optimum-rbln 0.1.9__py3-none-any.whl → 0.1.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- optimum/rbln/__init__.py +37 -2
- optimum/rbln/__version__.py +1 -1
- optimum/rbln/diffusers/models/autoencoder_kl.py +36 -29
- optimum/rbln/diffusers/models/controlnet.py +56 -40
- optimum/rbln/diffusers/models/unet_2d_condition.py +40 -28
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet.py +22 -15
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +22 -15
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +23 -17
- optimum/rbln/diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +24 -18
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +22 -11
- optimum/rbln/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +22 -11
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +24 -14
- optimum/rbln/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +24 -14
- optimum/rbln/modeling_alias.py +3 -3
- optimum/rbln/modeling_base.py +471 -231
- optimum/rbln/modeling_config.py +152 -77
- optimum/rbln/modeling_seq2seq.py +166 -77
- optimum/rbln/transformers/__init__.py +35 -1
- optimum/rbln/transformers/models/__init__.py +20 -1
- optimum/rbln/transformers/models/auto/__init__.py +14 -0
- optimum/rbln/transformers/models/auto/auto_factory.py +84 -0
- optimum/rbln/transformers/models/auto/modeling_auto.py +94 -0
- optimum/rbln/transformers/models/bart/__init__.py +1 -0
- optimum/rbln/transformers/models/bart/bart_architecture.py +189 -50
- optimum/rbln/transformers/models/bart/modeling_bart.py +106 -0
- optimum/rbln/transformers/models/bert/__init__.py +24 -0
- optimum/rbln/transformers/models/bert/modeling_bert.py +102 -0
- optimum/rbln/transformers/models/clip/__init__.py +1 -1
- optimum/rbln/transformers/models/clip/modeling_clip.py +127 -25
- optimum/rbln/transformers/models/decoderonly/decoderonly_architecture.py +28 -4
- optimum/rbln/transformers/models/decoderonly/modeling_decoderonly.py +302 -115
- optimum/rbln/transformers/models/dpt/modeling_dpt.py +21 -7
- optimum/rbln/transformers/models/gemma/modeling_gemma.py +1 -1
- optimum/rbln/transformers/models/gpt2/gpt2_architecture.py +4 -1
- optimum/rbln/transformers/models/gpt2/modeling_gpt2.py +1 -1
- optimum/rbln/transformers/models/llama/modeling_llama.py +1 -1
- optimum/rbln/transformers/models/llava_next/__init__.py +24 -0
- optimum/rbln/transformers/models/llava_next/modeling_llava_next.py +666 -0
- optimum/rbln/transformers/models/midm/midm_architecture.py +5 -1
- optimum/rbln/transformers/models/midm/modeling_midm.py +1 -1
- optimum/rbln/transformers/models/mistral/modeling_mistral.py +1 -1
- optimum/rbln/transformers/models/phi/__init__.py +24 -0
- optimum/rbln/transformers/models/phi/modeling_phi.py +69 -0
- optimum/rbln/transformers/models/phi/phi_architecture.py +406 -0
- optimum/rbln/transformers/models/t5/t5_architecture.py +92 -31
- optimum/rbln/transformers/models/wav2vec2/modeling_wav2vec2.py +17 -11
- optimum/rbln/transformers/models/whisper/generation_whisper.py +68 -0
- optimum/rbln/transformers/models/whisper/modeling_whisper.py +141 -105
- optimum/rbln/transformers/models/whisper/whisper_architecture.py +44 -17
- optimum/rbln/transformers/models/xlm_roberta/modeling_xlm_roberta.py +17 -14
- optimum/rbln/transformers/utils/rbln_quantization.py +48 -60
- optimum/rbln/utils/import_utils.py +36 -1
- optimum/rbln/utils/logging.py +82 -0
- optimum/rbln/utils/runtime_utils.py +33 -0
- optimum/rbln/utils/timer_utils.py +19 -0
- {optimum_rbln-0.1.9.dist-info → optimum_rbln-0.1.11.dist-info}/METADATA +8 -7
- optimum_rbln-0.1.11.dist-info/RECORD +93 -0
- {optimum_rbln-0.1.9.dist-info → optimum_rbln-0.1.11.dist-info}/WHEEL +1 -1
- optimum_rbln-0.1.11.dist-info/entry_points.txt +4 -0
- optimum_rbln-0.1.9.dist-info/RECORD +0 -78
- {optimum_rbln-0.1.9.dist-info → optimum_rbln-0.1.11.dist-info}/licenses/LICENSE +0 -0
@@ -53,7 +53,7 @@ class RBLNMistralForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
|
53
53
|
|
54
54
|
@classmethod
|
55
55
|
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
|
56
|
-
rbln_max_seq_len = rbln_config.
