3 -3
  15. optimum/rbln/modeling_base.py +471 -231
  16. optimum/rbln/modeling_config.py +152 -77
  17. optimum/rbln/modeling_seq2seq.py +166 -77
  18. optimum/rbln/transformers/__init__.py +35 -1
  19. optimum/rbln/transformers/models/__init__.py +20 -1
  20. optimum/rbln/transformers/models/auto/__init__.py +14 -0
  21. optimum/rbln/transformers/models/auto/auto_factory.py +84 -0
  22. optimum/rbln/transformers/models/auto/modeling_auto.py +94 -0
  23. optimum/rbln/transformers/models/bart/__init__.py +1 -0
  24. optimum/rbln/transformers/models/bart/bart_architecture.py +189 -50
  25. optimum/rbln/transformers/models/bart/modeling_bart.py +106 -0
  26. optimum/rbln/transformers/models/bert/__init__.py +24 -0
  27. optimum/rbln/transformers/models/bert/modeling_bert.py +102 -0
  28. optimum/rbln/transformers/models/clip/__init__.py +1 -1
  29. optimum/rbln/transformers/models/clip/modeling_clip.py +127 -25
  30. optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +28 -4
  31. optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +302 -115
  32. optimum/rbln/transformers/models/dpt/modeling_dpt.py +21 -7
  33. optimum/rbln/transformers/models/gemma/modeling_gemma.py +1 -1
  34. optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +4 -1
  35. optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +1 -1
  36. optimum/rbln/transformers/models/llama/modeling_llama.py +1 -1
  37. optimum/rbln/transformers/models/llava_next/__init__.py +24 -0
  38. optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +666 -0
  39. optimum/rbln/transformers/models/midm/midm_architecture.py +5 -1
  40. optimum/rbln/transformers/models/midm/modeling_midm.py +1 -1
  41. optimum/rbln/transformers/models/mistral/modeling_mistral.py +1 -1
  42. optimum/rbln/transformers/models/phi/__init__.py +24 -0
  43. optimum/rbln/transformers/models/phi/modeling_phi.py +69 -0
  44. optimum/rbln/transformers/models/phi/phi_architecture.py +406 -0
  45. optimum/rbln/transformers/models/t5/t5_architecture.py +92 -31
  46. optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +17 -11
  47. optimum/rbln/transformers/models/whisper/generation_whisper.py +68 -0
  48. optimum/rbln/transformers/models/whisper/modeling_whisper.py +141 -105
  49. optimum/rbln/transformers/models/whisper/whisper_architecture.py +44 -17
  50. optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +17 -14
  51. optimum/rbln/transformers/utils/rbln_quantization.py +48 -60
  52. optimum/rbln/utils/import_utils.py +36 -1
  53. optimum/rbln/utils/logging.py +82 -0
  54. optimum/rbln/utils/runtime_utils.py +33 -0
  55. optimum/rbln/utils/timer_utils.py +19 -0
  56. {optimum_rbln-0.1.9.dist-info → optimum_rbln-0.1.11.dist-info}/METADATA +8 -7
  57. optimum_rbln-0.1.11.dist-info/RECORD +93 -0
  58. {optimum_rbln-0.1.9.dist-info → optimum_rbln-0.1.11.dist-info}/WHEEL +1 -1
  59. optimum_rbln-0.1.11.dist-info/entry_points.txt +4 -0
  60. optimum_rbln-0.1.9.dist-info/RECORD +0 -78
  61. {optimum_rbln-0.1.9.dist-info → optimum_rbln-0.1.11.dist-info}/licenses/LICENSE +0 -0
@@ -22,13 +22,13 @@
22
22
  # from Rebellions Inc.
23
23
 
24
24
  import logging
25
- from typing import TYPE_CHECKING, Iterable, Optional, Union
25
+ from typing import TYPE_CHECKING, Any, Dict, Iterable, Optional, Union
26
26
 
27
27
  from transformers import AutoModelForDepthEstimation
28
28
  from transformers.modeling_outputs import DepthEstimatorOutput
29
29
 
30
30
  from ....modeling_base import RBLNModel
31
- from ....modeling_config import RBLNConfig, RBLNRuntimeConfig
31
+ from ....modeling_config import RBLNCompileConfig, RBLNConfig
32
32
 
