openlit 1.1.3__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,155 @@
1
+ # pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
2
+ """Initializer of Auto Instrumentation of Qdrant Functions"""
3
+ from typing import Collection
4
+ import importlib.metadata
5
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
6
+ from wrapt import wrap_function_wrapper
7
+
8
+ from openlit.instrumentation.qdrant.qdrant import general_wrap
9
+
10
+ _instruments = ("qdrant-client >= 1.9.0",)
11
+
12
+ WRAPPED_METHODS = [
13
+ {
14
+ "package": "qdrant_client",
15
+ "object": "QdrantClient.create_collection",
16
+ "endpoint": "qdrant.create_collection",
17
+ "wrapper": general_wrap,
18
+ },
19
+ {
20
+ "package": "qdrant_client",
21
+ "object": "QdrantClient.delete_collection",
22
+ "endpoint": "qdrant.delete_collection",
23
+ "wrapper": general_wrap,
24
+ },
25
+ {
26
+ "package": "qdrant_client",
27
+ "object": "QdrantClient.update_collection",
28
+ "endpoint": "qdrant.update_collection",
29
+ "wrapper": general_wrap,
30
+ },
31
+ {
32
+ "package": "qdrant_client",
33
+ "object": "QdrantClient.upload_collection",
34
+ "endpoint": "qdrant.upload_collection",
35
+ "wrapper": general_wrap,
36
+ },
37
+ {
38
+ "package": "qdrant_client",
39
+ "object": "QdrantClient.upsert",
40
+ "endpoint": "qdrant.upsert",
41
+ "wrapper": general_wrap,
42
+ },
43
+ {
44
+ "package": "qdrant_client",
45
+ "object": "QdrantClient.set_payload",
46
+ "endpoint": "qdrant.set_payload",
47
+ "wrapper": general_wrap,
48
+ },
49
+ {
50
+ "package": "qdrant_client",
51
+ "object": "QdrantClient.overwrite_payload",
52
+ "endpoint": "qdrant.overwrite_payload",
53
+ "wrapper": general_wrap,
54
+ },
55
+ {
56
+ "package": "qdrant_client",
57
+ "object": "QdrantClient.clear_payload",
58
+ "endpoint": "qdrant.clear_payload",
59
+ "wrapper": general_wrap,
60
+ },
61
+ {
62
+ "package": "qdrant_client",
63
+ "object": "QdrantClient.delete_payload",
64
+ "endpoint": "qdrant.delete_payload",
65
+ "wrapper": general_wrap,
66
+ },
67
+ {
68
+ "package": "qdrant_client",
69
+ "object": "QdrantClient.upload_points",
70
+ "endpoint": "qdrant.upload_points",
71
+ "wrapper": general_wrap,
72
+ },
73
+ {
74
+ "package": "qdrant_client",
75
+ "object": "QdrantClient.update_vectors",
76
+ "endpoint": "qdrant.update_vectors",
77
+ "wrapper": general_wrap,
78
+ },
79
+ {
80
+ "package": "qdrant_client",
81
+ "object": "QdrantClient.delete_vectors",
82
+ "endpoint": "qdrant.delete_vectors",
83
+ "wrapper": general_wrap,
84
+ },
85
+ {
86
+ "package": "qdrant_client",
87
+ "object": "QdrantClient.delete",
88
+ "endpoint": "qdrant.delete",
89
+ "wrapper": general_wrap,
90
+ },
91
+ {
92
+ "package": "qdrant_client",
93
+ "object": "QdrantClient.retrieve",
94
+ "endpoint": "qdrant.retrieve",
95
+ "wrapper": general_wrap,
96
+ },
97
+ {
98
+ "package": "qdrant_client",
99
+ "object": "QdrantClient.scroll",
100
+ "endpoint": "qdrant.scroll",
101
+ "wrapper": general_wrap,
102
+ },
103
+ {
104
+ "package": "qdrant_client",
105
+ "object": "QdrantClient.search",
106
+ "endpoint": "qdrant.search",
107
+ "wrapper": general_wrap,
108
+ },
109
+ {
110
+ "package": "qdrant_client",
111
+ "object": "QdrantClient.search_groups",
112
+ "endpoint": "qdrant.search_groups",
113
+ "wrapper": general_wrap,
114
+ },
115
+ {
116
+
117
+ "package": "qdrant_client",
118
+ "object": "QdrantClient.recommend",
119
+ "endpoint": "qdrant.recommend",
120
+ "wrapper": general_wrap,
121
+ }
122
+ ]
123
+
124
+ class QdrantInstrumentor(BaseInstrumentor):
125
+ """An instrumentor for Qdrant's client library."""