|
56
|
+
rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
|
57
57
|
return MistralForCausalLMWrapper(model, rbln_max_seq_len).eval()
|
58
58
|
|
59
59
|
def __getattr__(self, __name: str) -> Any:
|
@@ -0,0 +1,24 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
from .modeling_phi import RBLNPhiForCausalLM
|
@@ -0,0 +1,69 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
import inspect
|
25
|
+
import logging
|
26
|
+
from typing import TYPE_CHECKING, Any, Callable
|
27
|
+
|
28
|
+
from transformers import PhiForCausalLM
|
29
|
+
|
30
|
+
from ..decoderonly import RBLNDecoderOnlyModelForCausalLM
|
31
|
+
from .phi_architecture import PhiWrapper
|
32
|
+
|
33
|
+
|
34
|
+
if TYPE_CHECKING:
|
35
|
+
from transformers import PreTrainedModel
|
36
|
+
|
37
|
+
from ....modeling_config import RBLNConfig
|
38
|
+
|
39
|
+
logger = logging.getLogger(__name__)
|
40
|
+
|
41
|
+
|
42
|
+
class RBLNPhiForCausalLM(RBLNDecoderOnlyModelForCausalLM):
|
43
|
+
"""
|
44
|
+
The Phi Model transformer with a language modeling head (linear layer) on top.
|
45
|
+
This model inherits from [`RBLNMultiModel`]. Check the superclass documentation for the generic methods the library implements for all its models.
|
46
|
+
|
47
|
+
A class to convert and run pre-trained transformers based PhiForCausalLM model on RBLN devices.
|
48
|
+
It implements the methods to convert a pre-trained transformers PhiForCausalLM model into a RBLN transformer model by:
|
49
|
+
- transferring the checkpoint weights of the original into an optimized RBLN graph,
|
50
|
+
- compiling the resulting graph using the RBLN compiler.
|
51
|
+
"""
|
52
|
+
|
53
|
+
@classmethod
|
54
|
+
def wrap_model_if_needed(self, model: "PreTrainedModel", rbln_config: "RBLNConfig"):
|
55
|
+
rbln_max_seq_len = rbln_config.model_cfg["max_seq_len"]
|
56
|
+
return PhiWrapper(model, rbln_max_seq_len).eval()
|
57
|
+
|
58
|
+
def __getattr__(self, __name: str) -> Any:
|
59
|
+
def redirect(func):
|
60
|
+
return lambda *pargs, **kwargs: func(self, *pargs, **kwargs)
|
61
|
+
|
62
|
+
val = getattr(PhiForCausalLM, __name)
|
63
|
+
|
64
|
+
if isinstance(val, Callable) and "self" in set(
|
65
|
+
inspect.signature(val).parameters
|
66
|
+
):
|
67
|
+
return redirect(val)
|
68
|
+
|
69
|
+
return val
|
@@ -0,0 +1,406 @@
|
|
1
|
+
# Copyright 2024 Rebellions Inc.
|
2
|
+
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at:
|
6
|
+
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# Portions of this software are licensed under the Apache License,
