optimum-rbln 0.1.9__py3-none-any.whl → 0.1.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +37 -2
- optimum/rbln/__version__.py +1 -1
- optimum/rbln/diffusers/models/autoencoder_kl.py +36 -29
- optimum/rbln/diffusers/models/controlnet.py +56 -40
- optimum/rbln/diffusers/models/unet_2d_condition.py +40 -28
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +22 -15
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +22 -15
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +23 -17
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +24 -18
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +22 -11
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +22 -11
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +24 -14
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +24 -14
- optimum/rbln/modeling_alias.py +3 -3
- optimum/rbln/modeling_base.py +471 -231
- optimum/rbln/modeling_config.py +152 -77
- optimum/rbln/modeling_seq2seq.py +166 -77
- optimum/rbln/transformers/__init__.py +35 -1
- optimum/rbln/transformers/models/__init__.py +20 -1
- optimum/rbln/transformers/models/auto/__init__.py +14 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +84 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +94 -0
- optimum/rbln/transformers/models/bart/__init__.py +1 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +189 -50
- optimum/rbln/transformers/models/bart/modeling_bart.py +106 -0
- optimum/rbln/transformers/models/bert/__init__.py +24 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +102 -0
- optimum/rbln/transformers/models/clip/__init__.py +1 -1
- optimum/rbln/transformers/models/clip/modeling_clip.py +127 -25
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +28 -4
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +302 -115
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +21 -7
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +1 -1
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +4 -1
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +1 -1
- optimum/rbln/transformers/models/llama/modeling_llama.py +1 -1
- optimum/rbln/transformers/models/llava_next/__init__.py +24 -0
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +666 -0
- optimum/rbln/transformers/models/midm/midm_architecture.py +5 -1
- optimum/rbln/transformers/models/midm/modeling_midm.py +1 -1
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +1 -1
- optimum/rbln/transformers/models/phi/__init__.py +24 -0
- optimum/rbln/transformers/models/phi/modeling_phi.py +69 -0
- optimum/rbln/transformers/models/phi/phi_architecture.py +406 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +92 -31
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +17 -11
- optimum/rbln/transformers/models/whisper/generation_whisper.py +68 -0
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +141 -105
- optimum/rbln/transformers/models/whisper/whisper_architecture.py +44 -17
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +17 -14
- optimum/rbln/transformers/utils/rbln_quantization.py +48 -60
- optimum/rbln/utils/import_utils.py +36 -1
- optimum/rbln/utils/logging.py +82 -0
- optimum/rbln/utils/runtime_utils.py +33 -0
- optimum/rbln/utils/timer_utils.py +19 -0
- {optimum_rbln-0.1.9.dist-info → optimum_rbln-0.1.11.dist-info}/METADATA +8 -7
- optimum_rbln-0.1.11.dist-info/RECORD +93 -0
- {optimum_rbln-0.1.9.dist-info → optimum_rbln-0.1.11.dist-info}/WHEEL +1 -1
- optimum_rbln-0.1.11.dist-info/entry_points.txt +4 -0
- optimum_rbln-0.1.9.dist-info/RECORD +0 -78
- {optimum_rbln-0.1.9.dist-info → optimum_rbln-0.1.11.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,666 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
import inspect
|
24
|
+
import logging
|
25
|
+
from pathlib import Path
|
26
|
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
|
27
|
+
|
28
|
+
import numpy as np
|
29
|
+
import torch
|
30
|
+
from transformers import (
|
31
|
+
AutoModelForVision2Seq,
|
32
|
+
LlavaNextForConditionalGeneration,
|
33
|
+
PretrainedConfig,
|
34
|
+
PreTrainedModel,
|
35
|
+
)
|
36
|
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
37
|
+
from transformers.models.llava_next.modeling_llava_next import LlavaNextCausalLMOutputWithPast
|
38
|
+
|
39
|
+
from ....modeling_base import RBLNModel
|
40
|
+
from ....modeling_config import RBLNCompileConfig, RBLNConfig
|
41
|
+
from ..decoderonly.modeling_decoderonly import RBLNDecoderOnlyOutput
|
42
|
+
|
43
|
+
|
44
|
+
logger = logging.getLogger(__name__)
|
45
|
+
|
46
|
+
if TYPE_CHECKING:
|
47
|
+
from transformers import (
|
48
|
+
AutoFeatureExtractor,
|
49
|
+
AutoProcessor,
|
50
|
+
AutoTokenizer,
|
51
|
+
PretrainedConfig,
|
52
|
+
)
|
53
|
+
|
54
|
+
|
55
|
+
class LoopVisionTower:
|
56
|
+
def __init__(self, vision_tower: RBLNModel) -> None:
|
57
|
+
self.vision_tower = vision_tower
|
58
|
+
|
59
|
+
def forward(self, *args, **kwargs):
|
60
|
+
# Loop instead of batch
|
61
|
+
# shape of pixel_values : [batch, num_patches, num_channel, height, width]
|
62
|
+
pixel_values = args[0]
|
63
|
+
|
64
|
+
batch_size = pixel_values.shape[0]
|
65
|
+
outputs = []
|
66
|
+
for i in range(batch_size):
|
67
|
+
outputs.append(self.vision_tower.model[0](pixel_values[i : i + 1]))
|
68
|
+
|
69
|
+
last_hidden_states = [output[0] for output in outputs]
|
70
|
+
pooler_output = [output[1] for output in outputs]
