openlit 1.1.3__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,331 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, used-before-assignment, too-many-branches
2
+ """
3
+ Module for monitoring Groq API calls.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import get_chat_model_cost, handle_exception
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def chat(gen_ai_endpoint, version, environment, application_name,
16
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
17
+ """
18
+ Generates a telemetry wrapper for chat completions to collect metrics.
19
+
20
+ Args:
21
+ gen_ai_endpoint: Endpoint identifier for logging and tracing.
22
+ version: Version of the monitoring package.
23
+ environment: Deployment environment (e.g., production, staging).
24
+ application_name: Name of the application using the Groq API.
25
+ tracer: OpenTelemetry tracer for creating spans.
26
+ pricing_info: Information used for calculating the cost of Groq usage.
27
+ trace_content: Flag indicating whether to trace the actual content.
28
+
29
+ Returns:
30
+ A function that wraps the chat completions method to add telemetry.
31
+ """
32
+
33
+ def wrapper(wrapped, instance, args, kwargs):
34
+ """
35
+ Wraps the 'chat.completions' API call to add telemetry.
36
+
37
+ This collects metrics such as execution time, cost, and token usage, and handles errors
38
+ gracefully, adding details to the trace for observability.
39
+
40
+ Args:
41
+ wrapped: The original 'chat.completions' method to be wrapped.
42
+ instance: The instance of the class where the original method is defined.
43
+ args: Positional arguments for the 'chat.completions' method.
44
+ kwargs: Keyword arguments for the 'chat.completions' method.
45
+
46
+ Returns:
47
+ The response from the original 'chat.completions' method.
48
+ """
49
+
50
+ # Check if streaming is enabled for the API call
51
+ streaming = kwargs.get("stream", False)
52
+
53
+ # pylint: disable=no-else-return
54
+ if streaming:
55
+ # Special handling for streaming response to accommodate the nature of data flow
56
+ def stream_generator():
57
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
58
+ # Placeholder for aggregating streaming response
59
+ llmresponse = ""
60
+
61
+ # Loop through streaming events capturing relevant details
62
+ for chunk in wrapped(*args, **kwargs):
63
+ # Collect message IDs and aggregated response from events
64
+ if len(chunk.choices) > 0:
65
+ # pylint: disable=line-too-long
66
+ if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
67
+ content = chunk.choices[0].delta.content
68
+ if content:
69
+ llmresponse += content
70
+ if chunk.x_groq is not None and chunk.x_groq.usage is not None:
71
+ prompt_tokens = chunk.x_groq.usage.prompt_tokens
72
+ completion_tokens = chunk.x_groq.usage.completion_tokens
73
+ total_tokens = chunk.x_groq.usage.total_tokens
74
+ response_id = chunk.x_groq.id
75
+ yield chunk
76
+
77
+ # Handling exception ensure observability without disrupting operation
78
+ try:
79
+ # Format 'messages' into a single string
80
+ message_prompt = kwargs.get("messages", "")
81
+ formatted_messages = []
82
+ for message in message_prompt:
83
+ role = message["role"]
84
+ content = message["content"]
85
+
86
+ if isinstance(content, list):
87
+ content_str = ", ".join(
88
+ # pylint: disable=line-too-long
89
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
90
+ if "type" in item else f'text: {item["text"]}'
91
+ for item in content
92
+ )
93
+ formatted_messages.append(f"{role}: {content_str}")
94
+ else:
95
+ formatted_messages.append(f"{role}: {content}")
96
+ prompt = "\n".join(formatted_messages)
97
+
98
+ # Calculate cost of the operation
99
+ cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
100
+ pricing_info, prompt_tokens,
101
+ completion_tokens)
102
+
103
+ # Set Span attributes
104
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
105
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
106
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ)
107
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
108
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
109
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
110
+ gen_ai_endpoint)
111
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
112
+ response_id)
113
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
114
+ environment)
115
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
116
+ application_name)
117
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
118
+ kwargs.get("model", "gpt-3.5-turbo"))
119
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
120
+ kwargs.get("user", ""))
121
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
122
+ kwargs.get("top_p", 1))
123
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
124
+ kwargs.get("max_tokens", ""))
125
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
126
+ kwargs.get("temperature", 1))
127
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
128
+ kwargs.get("presence_penalty", 0))
129
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
130
+ kwargs.get("frequency_penalty", 0))
131
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
132
+ kwargs.get("seed", ""))
133
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
134
+ True)
135
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
136
+ prompt_tokens)
137
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