126
+
127
+ def instrumentation_dependencies(self) -> Collection[str]:
128
+ return _instruments
129
+
130
+ def _instrument(self, **kwargs):
131
+ application_name = kwargs.get("application_name")
132
+ environment = kwargs.get("environment")
133
+ tracer = kwargs.get("tracer")
134
+ metrics = kwargs.get("metrics_dict")
135
+ pricing_info = kwargs.get("pricing_info")
136
+ trace_content = kwargs.get("trace_content")
137
+ disable_metrics = kwargs.get("disable_metrics")
138
+ version = importlib.metadata.version("qdrant-client")
139
+
140
+ for wrapped_method in WRAPPED_METHODS:
141
+ wrap_package = wrapped_method.get("package")
142
+ wrap_object = wrapped_method.get("object")
143
+ gen_ai_endpoint = wrapped_method.get("endpoint")
144
+ wrapper = wrapped_method.get("wrapper")
145
+ wrap_function_wrapper(
146
+ wrap_package,
147
+ wrap_object,
148
+ wrapper(gen_ai_endpoint, version, environment, application_name,
149
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
150
+ )
151
+
152
+
153
+ @staticmethod
154
+ def _uninstrument(self, **kwargs):
155
+ pass
@@ -0,0 +1,258 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment, too-many-branches
2
+ """
3
+ Module for monitoring Qdrant.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import handle_exception
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def object_count(obj):
16
+ """
17
+ Counts Length of object if it exists, Else returns None
18
+ """
19
+ try:
20
+ cnt = len(obj)
21
+ # pylint: disable=bare-except
22
+ except:
23
+ cnt = 0
24
+
25
+ return cnt
26
+
27
+ def general_wrap(gen_ai_endpoint, version, environment, application_name,
28
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
29
+ """
30
+ Creates a wrapper around a function call to trace and log its execution metrics.
31
+
32
+ This function wraps any given function to measure its execution time,
33
+ log its operation, and trace its execution using OpenTelemetry.
34
+
35
+ Parameters:
36
+ - gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
37
+ - version (str): The version of the Langchain application.
38
+ - environment (str): The deployment environment (e.g., 'production', 'development').
39
+ - application_name (str): Name of the Langchain application.
40
+ - tracer (opentelemetry.trace.Tracer): The tracer object used for OpenTelemetry tracing.
41
+ - pricing_info (dict): Information about the pricing for internal metrics (currently not used).
42
+ - trace_content (bool): Flag indicating whether to trace the content of the response.
43
+
44
+ Returns:
45
+ - function: A higher-order function that takes a function 'wrapped' and returns
46
+ a new function that wraps 'wrapped' with additional tracing and logging.
47
+ """
48
+
49
+ def wrapper(wrapped, instance, args, kwargs):
50
+ """
51
+ An inner wrapper function that executes the wrapped function, measures execution
52
+ time, and records trace data using OpenTelemetry.
53
+
54
+ Parameters:
55
+ - wrapped (Callable): The original function that this wrapper will execute.
56
+ - instance (object): The instance to which the wrapped function belongs. This
57
+ is used for instance methods. For static and classmethods,
58
+ this may be None.
59
+ - args (tuple): Positional arguments passed to the wrapped function.
60
+ - kwargs (dict): Keyword arguments passed to the wrapped function.
61
+
62
+ Returns:
63
+ - The result of the wrapped function call.
64
+
65
+ The wrapper initiates a span with the provided tracer, sets various attributes
66
+ on the span based on the function's execution and response, and ensures
67
+ errors are handled and logged appropriately.