|
71
|
+
|
72
|
+
# FIXME:: This can be optimized using out= API of rbln runtime.
|
73
|
+
last_hidden_states = torch.cat(last_hidden_states, dim=0)
|
74
|
+
pooler_output = torch.cat(pooler_output, dim=0)
|
75
|
+
|
76
|
+
hidden_states = [output[2:] for output in outputs] # batch x (hidden x 1)
|
77
|
+
|
78
|
+
hidden_states = tuple(
|
79
|
+
torch.cat(tuple((hidden_states[n][i] for n in range(batch_size))), dim=0)
|
80
|
+
for i in range(len(hidden_states[0]))
|
81
|
+
) # hidden x (batch,)
|
82
|
+
|
83
|
+
return BaseModelOutputWithPooling(
|
84
|
+
last_hidden_state=last_hidden_states,
|
85
|
+
pooler_output=pooler_output,
|
86
|
+
hidden_states=hidden_states,
|
87
|
+
)
|
88
|
+
|
89
|
+
def __call__(self, *args: Any, **kwds: Any) -> Any:
|
90
|
+
return self.forward(*args, **kwds)
|
91
|
+
|
92
|
+
def __repr__(self) -> str:
|
93
|
+
return repr(self.vision_tower)
|
94
|
+
|
95
|
+
|
96
|
+
class LoopProjector:
|
97
|
+
def __init__(self, multi_modal_projector) -> None:
|
98
|
+
self.multi_modal_projector = multi_modal_projector
|
99
|
+
|
100
|
+
def forward(self, *args, **kwargs):
|
101
|
+
# Loop instead of batch
|
102
|
+
image_feature = args[0]
|
103
|
+
|
104
|
+
batch_size = image_feature.shape[0]
|
105
|
+
outputs = []
|
106
|
+
for i in range(batch_size):
|
107
|
+
outputs.append(self.multi_modal_projector(image_feature[i : i + 1]))
|
108
|
+
|
109
|
+
# FIXME:: This can be optimized using out= API of rbln runtime.
|
110
|
+
outputs = torch.cat(outputs, dim=0)
|
111
|
+
return outputs
|
112
|
+
|
113
|
+
def __call__(self, *args: Any, **kwds: Any) -> Any:
|
114
|
+
return self.forward(*args, **kwds)
|
115
|
+
|
116
|
+
def __repr__(self) -> str:
|
117
|
+
return repr(self.vision_tower)
|
118
|
+
|
119
|
+
|
120
|
+
class RBLNLlavaNextForConditionalGeneration(RBLNModel):
|
121
|
+
auto_model_class = AutoModelForVision2Seq
|
122
|
+
_rbln_submodules = [
|
123
|
+
{"name": "vision_tower"},
|
124
|
+
{"name": "language_model"},
|
125
|
+
]
|
126
|
+
|
127
|
+
def __getattr__(self, __name: str) -> Any:
|
128
|
+
def redirect(func):
|
129
|
+
return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
|
130
|
+
|
131
|
+
val = getattr(LlavaNextForConditionalGeneration, __name)
|
132
|
+
|
133
|
+
if isinstance(val, Callable) and "self" in set(inspect.signature(val).parameters):
|
134
|
+
return redirect(val)
|
135
|
+
return val
|
136
|
+
|
137
|
+
def can_generate(self):
|
138
|
+
return True
|
139
|
+
|
140
|
+
@classmethod
|
141
|
+
def save_torch_artifacts(
|
142
|
+
cls,
|
143
|
+
model: "LlavaNextForConditionalGeneration",
|
144
|
+
save_dir_path: Path,
|
145
|
+
subfolder: str,
|
146
|
+
rbln_config: RBLNConfig,
|
147
|
+
):
|
148
|
+
"""
|
149
|
+
If you are unavoidably running on a CPU rather than an RBLN device,
|
150
|
+
store the torch tensor, weight, etc. in this function.