138
+ completion_tokens)
139
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
140
+ prompt_tokens + completion_tokens)
141
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
142
+ cost)
143
+ if trace_content:
144
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
145
+ prompt)
146
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
147
+ llmresponse)
148
+
149
+ span.set_status(Status(StatusCode.OK))
150
+
151
+ if disable_metrics is False:
152
+ attributes = {
153
+ TELEMETRY_SDK_NAME:
154
+ "openlit",
155
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
156
+ application_name,
157
+ SemanticConvetion.GEN_AI_SYSTEM:
158
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ,
159
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
160
+ environment,
161
+ SemanticConvetion.GEN_AI_TYPE:
162
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
163
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
164
+ kwargs.get("model", "gpt-3.5-turbo")
165
+ }
166
+
167
+ metrics["genai_requests"].add(1, attributes)
168
+ metrics["genai_total_tokens"].add(
169
+ total_tokens, attributes
170
+ )
171
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
172
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
173
+ metrics["genai_cost"].record(cost, attributes)
174
+
175
+ except Exception as e:
176
+ handle_exception(span, e)
177
+ logger.error("Error in trace creation: %s", e)
178
+
179
+ return stream_generator()
180
+
181
+ # Handling for non-streaming responses
182
+ else:
183
+ # pylint: disable=line-too-long
184
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
185
+ response = wrapped(*args, **kwargs)
186
+
187
+ try:
188
+ # Format 'messages' into a single string
189
+ message_prompt = kwargs.get("messages", "")
190
+ formatted_messages = []
191
+ for message in message_prompt:
192
+ role = message["role"]
193
+ content = message["content"]
194
+
195
+ if isinstance(content, list):
196
+ content_str = ", ".join(
197
+ # pylint: disable=line-too-long
198
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
199
+ if "type" in item else f'text: {item["text"]}'
200
+ for item in content
201
+ )
202
+ formatted_messages.append(f"{role}: {content_str}")
203
+ else:
204
+ formatted_messages.append(f"{role}: {content}")
205
+ prompt = "\n".join(formatted_messages)
206
+
207
+ # Set base span attribues
208
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
209
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
210
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ)
211
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
212
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
213
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
214
+ gen_ai_endpoint)
215
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
216
+ response.x_groq["id"])
217
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
218
+ environment)
219
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
220
+ application_name)
221
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
222
+ kwargs.get("model", "llama3-8b-8192"))
223
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
224
+ kwargs.get("top_p", 1))
225
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
226
+ kwargs.get("max_tokens", ""))
227
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
228
+ kwargs.get("name", ""))
229
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
230
+ kwargs.get("temperature", 1))
231
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
232
+ kwargs.get("presence_penalty", 0))
233
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
234
+ kwargs.get("frequency_penalty", 0))
235
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
236
+ kwargs.get("seed", ""))
237
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
238
+ False)
239
+ if trace_content:
240
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
241
+ prompt)
242
+
243
+ # Set span attributes when tools is not passed to the function call
244
+ if "tools" not in kwargs:
245
+ # Calculate cost of the operation
246
+ cost = get_chat_model_cost(kwargs.get("model", "llama3-8b-8192"),
247
+ pricing_info, response.usage.prompt_tokens,
248
+ response.usage.completion_tokens)
249
+
250
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
251
+ response.usage.prompt_tokens)
252
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
253
+ response.usage.completion_tokens)
254
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
255
+ response.usage.total_tokens)
256
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
257
+ response.choices[0].finish_reason)
258
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
259
+ cost)
260
+
261
+ # Set span attributes for when n = 1 (default)
262
+ if "n" not in kwargs or kwargs["n"] == 1:
263
+ if trace_content:
264
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
265
+ response.choices[0].message.content)
266
+
267
+ # Set span attributes for when n > 0
268
+ else:
269
+ i = 0
270
+ while i < kwargs["n"] and trace_content is True:
271
+ attribute_name = f"gen_ai.content.completion.{i}"
272
+ span.set_attribute(attribute_name,
273
+ response.choices[i].message.content)
274
+ i += 1
275
+
276
+ # Return original response
277
+ return response
278
+
279
+ # Set span attributes when tools is passed to the function call
280
+ elif "tools" in kwargs:
281
+ # Calculate cost of the operation