68
+ """
69
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
70
+ response = wrapped(*args, **kwargs)
71
+
72
+ try:
73
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
74
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
75
+ gen_ai_endpoint)
76
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
77
+ environment)
78
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
79
+ application_name)
80
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
81
+ SemanticConvetion.GEN_AI_TYPE_VECTORDB)
82
+ span.set_attribute(SemanticConvetion.DB_SYSTEM,
83
+ SemanticConvetion.DB_SYSTEM_QDRANT)
84
+
85
+ if gen_ai_endpoint == "qdrant.create_collection":
86
+ db_operation = SemanticConvetion.DB_OPERATION_CREATE_COLLECTION
87
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
88
+ SemanticConvetion.DB_OPERATION_CREATE_COLLECTION)
89
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
90
+ kwargs.get("collection_name", ""))
91
+
92
+ elif gen_ai_endpoint == "qdrant.upload_collection":
93
+ db_operation = SemanticConvetion.DB_OPERATION_CREATE_COLLECTION
94
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
95
+ SemanticConvetion.DB_OPERATION_CREATE_COLLECTION)
96
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
97
+ kwargs.get("collection_name", ""))
98
+
99
+ elif gen_ai_endpoint == "qdrant.delete_collection":
100
+ db_operation = SemanticConvetion.DB_OPERATION_DELETE_COLLECTION
101
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
102
+ SemanticConvetion.DB_OPERATION_DELETE_COLLECTION)
103
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
104
+ kwargs.get("collection_name", ""))
105
+
106
+ elif gen_ai_endpoint == "qdrant.update_collection":
107
+ db_operation = SemanticConvetion.DB_OPERATION_UPDATE_COLLECTION
108
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
109
+ SemanticConvetion.DB_OPERATION_UPDATE_COLLECTION)
110
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
111
+ kwargs.get("collection_name", ""))
112
+
113
+ elif gen_ai_endpoint == "qdrant.set_payload":
114
+ db_operation = SemanticConvetion.DB_OPERATION_ADD
115
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
116
+ SemanticConvetion.DB_OPERATION_ADD)
117
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
118
+ kwargs.get("collection_name", ""))
119
+ span.set_attribute(SemanticConvetion.DB_OPERATION_STATUS,
120
+ response.status)
121
+ span.set_attribute(SemanticConvetion.DB_VECTOR_COUNT,
122
+ object_count(kwargs.get("points")))
123
+ span.set_attribute(SemanticConvetion.DB_PAYLOAD_COUNT,
124
+ object_count(kwargs.get("payload")))
125
+
126
+ elif gen_ai_endpoint == "qdrant.retrieve":
127
+ db_operation = SemanticConvetion.DB_OPERATION_QUERY
128
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
129
+ SemanticConvetion.DB_OPERATION_QUERY)
130
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
131
+ kwargs.get("collection_name", ""))
132
+ span.set_attribute(SemanticConvetion.DB_STATEMENT,
133
+ str(kwargs.get("ids")))
134
+
135
+ elif gen_ai_endpoint == "qdrant.scroll":
136
+ db_operation = SemanticConvetion.DB_OPERATION_QUERY
137
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
138
+ SemanticConvetion.DB_OPERATION_QUERY)
139
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
140
+ kwargs.get("collection_name", ""))
141
+ span.set_attribute(SemanticConvetion.DB_STATEMENT,
142
+ str(kwargs.get("scroll_filter")))
143
+
144
+ elif gen_ai_endpoint in ["qdrant.search", "qdrant.search_groups"]:
145
+ db_operation = SemanticConvetion.DB_OPERATION_QUERY
146
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
147
+ SemanticConvetion.DB_OPERATION_QUERY)
148
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
149
+ kwargs.get("collection_name", ""))
150
+ span.set_attribute(SemanticConvetion.DB_STATEMENT,
151
+ str(kwargs.get("query_vector")))
152
+
153
+ elif gen_ai_endpoint == "qdrant.recommend":
154
+ db_operation = SemanticConvetion.DB_OPERATION_QUERY
155
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
156
+ SemanticConvetion.DB_OPERATION_QUERY)
157
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
158
+ kwargs.get("collection_name", ""))
159
+ span.set_attribute(SemanticConvetion.DB_STATEMENT,
160
+ "positive:" + str(kwargs.get("positive", "")) +
161
+ " negative:" + str(kwargs.get("negative", "")))
162
+
163
+ elif gen_ai_endpoint == "qdrant.upload_points":
164
+ db_operation = SemanticConvetion.DB_OPERATION_ADD
165
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
166
+ SemanticConvetion.DB_OPERATION_ADD)
167
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
168