|
151
|
+
"""
|
152
|
+
save_dict = {}
|
153
|
+
save_dict["image_newline"] = model.image_newline
|
154
|
+
torch.save(save_dict, save_dir_path / subfolder / "torch_artifacts.pth")
|
155
|
+
|
156
|
+
def __post_init__(self, **kwargs):
|
157
|
+
self.vision_tower = LoopVisionTower(self.rbln_submodules[0])
|
158
|
+
self.language_model = self.rbln_submodules[1]
|
159
|
+
self.multi_modal_projector = LoopProjector(self.model[0])
|
160
|
+
|
161
|
+
artifacts = torch.load(self.model_save_dir / self.subfolder / "torch_artifacts.pth", weights_only=False)
|
162
|
+
self.image_newline = artifacts["image_newline"]
|
163
|
+
|
164
|
+
# Copied from the original class
|
165
|
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
166
|
+
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
167
|
+
return super().__post_init__(**kwargs)
|
168
|
+
|
169
|
+
@classmethod
|
170
|
+
def get_pytorch_model(
|
171
|
+
cls,
|
172
|
+
model_id: str,
|
173
|
+
*args,
|
174
|
+
rbln_kwargs: Optional[Dict[str, Any]] = None,
|
175
|
+
**kwargs,
|
176
|
+
) -> "PreTrainedModel":
|
177
|
+
# Optimum's TasksManager does not handle Llava.
|
178
|
+
kwargs = cls.update_kwargs(kwargs)
|
179
|
+
model = LlavaNextForConditionalGeneration.from_pretrained(model_id, *args, **kwargs)
|
180
|
+
return model
|
181
|
+
|
182
|
+
def get_input_embeddings(self):
|
183
|
+
return self.language_model.get_input_embeddings()
|
184
|
+
|
185
|
+
@classmethod
|
186
|
+
def wrap_model_if_needed(cls, model: "PreTrainedModel", rbln_config: RBLNConfig):
|
187
|
+
return model.multi_modal_projector
|
188
|
+
|
189
|
+
@classmethod
|
190
|
+
def _get_rbln_config(
|
191
|
+
cls,
|
192
|
+
preprocessors: Optional[Union["AutoFeatureExtractor", "AutoProcessor", "AutoTokenizer"]],
|
193
|
+
model_config: Optional["PretrainedConfig"] = None,
|
194
|
+
rbln_kwargs={},
|
195
|
+
) -> RBLNConfig:
|
196
|
+
vision_feature_select_strategy = rbln_kwargs.get("vision_feature_select_strategy", None)
|
197
|
+
|
198
|
+
# 1. Multi-modal projection layer
|
199
|
+
batch_size = rbln_kwargs.get("rbln_batch_size", None)
|
200
|
+
if batch_size is None:
|
201
|
+
batch_size = 1
|
202
|
+
|
203
|
+
feature_size = model_config.vision_config.hidden_size
|
204
|
+
|
205
|
+
# See forward function to see more details.
|
206
|
+
vision_feature_select_strategy = (
|
207
|
+
vision_feature_select_strategy
|
208
|
+
if vision_feature_select_strategy is not None
|
209
|
+
else model_config.vision_feature_select_strategy
|
210
|
+
)