|
16
|
+
# Version 2.0. See the NOTICE file distributed with this work for
|
17
|
+
# additional information regarding copyright ownership.
|
18
|
+
|
19
|
+
# All other portions of this software, including proprietary code,
|
20
|
+
# are the intellectual property of Rebellions Inc. and may not be
|
21
|
+
# copied, modified, or distributed without prior written permission
|
22
|
+
# from Rebellions Inc.
|
23
|
+
|
24
|
+
import math
|
25
|
+
from typing import Dict, Optional, Tuple
|
26
|
+
|
27
|
+
import torch
|
28
|
+
import torch.nn as nn
|
29
|
+
from transformers.modeling_outputs import (
|
30
|
+
BaseModelOutputWithPast,
|
31
|
+
)
|
32
|
+
|
33
|
+
from ...cache_utils import RebelDynamicCache
|
34
|
+
from ..decoderonly import (
|
35
|
+
DecoderOnlyWrapper,
|
36
|
+
DynamicNTKScalingRotaryEmbedding,
|
37
|
+
LinearScalingRotaryEmbedding,
|
38
|
+
RotaryEmbedding,
|
39
|
+
apply_rotary_pos_emb,
|
40
|
+
slice_and_unsqueeze_cos_sin,
|
41
|
+
)
|
42
|
+
|
43
|
+
|
44
|
+
class PhiWrapper(DecoderOnlyWrapper):
|
45
|
+
def _init_rope(self):
|
46
|
+
if self.rope_scaling is None:
|
47
|
+
rotary_emb = RotaryEmbedding(
|
48
|
+
int(self.config.partial_rotary_factor * self.head_dim),
|
49
|
+
max_position_embeddings=self.max_position_embeddings,
|
50
|
+
base=self.config.rope_theta,
|
51
|
+
)
|
52
|
+
else:
|
53
|
+
scaling_type = self.rope_scaling["type"]
|
54
|
+
scaling_factor = self.rope_scaling["factor"]
|
55
|
+
if scaling_type == "linear":
|
56
|
+
rotary_emb = LinearScalingRotaryEmbedding(
|
57
|
+
int(self.config.partial_rotary_factor * self.head_dim),
|
58
|
+
max_position_embeddings=self.max_position_embeddings,
|
59
|
+
scaling_factor=scaling_factor,
|
60
|
+
base=self.config.rope_theta,
|
61
|
+
max_seq_len=self.max_seq_len,
|
62
|
+
)
|
63
|
+
elif scaling_type == "dynamic":
|
64
|
+
rotary_emb = DynamicNTKScalingRotaryEmbedding(
|
65
|
+
int(self.config.partial_rotary_factor * self.head_dim),
|
66
|
+
max_position_embeddings=self.max_position_embeddings,
|
67
|
+
scaling_factor=scaling_factor,
|
68
|
+
base=self.config.rope_theta,
|
69
|
+
max_seq_len=self.max_seq_len,
|
70
|
+
)
|
71
|
+
else:
|
72
|
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
73
|
+
|
74
|
+
return rotary_emb
|
75
|
+
|
76
|
+
def get_forward_dict(self):
|
77
|
+
forward_dict = {}
|
78
|
+
forward_dict.update(
|
79
|
+
{
|
80
|
+
"wrapper": PhiModel.forward,
|
81
|
+
"model": PhiDecoderLayer.forward,
|
82
|
+
"decoder_layer": PhiAttention.forward,
|
83
|
+
}
|
84
|
+
)
|
85
|
+
return forward_dict
|
86
|
+
|
87
|
+
|
88
|
+
class PhiAttention:
|
89
|
+
def forward(
|
90
|
+
self,
|
91
|
+
hidden_states: torch.Tensor,
|
92
|
+
attention_mask: Optional[torch.Tensor] = None,
|
93
|
+
past_key_value: Optional[RebelDynamicCache] = None,
|
94
|
+
batch_index: Optional[int] = None,
|
95
|
+
output_attentions: bool = False,
|
96
|
+
cos: Optional[torch.Tensor] = None,
|
97
|
+
sin: Optional[torch.Tensor] = None,
|
98
|
+
rotary_pos_emb=None,
|
99
|
+
**kwargs,
|
100
|
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
101
|
+
bsz, q_len, _ = hidden_states.size()
|
102
|
+
|
103
|
+
query_states = self.q_proj(hidden_states)
|
104
|
+
key_states = self.k_proj(hidden_states)
|
105
|
+
value_states = self.v_proj(hidden_states)
|
106
|
+
|
107
|
+
if self.qk_layernorm:
|
108
|
+
query_states = self.q_layernorm(query_states)
|
109
|
+
key_states = self.k_layernorm(key_states)
|
110
|
+
|