+ kwargs.get("collection_name", ""))
169
+ span.set_attribute(SemanticConvetion.DB_VECTOR_COUNT,
170
+ object_count(kwargs.get("points")))
171
+
172
+ elif gen_ai_endpoint == "qdrant.update_vectors":
173
+ db_operation = SemanticConvetion.DB_OPERATION_UPDATE
174
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
175
+ SemanticConvetion.DB_OPERATION_UPDATE)
176
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
177
+ kwargs.get("collection_name", ""))
178
+ span.set_attribute(SemanticConvetion.DB_OPERATION_STATUS,
179
+ response.status)
180
+ span.set_attribute(SemanticConvetion.DB_VECTOR_COUNT,
181
+ object_count(kwargs.get("points")))
182
+
183
+ elif gen_ai_endpoint == "qdrant.overwrite_payload":
184
+ db_operation = SemanticConvetion.DB_OPERATION_UPDATE
185
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
186
+ SemanticConvetion.DB_OPERATION_UPDATE)
187
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
188
+ kwargs.get("collection_name", ""))
189
+ span.set_attribute(SemanticConvetion.DB_OPERATION_STATUS,
190
+ response.status)
191
+ span.set_attribute(SemanticConvetion.DB_VECTOR_COUNT,
192
+ object_count(kwargs.get("points")))
193
+ span.set_attribute(SemanticConvetion.DB_PAYLOAD_COUNT,
194
+ object_count(kwargs.get("payload")))
195
+
196
+ elif gen_ai_endpoint == "qdrant.upsert":
197
+ db_operation = SemanticConvetion.DB_OPERATION_UPSERT
198
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
199
+ kwargs.get("collection_name", ""))
200
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
201
+ SemanticConvetion.DB_OPERATION_UPSERT)
202
+ span.set_attribute(SemanticConvetion.DB_OPERATION_STATUS,
203
+ response.status)
204
+ span.set_attribute(SemanticConvetion.DB_VECTOR_COUNT,
205
+ object_count(kwargs.get("points")))
206
+
207
+ elif gen_ai_endpoint in ["qdrant.delete_payload", "qdrant.delete_vectors"]:
208
+ db_operation = SemanticConvetion.DB_OPERATION_DELETE
209
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
210
+ SemanticConvetion.DB_OPERATION_DELETE)
211
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
212
+ kwargs.get("collection_name", ""))
213
+ span.set_attribute(SemanticConvetion.DB_OPERATION_STATUS,
214
+ response.status)
215
+ span.set_attribute(SemanticConvetion.DB_VECTOR_COUNT,
216
+ object_count(kwargs.get("points")))
217
+
218
+ elif gen_ai_endpoint in ["qdrant.clear_payload", "qdrant.delete"]:
219
+ db_operation = SemanticConvetion.DB_OPERATION_DELETE
220
+ span.set_attribute(SemanticConvetion.DB_OPERATION,
221
+ SemanticConvetion.DB_OPERATION_DELETE)
222
+ span.set_attribute(SemanticConvetion.DB_COLLECTION_NAME,
223
+ kwargs.get("collection_name", ""))
224
+ span.set_attribute(SemanticConvetion.DB_OPERATION_STATUS,
225
+ response.status)
226
+ span.set_attribute(SemanticConvetion.DB_VECTOR_COUNT,
227
+ object_count(kwargs.get("points_selector")))
228
+
229
+ span.set_status(Status(StatusCode.OK))
230
+
231
+ if disable_metrics is False:
232
+ attributes = {
233
+ TELEMETRY_SDK_NAME:
234
+ "openlit",
235
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
236
+ application_name,
237
+ SemanticConvetion.DB_SYSTEM:
238
+ SemanticConvetion.DB_SYSTEM_QDRANT,
239
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
240
+ environment,
241
+ SemanticConvetion.GEN_AI_TYPE:
242
+ SemanticConvetion.GEN_AI_TYPE_VECTORDB,
243
+ SemanticConvetion.DB_OPERATION:
244
+ db_operation
245
+ }
246
+
247
+ metrics["db_requests"].add(1, attributes)
248
+
249
+ return response
250
+
251
+ except Exception as e:
252
+ handle_exception(span, e)
253
+ logger.error("Error in trace creation: %s", e)
254
+
255
+ # Return original response
256
+ return response
257
+
258
+ return wrapper
@@ -0,0 +1,147 @@
1
+ # pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
2
+ """Initializer of Auto Instrumentation of VertexAI Functions"""
3
+
4
+ from typing import Collection
5
+ import importlib.metadata
6
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
7
+ from wrapt import wrap_function_wrapper
8
+
9
+ from openlit.instrumentation.vertexai.vertexai import (
10
+ generate_content, predict, predict_streaming,
11
+ send_message, start_chat, start_chat_streaming,
12
+ embeddings
13
+ )
14
+ from openlit.instrumentation.vertexai.async_vertexai import (
15
+ generate_content_async, predict_async,
16
+ predict_streaming_async,
17
+ send_message_async,
18
+ start_chat_async, start_chat_streaming_async,
19
+ embeddings_async
20
+ )
21
+
22
+
23
+ _instruments = ("google-cloud-aiplatform >= 1.38.1",)
24
+
25
+ class VertexAIInstrumentor(BaseInstrumentor):
26
+ """
27
+ An instrumentor for VertexAI's client library.