|
211
|
+
|
212
|
+
# Calculating `num_positions` : See CLIPVisionEmbeddings of transformers for more details.
|
213
|
+
num_positions = (model_config.vision_config.image_size // model_config.vision_config.patch_size) ** 2 + 1
|
214
|
+
if vision_feature_select_strategy == "default":
|
215
|
+
selected_image_feature_dim = num_positions - 1
|
216
|
+
else:
|
217
|
+
selected_image_feature_dim = num_positions
|
218
|
+
|
219
|
+
input_info = [("image_features", [batch_size, selected_image_feature_dim, feature_size], "float32")]
|
220
|
+
rbln_compile_config = RBLNCompileConfig(input_info=input_info)
|
221
|
+
rbln_config = RBLNConfig(rbln_cls=cls.__name__, compile_cfgs=[rbln_compile_config], rbln_kwargs=rbln_kwargs)
|
222
|
+
return rbln_config
|
223
|
+
|
224
|
+
def prepare_inputs_for_generation(
|
225
|
+
self,
|
226
|
+
input_ids,
|
227
|
+
inputs_embeds=None,
|
228
|
+
pixel_values=None,
|
229
|
+
image_sizes=None,
|
230
|
+
attention_mask=None,
|
231
|
+
past_cached_length=None,
|
232
|
+
**kwargs,
|
233
|
+
):
|
234
|
+
# Prepare HF generation
|
235
|
+
is_prefill_phase = past_cached_length is None
|
236
|
+
batch_size = input_ids.shape[0]
|
237
|
+
|
238
|
+
model_inputs = self.language_model.prepare_inputs_for_generation(
|
239
|
+
input_ids=input_ids,
|
240
|
+
inputs_embeds=inputs_embeds,
|
241
|
+
past_cached_length=past_cached_length, # Not affect
|
242
|
+
attention_mask=attention_mask,
|
243
|
+
**kwargs,
|
244
|
+
)
|
245
|
+
|
246
|
+
if is_prefill_phase:
|
247
|
+
model_inputs["past_cached_length"] = torch.zeros((batch_size, 1), dtype=torch.int32)
|
248
|
+
else:
|
249
|
+
model_inputs["past_cached_length"] = past_cached_length + 1
|
250
|
+
|
251
|
+
model_inputs.update(
|
252
|
+
{
|
253
|
+
# "position_ids": position_ids or cache_positions,
|
254
|
+
"pixel_values": pixel_values,
|
255
|
+
"image_sizes": image_sizes,
|
256
|
+
"attention_mask": attention_mask,
|
257
|
+
}
|
258
|
+
)
|
259
|
+
return model_inputs
|
260
|
+
|
261
|
+
def _update_model_kwargs_for_generation(
|
262
|
+
self,
|
263
|
+
outputs: RBLNDecoderOnlyOutput,
|
264
|
+
model_kwargs: Dict[str, Any],
|
265
|
+
**kwargs,
|
266
|
+
) -> Dict[str, Any]:
|
267
|
+
# update past_cached_length
|
268
|
+
model_kwargs["past_cached_length"] = outputs.past_cached_length
|
269
|
+
|
270
|
+
return model_kwargs
|
271
|
+
|
272
|
+
def _merge_vllm_multimodal_embeddings(
|
273
|
+
self,
|
274
|
+
input_ids: torch.Tensor,
|
275
|
+
inputs_embeds: torch.Tensor,
|
276
|
+
multimodal_embeddings: torch.Tensor,
|
277
|
+
placeholder_token_id: int,
|
278
|
+
) -> torch.Tensor:
|
279
|
+
mask = input_ids == placeholder_token_id
|
280
|
+
num_expected_tokens = mask.sum().item()
|
281
|
+
assert isinstance(num_expected_tokens, int)
|
282
|
+
|
283
|
+
if multimodal_embeddings.shape[0] != num_expected_tokens:
|
284
|
+
raise ValueError(
|
285
|
+
f"Attempted to assign {inputs_embeds[mask].shape} = {multimodal_embeddings.shape} "
|
286
|
+
f"multimodal tokens to {num_expected_tokens} placeholders"
|
287
|
+
)
|
288
|
+
|
289
|
+
inputs_embeds[mask] = multimodal_embeddings
|
290
|
+
return inputs_embeds
|
291
|
+
|
292
|
+
def _embed(
|
293
|
+
self,
|
294
|
+
input_ids: torch.LongTensor,
|
295
|
+
image_sizes: torch.LongTensor,
|
296
|
+
attention_mask: torch.Tensor,
|
297
|
+
pixel_values: torch.FloatTensor,
|
298
|
+
vision_feature_layer: int,
|
299
|
+
vision_feature_select_strategy: str,
|
300
|
+
cache_position: torch.Tensor,
|
301
|
+
past_cached_length: torch.Tensor,
|
302
|
+
from_vllm_prefill: bool = False,
|
303
|
+
) -> List[torch.Tensor]:
|
304
|
+
vision_feature_layer = (
|
305
|
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
306
|
+
)
|
307
|
+
vision_feature_select_strategy = (
|
308
|
+
vision_feature_select_strategy
|
309
|
+
if vision_feature_select_strategy is not None
|
310
|
+
else self.config.vision_feature_select_strategy
|
311
|
+
)
|
312
|
+
|
313
|
+
# 1. Extract the input embeddings
|
314
|
+
# In case image_token_index is not in the embeddings (extra token but embedding don't have it)
|
315
|
+