111
|
+
query_states = query_states.view(
|
112
|
+
bsz, q_len, self.num_heads, self.head_dim
|
113
|
+
).transpose(1, 2)
|
114
|
+
key_states = key_states.view(
|
115
|
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
116
|
+
).transpose(1, 2)
|
117
|
+
value_states = value_states.view(
|
118
|
+
bsz, q_len, self.num_key_value_heads, self.head_dim
|
119
|
+
).transpose(1, 2)
|
120
|
+
|
121
|
+
# Partial rotary embedding
|
122
|
+
query_rot, query_pass = (
|
123
|
+
query_states[..., : rotary_pos_emb.dim],
|
124
|
+
query_states[..., rotary_pos_emb.dim :],
|
125
|
+
)
|
126
|
+
key_rot, key_pass = (
|
127
|
+
key_states[..., : rotary_pos_emb.dim],
|
128
|
+
key_states[..., rotary_pos_emb.dim :],
|
129
|
+
)
|
130
|
+
|
131
|
+
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor]
|
132
|
+
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin)
|
133
|
+
|
134
|
+
# [batch_size, seq_length, num_heads, head_dim]
|
135
|
+
query_states = torch.cat((query_rot, query_pass), dim=-1)
|
136
|
+
key_states = torch.cat((key_rot, key_pass), dim=-1)
|
137
|
+
|
138
|
+
# Decoder
|
139
|
+
if (batch_index is None or batch_index == -1) and bsz > 1:
|
140
|
+
all_key_states = []
|
141
|
+
all_value_states = []
|
142
|
+
all_attn_output = []
|
143
|
+
|
144
|
+
for b in range(bsz):
|
145
|
+
query_state = query_states[b].unsqueeze(0)
|
146
|
+
attn_mask = attention_mask[b].unsqueeze(0)
|
147
|
+
key_state = key_states[b].unsqueeze(0)
|
148
|
+
value_state = value_states[b].unsqueeze(0)
|
149
|
+
|
150
|
+
# reshape for removing repeat_kv (batch=1 , num_head, 1, q_len=1, head_dim)
|
151
|
+
key_state = key_state.unsqueeze(2)
|
152
|
+
value_state = value_state.unsqueeze(2)
|
153
|
+
attn_mask = attn_mask.unsqueeze(2)
|
154
|
+
|
155
|
+
query_state = query_state.view(
|
156
|
+
1,
|
157
|
+
self.num_key_value_heads,
|
158
|
+
self.num_heads // self.num_key_value_heads,
|
159
|
+
q_len,
|
160
|
+
self.head_dim,
|
161
|
+
)
|
162
|
+
|
163
|
+
key_state, value_state = past_key_value.update(
|
164
|
+
key_state,
|
165
|
+
value_state,
|
166
|
+
self.layer_idx,
|
167
|
+
b,
|
168
|
+
)
|
169
|
+
|
170
|
+
# Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
|
171
|
+
attn_weights = torch.matmul(
|
172
|
+
query_state.to(torch.float32),
|
173
|
+
key_state.to(torch.float32).transpose(3, 4),
|
174
|
+
) / math.sqrt(self.head_dim)
|
175
|
+
attn_weights = attn_weights + attn_mask
|
176
|
+
|
177
|
+
# upcast attention to fp32
|
178
|
+
attn_weights = nn.functional.softmax(
|
179
|
+
attn_weights, dim=-1, dtype=torch.float32
|
180
|
+
).to(query_states.dtype)
|
181
|
+
attn_weights = nn.functional.dropout(
|
182
|
+
attn_weights, p=self.attention_dropout, training=self.training
|
183
|
+
)
|
184
|
+
attn_output = torch.matmul(attn_weights, value_state)
|
185
|
+
|
186
|
+
# reshape for removing repeat_kv
|
187
|
+
attn_output = attn_output.view(1, self.num_heads, q_len, self.head_dim)
|
188
|
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
189
|
+
attn_output = attn_output.reshape(
|
190
|
+
1, q_len, self.num_heads * self.head_dim
|
191
|
+
)
|
192
|
+
|
193
|
+
all_key_states.append(key_state)
|
194
|
+
all_value_states.append(value_state)
|
195
|
+
all_attn_output.append(attn_output)
|
196
|
+
|
197
|
+
key_states = torch.cat(all_key_states, dim=0)
|
198
|
+
value_states = torch.cat(all_value_states, dim=0)
|
199
|
+
attn_output = torch.cat(all_attn_output, dim=0)
|
200
|
+