28
+ """
29
+
30
+ def instrumentation_dependencies(self) -> Collection[str]:
31
+ return _instruments
32
+
33
+ def _instrument(self, **kwargs):
34
+ application_name = kwargs.get("application_name", "default")
35
+ environment = kwargs.get("environment", "default")
36
+ tracer = kwargs.get("tracer")
37
+ metrics = kwargs.get("metrics_dict")
38
+ pricing_info = kwargs.get("pricing_info", {})
39
+ trace_content = kwargs.get("trace_content", False)
40
+ disable_metrics = kwargs.get("disable_metrics")
41
+ version = importlib.metadata.version("google-cloud-aiplatform")
42
+
43
+ #sync
44
+ wrap_function_wrapper(
45
+ "vertexai.generative_models",
46
+ "GenerativeModel.generate_content",
47
+ generate_content("vertexai.generate_content", version, environment, application_name,
48
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
49
+ )
50
+
51
+ wrap_function_wrapper(
52
+ "vertexai.generative_models",
53
+ "ChatSession.send_message",
54
+ send_message("vertexai.send_message", version, environment, application_name,
55
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
56
+ )
57
+
58
+ wrap_function_wrapper(
59
+ "vertexai.language_models",
60
+ "TextGenerationModel.predict",
61
+ predict("vertexai.predict", version, environment, application_name,
62
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
63
+ )
64
+
65
+ wrap_function_wrapper(
66
+ "vertexai.language_models",
67
+ "TextGenerationModel.predict_streaming",
68
+ predict_streaming("vertexai.predict", version, environment, application_name,
69
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
70
+ )
71
+
72
+ wrap_function_wrapper(
73
+ "vertexai.language_models",
74
+ "ChatSession.send_message",
75
+ start_chat("vertexai.send_message", version, environment, application_name,
76
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
77
+ )
78
+
79
+ wrap_function_wrapper(
80
+ "vertexai.language_models",
81
+ "ChatSession.send_message_streaming",
82
+ start_chat_streaming("vertexai.send_message", version, environment, application_name,
83
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
84
+ )
85
+
86
+ wrap_function_wrapper(
87
+ "vertexai.language_models",
88
+ "TextEmbeddingModel.get_embeddings",
89
+ embeddings("vertexai.get_embeddings", version, environment, application_name,
90
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
91
+ )
92
+
93
+ #async
94
+ wrap_function_wrapper(
95
+ "vertexai.generative_models",
96
+ "GenerativeModel.generate_content_async",
97
+ generate_content_async("vertexai.generate_content", version, environment,
98
+ application_name, tracer, pricing_info, trace_content,
99
+ metrics, disable_metrics),
100
+ )
101
+
102
+ wrap_function_wrapper(
103
+ "vertexai.generative_models",
104
+ "ChatSession.send_message_async",
105
+ send_message_async("vertexai.send_message", version, environment, application_name,
106
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
107
+ )
108
+
109
+ wrap_function_wrapper(
110
+ "vertexai.language_models",
111
+ "TextGenerationModel.predict_async",
112
+ predict_async("vertexai.predict", version, environment, application_name,
113
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
114
+ )
115
+
116
+ wrap_function_wrapper(
117
+ "vertexai.language_models",
118
+ "TextGenerationModel.predict_streaming_async",
119
+ predict_streaming_async("vertexai.predict", version, environment, application_name,
120
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
121
+ )
122
+
123
+ wrap_function_wrapper(
124
+ "vertexai.language_models",
125
+ "ChatSession.send_message_async",
126
+ start_chat_async("vertexai.send_message", version, environment, application_name,
127
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
128
+ )
129
+
130
+ wrap_function_wrapper(
131
+ "vertexai.language_models",
132
+ "ChatSession.send_message_streaming_async",
133
+ start_chat_streaming_async("vertexai.send_message", version, environment,
134
+ application_name, tracer, pricing_info, trace_content,
135
+ metrics, disable_metrics),
136
+ )
137
+
138
+ wrap_function_wrapper(
139
+ "vertexai.language_models",
140
+ "TextEmbeddingModel.get_embeddings_async",
141
+ embeddings_async("vertexai.get_embeddings", version, environment, application_name,
142
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
143
+ )
144
+
145
+ def _uninstrument(self, **kwargs):
146
+ # Proper uninstrumentation logic to revert patched methods
147
+ pass