for_inputs_embeds_ids = input_ids.clone()
|
316
|
+
for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0
|
317
|
+
|
318
|
+
inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids)
|
319
|
+
|
320
|
+
# 2. Merge text and images
|
321
|
+
if pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) > 0:
|
322
|
+
# ! infer image_num_patches from image_sizes
|
323
|
+
image_num_patches = [
|
324
|
+
image_size_to_num_patches(
|
325
|
+
image_size=imsize,
|
326
|
+
grid_pinpoints=self.config.image_grid_pinpoints,
|
327
|
+
patch_size=self.config.vision_config.image_size,
|
328
|
+
)
|
329
|
+
for imsize in image_sizes
|
330
|
+
]
|
331
|
+
# figure out if pixel_values is concatenated or stacked
|
332
|
+
if pixel_values.dim() == 5:
|
333
|
+
# stacking when input is (batch_size, num_patches, num_channels, height, width)
|
334
|
+
_pixel_values_list = [
|
335
|
+
pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)
|
336
|
+
]
|
337
|
+
pixel_values = torch.cat(_pixel_values_list, dim=0)
|
338
|
+
elif pixel_values.dim() != 4:
|
339
|
+
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
|
340
|
+
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
|
341
|
+
|
342
|
+
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
|
343
|
+
selected_image_feature = image_features.hidden_states[vision_feature_layer]
|
344
|
+
|
345
|
+
if vision_feature_select_strategy == "default":
|
346
|
+
selected_image_feature = selected_image_feature[:, 1:]
|
347
|
+
elif vision_feature_select_strategy == "full":
|
348
|
+
selected_image_feature = selected_image_feature
|
349
|
+
|
350
|
+
image_features = self.multi_modal_projector(selected_image_feature)
|
351
|
+
image_features = torch.split(image_features, image_num_patches, dim=0)
|
352
|
+
|
353
|
+
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
|
354
|
+
image_features, feature_lens = self.pack_image_features(
|
355
|
+
image_features,
|
356
|
+
image_sizes,
|
357
|
+
image_newline=self.image_newline,
|
358
|
+
)
|
359
|
+
|
360
|
+
inputs_embeds = inputs_embeds.to(image_features.dtype)
|
361
|
+
|
362
|
+
if from_vllm_prefill:
|
363
|
+
self._merge_vllm_multimodal_embeddings(
|
364
|
+
input_ids, inputs_embeds, image_features, self.config.image_token_index
|
365
|
+
)
|
366
|
+
else:
|
367
|
+
inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features(
|
368
|
+
image_features,
|
369
|
+
feature_lens,
|
370
|
+
inputs_embeds,
|
371
|
+
input_ids,
|
372
|
+
attention_mask,
|
373
|
+
)
|
374
|
+
|
375
|
+
cache_position = torch.arange(0, inputs_embeds.shape[1], dtype=torch.int32).unsqueeze_(0)
|
376
|
+
|
377
|
+
# pixel_values is not None but is empty ---> text only cases
|
378
|
+
elif (
|
379
|
+
pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0 or pixel_values is None
|
380
|
+
):
|
381
|
+
pass
|
382
|
+
|
383
|
+
# In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
|
384
|
+
# generation with cache
|
385
|
+
elif pixel_values is not None and input_ids.shape[1] == 1 and past_cached_length is not None:
|
386
|
+
cache_position = past_cached_length
|
387
|
+
|
388
|
+
return inputs_embeds, cache_position
|
389
|
+
|
390
|
+
def forward(
|
391
|
+
self,
|
392
|
+
input_ids: torch.LongTensor = None,
|
393
|
+
pixel_values: torch.FloatTensor = None,
|
394
|
+
image_sizes: Optional[torch.LongTensor] = None,
|
395
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
396
|
+
vision_feature_layer: Optional[int] = None,
|
397
|
+
vision_feature_select_strategy: Optional[str] = None,
|
398
|
+
cache_position: Union[List[torch.Tensor], torch.Tensor] = None, # vllm keyword argument
|
399
|
+
batch_idx: Optional[int] = None,
|
400
|
+
past_cached_length: Optional[torch.Tensor] = None,
|
401
|
+
**kwargs,
|
402
|
+
) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]:
|
403
|
+
from_vllm_prefill = isinstance(cache_position, torch.Tensor) and cache_position.shape[-1] > 1
|
404
|
+
from_hf_generate_prefill = isinstance(input_ids, list)
|
405
|
+
|
406
|
+
if inputs_embeds is not None:
|
407
|
+
raise NotImplementedError("Specifying inputs_embeds is not supported.")