else:
|
201
|
+
if batch_index is None or batch_index == -1:
|
202
|
+
batch_index = 0
|
203
|
+
|
204
|
+
# reshape for removing repeat_kv
|
205
|
+
key_states = key_states.unsqueeze(2)
|
206
|
+
value_states = value_states.unsqueeze(2)
|
207
|
+
attention_mask = attention_mask.unsqueeze(2)
|
208
|
+
query_states = query_states.view(
|
209
|
+
1,
|
210
|
+
self.num_key_value_heads,
|
211
|
+
self.num_heads // self.num_key_value_heads,
|
212
|
+
q_len,
|
213
|
+
self.head_dim,
|
214
|
+
)
|
215
|
+
|
216
|
+
key_states, value_states = past_key_value.update(
|
217
|
+
key_states,
|
218
|
+
value_states,
|
219
|
+
self.layer_idx,
|
220
|
+
batch_index,
|
221
|
+
read_first_step=True,
|
222
|
+
)
|
223
|
+
|
224
|
+
# Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow
|
225
|
+
attn_weights = torch.matmul(
|
226
|
+
query_states.to(torch.float32),
|
227
|
+
key_states.to(torch.float32).transpose(3, 4),
|
228
|
+
) / math.sqrt(self.head_dim)
|
229
|
+
attn_weights = attn_weights + attention_mask
|
230
|
+
|
231
|
+
# upcast attention to fp32
|
232
|
+
attn_weights = torch.nn.functional.softmax(
|
233
|
+
attn_weights, dim=-1, dtype=torch.float32
|
234
|
+
).to(value_states.dtype)
|
235
|
+
attn_weights = torch.nn.functional.dropout(
|
236
|
+
attn_weights, p=self.attention_dropout, training=self.training
|
237
|
+
)
|
238
|
+
attn_output = torch.matmul(attn_weights, value_states)
|
239
|
+
|
240
|
+
# reshape for removing repeat_kv
|
241
|
+
attn_output = attn_output.view(1, self.num_heads, q_len, self.head_dim)
|
242
|
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
243
|
+
attn_output = attn_output.reshape(
|
244
|
+
bsz, q_len, self.num_heads * self.head_dim
|
245
|
+
)
|
246
|
+
|
247
|
+
attn_output = self.dense(attn_output)
|
248
|
+
|
249
|
+
if not output_attentions:
|
250
|
+
attn_weights = None
|
251
|
+
|
252
|
+
return attn_output, attn_weights, key_states, value_states
|
253
|
+
|
254
|
+
|
255
|
+
class PhiDecoderLayer:
|
256
|
+
def forward(
|
257
|
+
self,
|
258
|
+
hidden_states: torch.Tensor,
|
259
|
+
layer_idx: int,
|
260
|
+
attention_mask: Optional[torch.Tensor] = None,
|
261
|
+
position_ids: Optional[torch.LongTensor] = None,
|
262
|
+
past_key_value: Optional[RebelDynamicCache] = None,
|
263
|
+
output_attentions: Optional[bool] = None,
|
264
|
+
use_cache: Optional[bool] = None,
|
265
|
+
batch_ids: Optional[torch.LongTensor] = None,
|
266
|
+
cos: Optional[torch.Tensor] = None,
|
267
|
+
sin: Optional[torch.Tensor] = None,
|
268
|
+
rotary_pos_emb=None,
|
269
|
+
forward_dict: Optional[Dict[str, classmethod]] = None,
|
270
|
+
**kwargs,
|
271
|
+
) -> Tuple[
|
272
|
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
273
|
+
]:
|
274
|
+
"""
|
275
|
+
Args:
|
276
|
+
hidden_states (`torch.FloatTensor`):
|
277
|
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
278
|
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
279
|
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
280
|
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
281
|
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
282
|
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
283
|
+
output_attentions (`bool`, *optional*):
|
284
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
285
|
+
returned tensors for more detail.
|
286
|
+
use_cache (`bool`, *optional*):
|
287
|
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
288
|
+
(see `past_key_values`).