33
33
 
34
34
  logger = logging.getLogger(__name__)
@@ -47,9 +47,11 @@ class RBLNDPTForDepthEstimation(RBLNModel):
47
47
  cls,
48
48
  preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
49
49
  model_config: Optional["PretrainedConfig"] = None,
50
- rbln_image_size: Optional[int] = None,
51
- rbln_batch_size: Optional[int] = None,
50
+ rbln_kwargs: Dict[str, Any] = {},
52
51
  ) -> RBLNConfig:
52
+ rbln_image_size = rbln_kwargs.get("image_size", None)
53
+ rbln_batch_size = rbln_kwargs.get("batch_size", None)
54
+
53
55
  if rbln_batch_size is None:
54
56
  rbln_batch_size = 1
55
57
 
@@ -79,10 +81,22 @@ class RBLNDPTForDepthEstimation(RBLNModel):
79
81
 
80
82
  input_info = [("pixel_values", [rbln_batch_size, 3, rbln_image_size[0], rbln_image_size[1]], "float32")]
81
83
 
82
- rbln_runtime_config = RBLNRuntimeConfig(input_info=input_info)
83
- meta = {"rbln_image_size": rbln_image_size}
84
+ rbln_compile_config = RBLNCompileConfig(input_info=input_info)
85
+
86
+ rbln_config = RBLNConfig(
87
+ rbln_cls=cls.__name__,
88
+ compile_cfgs=[rbln_compile_config],
89
+ rbln_kwargs=rbln_kwargs,
90
+ )
91
+
92
+ rbln_config.model_cfg.update(
93
+ {
94
+ "image_size": rbln_image_size,
95
+ "batch_size": rbln_batch_size,
96
+ }
97
+ )
84
98
 
85
- return RBLNConfig.from_rbln_runtime_configs([rbln_runtime_config], _rbln_meta=meta)
99
+ return rbln_config
86
100
 
87
101
  def forward(self, *args, **kwargs):
88
102
  predicted_depth = super().forward(*args, **kwargs)
@@ -52,7 +52,7 @@ class RBLNGemmaForCausalLM(RBLNDecoderOnlyModelForCausalLM):
52
52
 
53
53
  @classmethod
54
54
  def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
55
- rbln_max_seq_len = rbln_config.meta["rbln_max_seq_len"]
55
+ rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
56
56
  return GemmaWrapper(model, rbln_max_seq_len).eval()
57
57
 
58
58
  def __getattr__(self, __name: str) -> Any:
@@ -53,6 +53,7 @@ class GPT2LMHeadModelWrapper(torch.nn.Module):
53
53
  attention_mask,
54
54
  cache_position,
55
55
  batch_position,
56
+ query_idx,
56
57
  *past_key_values,
57
58
  ):
58
59
  if input_ids.shape[1] == 1:
@@ -79,11 +80,13 @@ class GPT2LMHeadModelWrapper(torch.nn.Module):
79
80
  )
80
81
 
81
82
  hidden_states = outputs[0]
83
+ if batch_position >= 0:
84
+ hidden_states = hidden_states[:, query_idx].unsqueeze(1)
82
85
  logits = self.lm_head(hidden_states)
83
86
 
84
87
  output = (logits,) + outputs[1:]
85
88
 
86
- return output, batch_position
89
+ return output, batch_position + query_idx
87
90
 
88
91
 
89
92
  class _GPT2Model:
@@ -53,7 +53,7 @@ class RBLNGPT2LMHeadModel(RBLNDecoderOnlyModelForCausalLM):
53
53
 
54
54
  @classmethod
55
55
  def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
56
- rbln_max_seq_len = rbln_config.meta["rbln_max_seq_len"]
56
+ rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
57
57
  return GPT2LMHeadModelWrapper(model, rbln_max_seq_len).eval()
58
58
 
59
59
  def __getattr__(self, __name: str) -> Any:
@@ -52,7 +52,7 @@ class RBLNLlamaForCausalLM(RBLNDecoderOnlyModelForCausalLM):
52
52
 
53
53
  @classmethod
54
54
  def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
55
- rbln_max_seq_len = rbln_config.meta["rbln_max_seq_len"]
55
+ rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
56
56
  return LlamaWrapper(model, rbln_max_seq_len).eval()
57
57
 
58
58
  def __getattr__(self, __name: str) -> Any:
@@ -0,0 +1,24 @@
1
+ # Copyright 2024 Rebellions Inc.
2
+
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at:
6
+
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Portions of this software are licensed under the Apache License,
16
+ # Version 2.0. See the NOTICE file distributed with this work for
17
+ # additional information regarding copyright ownership.
18
+
19
+ # All other portions of this software, including proprietary code,
20
+ # are the intellectual property of Rebellions Inc. and may not be
21
+ # copied, modified, or distributed without prior written permission
22
+ # from Rebellions Inc.
23
+
24
+ from .modeling_llava_next import RBLNLlavaNextForConditionalGeneration