|
408
|
+
|
409
|
+
if from_hf_generate_prefill:
|
410
|
+
inputs_embeds = []
|
411
|
+
batch_size = len(input_ids)
|
412
|
+
|
413
|
+
# Get the number of images in the prompt
|
414
|
+
special_image_token_masks = [input_id == self.config.image_token_index for input_id in input_ids]
|
415
|
+
num_special_image_tokens = [torch.sum(mask, dim=-1) for mask in special_image_token_masks]
|
416
|
+
|
417
|
+
# Split images for each prompt
|
418
|
+
pixel_values = pixel_values.split(num_special_image_tokens, dim=0)
|
419
|
+
image_sizes = image_sizes.split(num_special_image_tokens, dim=0)
|
420
|
+
|
421
|
+
for b_idx in range(batch_size):
|
422
|
+
embed, cache_pos = self._embed(
|
423
|
+
input_ids=input_ids[b_idx],
|
424
|
+
image_sizes=image_sizes[b_idx] if image_sizes is not None else None,
|
425
|
+
attention_mask=torch.ones_like(input_ids[b_idx]),
|
426
|
+
pixel_values=pixel_values[b_idx] if pixel_values is not None else None,
|
427
|
+
vision_feature_layer=vision_feature_layer,
|
428
|
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
429
|
+
cache_position=cache_position[b_idx],
|
430
|
+
past_cached_length=past_cached_length[b_idx : b_idx + 1],
|
431
|
+
)
|
432
|
+
inputs_embeds.append(embed)
|
433
|
+
cache_position[b_idx] = cache_pos
|
434
|
+
past_cached_length[b_idx] += embed.shape[1]
|
435
|
+
|
436
|
+
elif from_vllm_prefill:
|
437
|
+
inputs_embeds, cache_position = self._embed(
|
438
|
+
input_ids=input_ids,
|
439
|
+
image_sizes=image_sizes,
|
440
|
+
attention_mask=torch.ones_like(input_ids),
|
441
|
+
pixel_values=pixel_values,
|
442
|
+
vision_feature_layer=vision_feature_layer,
|
443
|
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
444
|
+
cache_position=cache_position,
|
445
|
+
past_cached_length=past_cached_length,
|
446
|
+
from_vllm_prefill=from_vllm_prefill,
|
447
|
+
)
|
448
|
+
else:
|
449
|
+
# Decoding step
|
450
|
+
inputs_embeds, cache_position = self._embed(
|
451
|
+
input_ids=input_ids,
|
452
|
+
image_sizes=image_sizes,
|
453
|
+
attention_mask=torch.ones_like(input_ids),
|
454
|
+
pixel_values=pixel_values,
|
455
|
+
vision_feature_layer=vision_feature_layer,
|
456
|
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
457
|
+
cache_position=cache_position,
|
458
|
+
past_cached_length=past_cached_length,
|
459
|
+
)
|
460
|
+
|
461
|
+
outputs: RBLNDecoderOnlyOutput = self.language_model(
|
462
|
+
inputs_embeds=inputs_embeds,
|
463
|
+
batch_idx=batch_idx,
|
464
|
+
cache_position=cache_position,
|
465
|
+
past_cached_length=past_cached_length,
|
466
|
+
)
|
467
|
+
|
468
|
+
return outputs
|
469
|
+
|
470
|
+
# Almost copied from : https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/llava_next/modeling_llava_next.py
|
471
|
+
def pack_image_features(self, image_features, image_sizes, image_newline=None):
|
472
|
+
"""
|
473
|
+
Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.
|
474
|
+
|
475
|
+
Args:
|
476
|
+
image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
|
477
|
+
List of image feature tensor, each contains all the visual feature of all patches.
|
478
|
+
image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
|
479
|
+
Actual image size of each images (H, W).
|
480
|
+
image_newline (`torch.Tensor` of shape `(embed_dim)`)
|
481
|
+
New line embedding vector.
|
482
|
+
Returns:
|
483
|
+
image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
|
484
|
+
feature_lens (`List[int]`)
|
485
|
+
token length of each image in image_features
|
486
|
+
"""
|
487
|
+
new_image_features = []
|
488
|
+
feature_lens = []
|
489
|
+
for image_idx, image_feature in enumerate(image_features):
|
490
|
+
if image_feature.shape[0] > 1:
|
491
|
+
base_image_feature = image_feature[0]
|
492
|
+
image_feature = image_feature[1:]
|
493
|
+
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
|
494
|
+
if height * width != base_image_feature.shape[0]:
|
495
|
+
raise ValueError("The number of patches is not consistent with the image size.")