|
289
|
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
290
|
+
"""
|
291
|
+
|
292
|
+
residual = hidden_states
|
293
|
+
|
294
|
+
hidden_states = self.input_layernorm(hidden_states)
|
295
|
+
|
296
|
+
# Self Attention
|
297
|
+
attn_outputs, self_attn_weights, key_states, value_states = forward_dict[
|
298
|
+
"decoder_layer"
|
299
|
+
](
|
300
|
+
self.self_attn,
|
301
|
+
hidden_states=hidden_states,
|
302
|
+
attention_mask=attention_mask,
|
303
|
+
position_ids=position_ids,
|
304
|
+
past_key_value=past_key_value,
|
305
|
+
output_attentions=output_attentions,
|
306
|
+
batch_index=batch_ids,
|
307
|
+
use_cache=use_cache,
|
308
|
+
cos=cos,
|
309
|
+
sin=sin,
|
310
|
+
rotary_pos_emb=rotary_pos_emb,
|
311
|
+
**kwargs,
|
312
|
+
)
|
313
|
+
past_key_value.assign(key_states, value_states, layer_idx)
|
314
|
+
|
315
|
+
attn_outputs = self.resid_dropout(attn_outputs)
|
316
|
+
|
317
|
+
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
318
|
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
319
|
+
outputs = (hidden_states,)
|
320
|
+
|
321
|
+
if output_attentions:
|
322
|
+
outputs += (self_attn_weights,)
|
323
|
+
|
324
|
+
if use_cache:
|
325
|
+
outputs += (past_key_value,)
|
326
|
+
|
327
|
+
return outputs
|
328
|
+
|
329
|
+
|
330
|
+
class PhiModel:
|
331
|
+
def forward(
|
332
|
+
self,
|
333
|
+
input_ids: torch.LongTensor = None,
|
334
|
+
attention_mask: Optional[torch.Tensor] = None,
|
335
|
+
position_ids: Optional[torch.LongTensor] = None,
|
336
|
+
past_key_values: Optional[RebelDynamicCache] = None,
|
337
|
+
batch_ids: Optional[torch.LongTensor] = None,
|
338
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
339
|
+
use_cache: Optional[bool] = True,
|
340
|
+
output_attentions: Optional[bool] = False,
|
341
|
+
output_hidden_states: Optional[bool] = False,
|
342
|
+
forward_dict: Optional[Dict[str, classmethod]] = None,
|
343
|
+
rotary_pos_emb=None,
|
344
|
+
) -> BaseModelOutputWithPast:
|
345
|
+
# retrieve input_ids and inputs_embeds
|
346
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
347
|
+
raise ValueError(
|
348
|
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
349
|
+
)
|
350
|
+
|
351
|
+
# embed positions
|
352
|
+
if inputs_embeds is None:
|
353
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
354
|
+
|
355
|
+
hidden_states = inputs_embeds
|
356
|
+
attention_mask = (1 - attention_mask) * torch.finfo(torch.float16).min
|
357
|
+
|
358
|
+
# get cos,sin vector
|
359
|
+
cos, sin = rotary_pos_emb(inputs_embeds, attention_mask.shape[-1])
|
360
|
+
cos, sin = slice_and_unsqueeze_cos_sin(cos, sin, position_ids)
|
361
|
+
|
362
|
+
# decoder layers
|
363
|
+
all_hidden_states = () if output_hidden_states else None
|
364
|
+
all_self_attns = () if output_attentions else None
|
365
|
+
|
366
|
+
for layer_idx, decoder_layer in enumerate(self.layers):
|
367
|
+
if output_hidden_states:
|
368
|
+
all_hidden_states += (hidden_states,)
|
369
|
+
layer_outputs = forward_dict["model"](
|
370
|
+
decoder_layer,
|
371
|
+
hidden_states,
|
372
|
+
layer_idx,
|
373
|
+
attention_mask=attention_mask,
|
374
|
+
position_ids=position_ids,
|
375
|
+
past_key_value=past_key_values,
|
376
|
+
output_attentions=output_attentions,
|
377
|
+
use_cache=use_cache,
|
378
|
+
batch_ids=batch_ids,
|
379
|
+
cos=cos,
|
380
|
+
sin=sin,
|
381
|
+
rotary_pos_emb=rotary_pos_emb,
|
382
|
+
forward_dict=forward_dict,
|
383
|
+
)
|
384
|
+
|
385
|
+
hidden_states = layer_outputs[0]
|
386
|
+
|
387
|
+
updated_cache = layer_outputs[2 if output_attentions else 1]
|
388
|
+
|
389
|
+
if output_attentions:
|
390
|
+
all_self_attns += (layer_outputs[1],)
|
391
|
+
|
392
|
+
hidden_states = self.final_layernorm(hidden_states)
|
393
|
+
|
394
|
+
# add hidden states from the last decoder layer
|
395
|
+
if output_hidden_states:
|
396
|
+
all_hidden_states += (hidden_states,)
|
397
|
+
|
398
|
+
# convert RebelDynamicCache to legacy Tuple[Tuple[torch.Tensor]]
|
399
|
+
next_cache = updated_cache.to_legacy_cache()
|
400
|
+
|
401
|
+
return BaseModelOutputWithPast(
|
402
|
+
last_hidden_state=hidden_states,
|
403
|
+
past_key_values=next_cache,
|
404
|
+
hidden_states=all_hidden_states,
|
405
|
+
attentions=all_self_attns,
|
406
|
+
)
|