|
496
|
+
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
|
497
|
+
image_sizes[image_idx],
|
498
|
+
self.config.image_grid_pinpoints,
|
499
|
+
self.config.vision_config.image_size,
|
500
|
+
)
|
501
|
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
502
|
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
503
|
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
504
|
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
505
|
+
if image_newline is not None:
|
506
|
+
image_feature = torch.cat(
|
507
|
+
(
|
508
|
+
image_feature,
|
509
|
+
image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.dtype),
|
510
|
+
),
|
511
|
+
dim=-1,
|
512
|
+
)
|
513
|
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
514
|
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
515
|
+
else:
|
516
|
+
image_feature = image_feature[0]
|
517
|
+
if image_newline is not None:
|
518
|
+
image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
|
519
|
+
new_image_features.append(image_feature)
|
520
|
+
feature_lens.append(image_feature.size(0))
|
521
|
+
image_features = torch.cat(new_image_features, dim=0)
|
522
|
+
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
|
523
|
+
return image_features, feature_lens
|
524
|
+
|
525
|
+
|
526
|
+
# Almost copied from : https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/llava_next/modeling_llava_next.py
|
527
|
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
528
|
+
"""
|
529
|
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
530
|
+
|
531
|
+
Args:
|
532
|
+
image_size (`tuple`):
|
533
|
+
The size of the input image in the format (width, height).
|
534
|
+
grid_pinpoints (`List`):
|
535
|
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
536
|
+
of the form `(height, width)`.
|
537
|
+
patch_size (`int`):
|
538
|
+
The size of each image patch.
|
539
|
+
|
540
|
+
Returns:
|
541
|
+
tuple: The shape of the image patch grid in the format (width, height).
|
542
|
+
"""
|
543
|
+
if not isinstance(grid_pinpoints, list):
|
544
|
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
545
|
+
|
546
|
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
547
|
+
if not isinstance(image_size, (list, tuple)):
|
548
|
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
549
|
+
raise TypeError(
|
550
|
+
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
|
551
|
+
)
|
552
|
+
image_size = image_size.tolist()
|
553
|
+
|
554
|
+
height, width = select_best_resolution(image_size, grid_pinpoints)
|
555
|
+
return height // patch_size, width // patch_size
|
556
|
+
|
557
|
+
|
558
|
+
# Almost copied from : https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/llava_next/modeling_llava_next.py
|
559
|
+
def unpad_image(tensor, original_size):
|
560
|
+
"""
|
561
|
+
Unpads a PyTorch tensor of a padded and resized image.
|
562
|
+
|
563
|
+
Args:
|
564
|
+
tensor (`torch.Tensor`):
|
565
|
+
The image tensor, assumed to be of shape (num_channels, height, width).
|
566
|
+
original_size (`tuple`):
|
567
|
+
The original size of the image (height, width).
|
568
|
+
|
569
|
+
Returns:
|
570
|
+
`torch.Tensor`: The unpadded image tensor.
|
571
|
+
"""
|
572
|
+
original_height, original_width = original_size
|
573
|
+
current_height, current_width = tensor.shape[1:]
|
574
|
+
|
575
|
+
original_aspect_ratio = original_width / original_height
|
576
|
+
current_aspect_ratio = current_width / current_height
|
577
|
+
|
578
|
+
if original_aspect_ratio > current_aspect_ratio:
|
579
|
+
scale_factor = current_width / original_width
|
580
|
+
new_height = int(original_height * scale_factor)
|
581
|
+
padding = (current_height - new_height) // 2
|
582
|
+
unpadded_tensor = tensor[:, padding : current_height - padding, :]
|
583
|
+
else:
|
584
|
+
scale_factor = current_height / original_height
|
585
|
+
new_width = int(original_width * scale_factor)
|
586
|
+
padding = (current_width - new_width) // 2
|
587
|
+
unpadded_tensor = tensor[:, :, padding : current_width - padding]
|
588
|
+
|
589
|
+
return unpadded_tensor
|
590
|
+
|
591
|
+
|
592
|
+
# Almost copied from : https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/llava_next/modeling_llava_next.py
|
593
|
+
def select_best_resolution(original_size: tuple, possible_resolutions: list) -> tuple:
|
594
|
+
"""
|
595
|
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
596
|
+
|
597
|
+
This is done by calculating the effective and wasted resolution for each possible resolution.
|
598
|
+
|
599
|
+
The best fit resolution is the one that maximizes the effective resolution and minimizes the wasted resolution.
|
600
|
+
|
601
|
+
Args:
|
602
|
+
original_size (tuple):
|
603
|
+
The original size of the image in the format (height, width).
|
604
|
+
possible_resolutions (list):
|
605
|
+
A list of possible resolutions in the format [(height1, width1), (height2, width2), ...].
|
606
|
+
|
607
|
+
Returns:
|
608
|
+
tuple: The best fit resolution in the format (height, width).
|
609
|
+
"""
|
610
|
+
original_height, original_width = original_size
|
611
|
+
best_fit = None
|
612
|
+
max_effective_resolution = 0
|
613
|
+
min_wasted_resolution = float("inf")
|
614
|
+
|
615
|
+
for height, width in possible_resolutions:
|
616
|
+
scale = min(width / original_width, height / original_height)
|
617
|
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
618
|
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
619
|
+
wasted_resolution = (width * height) - effective_resolution
|
620
|
+
|
621
|
+
if effective_resolution > max_effective_resolution or (
|
622
|
+
effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution
|
623
|
+
):
|
624
|
+
max_effective_resolution = effective_resolution
|
625
|
+
min_wasted_resolution = wasted_resolution
|
626
|
+
best_fit = (height, width)
|
627
|
+
|
628
|
+
return best_fit
|
629
|
+
|
630
|
+
|
631
|
+
# Almost copied from : https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/llava_next/modeling_llava_next.py
|
632
|
+
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
|
633
|
+
"""
|
634
|
+
Calculate the number of patches after the preprocessing for images of any resolution.
|
635
|
+
|
636
|
+
Args:
|
637
|
+
image_size (`Union[torch.LongTensor, np.ndarray, Tuple[int, int]):
|
638
|
+
The size of the input image in the format (height, width). ?
|
639
|
+
grid_pinpoints (`List`):
|
640
|
+
A list containing possible resolutions. Each item in the list should be a tuple or list
|
641
|
+
of the form `(height, width)`.
|
642
|
+
patch_size (`int`):
|
643
|
+
The size of each image patch.
|
644
|
+
|
645
|
+
Returns:
|
646
|
+
int: the number of patches
|
647
|
+
"""
|
648
|
+
if not isinstance(grid_pinpoints, list):
|
649
|
+
raise TypeError("grid_pinpoints should be a list of tuples or lists")
|
650
|
+
|
651
|
+
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
|
652
|
+
if not isinstance(image_size, (list, tuple)):
|
653
|
+
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
|
654
|
+
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
|
655
|
+
image_size = image_size.tolist()
|
656
|
+
|
657
|
+
best_resolution = select_best_resolution(image_size, grid_pinpoints)
|
658
|
+
height, width = best_resolution
|
659
|
+
num_patches = 0
|
660
|
+
# consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
|
661
|
+
for i in range(0, height, patch_size):
|
662
|
+
for j in range(0, width, patch_size):
|
663
|
+
num_patches += 1
|
664
|
+
# add the base patch
|
665
|
+
num_patches += 1
|
666
|
+
return num_patches
|
@@ -82,6 +82,7 @@ class MidmLMHeadModelWrapper(torch.nn.Module):
|
|
82
82
|
attention_mask: torch.Tensor,
|
83
83
|
cache_position: torch.LongTensor,
|
84
84
|
batch_position: int,
|
85
|
+
query_idx: int,
|
85
86
|
*past_key_values,
|
86
87
|
):
|
87
88
|
"""Defines the forward pass for the wrapper model."""
|
@@ -107,10 +108,13 @@ class MidmLMHeadModelWrapper(torch.nn.Module):
|
|
107
108
|
)
|
108
109
|
|
109
110
|
hidden_states = outputs[0]
|
111
|
+
if batch_position >= 0:
|
112
|
+
hidden_states = hidden_states[:, query_idx].unsqueeze(1)
|
113
|
+
|
110
114
|
logits = self.lm_head(hidden_states)
|
111
115
|
output = (logits,) + outputs[1:]
|
112
116
|
|
113
|
-
return output, batch_position
|
117
|
+
return output, batch_position + query_idx
|
114
118
|
|
115
119
|
|
116
120
|
def layernorm1p(module, input):
|
@@ -56,7 +56,7 @@ class RBLNMidmLMHeadModel(RBLNDecoderOnlyModelForCausalLM):
|
|
56
56
|
|
57
57
|
@classmethod
|
58
58
|
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
|
59
|
-
rbln_max_seq_len = rbln_config.
|
59
|
+
rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
|
60
60
|
return MidmLMHeadModelWrapper(model, rbln_max_seq_len).eval()
|
61
61
|
|
62
62
|
def __getattr__(self, __name: str) -> Any:
|