282
+ cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
283
+ pricing_info, response.usage.prompt_tokens,
284
+ response.usage.completion_tokens)
285
+
286
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
287
+ "Function called with tools")
288
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
289
+ response.usage.prompt_tokens)
290
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
291
+ response.usage.completion_tokens)
292
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
293
+ response.usage.total_tokens)
294
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
295
+ cost)
296
+
297
+ span.set_status(Status(StatusCode.OK))
298
+
299
+ if disable_metrics is False:
300
+ attributes = {
301
+ TELEMETRY_SDK_NAME:
302
+ "openlit",
303
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
304
+ application_name,
305
+ SemanticConvetion.GEN_AI_SYSTEM:
306
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ,
307
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
308
+ environment,
309
+ SemanticConvetion.GEN_AI_TYPE:
310
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
311
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
312
+ kwargs.get("model", "gpt-3.5-turbo")
313
+ }
314
+
315
+ metrics["genai_requests"].add(1, attributes)
316
+ metrics["genai_total_tokens"].add(response.usage.total_tokens, attributes)
317
+ metrics["genai_completion_tokens"].add(response.usage.completion_tokens, attributes)
318
+ metrics["genai_prompt_tokens"].add(response.usage.prompt_tokens, attributes)
319
+ metrics["genai_cost"].record(cost, attributes)
320
+
321
+ # Return original response
322
+ return response
323
+
324
+ except Exception as e:
325
+ handle_exception(span, e)
326
+ logger.error("Error in trace creation: %s", e)
327
+
328
+ # Return original response
329
+ return response
330
+
331
+ return wrapper
@@ -0,0 +1,49 @@
1
+ # pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
2
+ """Initializer of Auto Instrumentation of Haystack Functions"""
3
+ from typing import Collection
4
+ import importlib.metadata
5
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
6
+ from wrapt import wrap_function_wrapper
7
+
8
+ from openlit.instrumentation.haystack.haystack import join_data
9
+
10
+ _instruments = ("haystack-ai >= 2.0.0",)
11
+
12
+ WRAPPED_METHODS = [
13
+ {
14
+ "package": "haystack.components.joiners.document_joiner",
15
+ "object": "DocumentJoiner",
16
+ "endpoint": "haystack.join_data",
17
+ "wrapper": join_data,
18
+ }
19
+ ]
20
+
21
+ class HaystackInstrumentor(BaseInstrumentor):
22
+ """An instrumentor for Cohere's client library."""
23
+
24
+ def instrumentation_dependencies(self) -> Collection[str]:
25
+ return _instruments
26
+
27
+ def _instrument(self, **kwargs):
28
+ application_name = kwargs.get("application_name")
29
+ environment = kwargs.get("environment")
30
+ tracer = kwargs.get("tracer")
31
+ pricing_info = kwargs.get("pricing_info")
32
+ trace_content = kwargs.get("trace_content")
33
+ version = importlib.metadata.version("haystack-ai")
34
+
35
+ for wrapped_method in WRAPPED_METHODS:
36
+ wrap_package = wrapped_method.get("package")
37
+ wrap_object = wrapped_method.get("object")
38
+ gen_ai_endpoint = wrapped_method.get("endpoint")
39
+ wrapper = wrapped_method.get("wrapper")
40
+ wrap_function_wrapper(
41
+ wrap_package,
42
+ wrap_object,
43
+ wrapper(gen_ai_endpoint, version, environment, application_name,
44
+ tracer, pricing_info, trace_content),
45
+ )
46
+
47
+ @staticmethod
48
+ def _uninstrument(self, **kwargs):
49
+ pass
@@ -0,0 +1,84 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
2
+ """
3
+ Module for monitoring Haystack applications.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import handle_exception
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def join_data(gen_ai_endpoint, version, environment, application_name,
16
+ tracer, pricing_info, trace_content):
17
+ """
18
+ Creates a wrapper around a function call to trace and log its execution metrics.
19
+
20
+ This function wraps any given function to measure its execution time,
21
+ log its operation, and trace its execution using OpenTelemetry.
22
+
23
+ Parameters:
24
+ - gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
25
+ - version (str): The version of the Haystack application.
26
+ - environment (str): The deployment environment (e.g., 'production', 'development').
27
+ - application_name (str): Name of the Haystack application.
28
+ - tracer (opentelemetry.trace.Tracer): The tracer object used for OpenTelemetry tracing.
29
+ - pricing_info (dict): Information about the pricing for internal metrics (currently not used).
30
+ - trace_content (bool): Flag indicating whether to trace the content of the response.
31
+
32
+ Returns:
33
+ - function: A higher-order function that takes a function 'wrapped' and returns
34
+ a new function that wraps 'wrapped' with additional tracing and logging.
35
+ """
36
+
37
+ def wrapper(wrapped, instance, args, kwargs):
38
+ """
39
+ An inner wrapper function that executes the wrapped function, measures execution
40
+ time, and records trace data using OpenTelemetry.
41
+
42
+ Parameters:
43
+ - wrapped (Callable): The original function that this wrapper will execute.
44
+ - instance (object): The instance to which the wrapped function belongs. This
45
+ is used for instance methods. For static and classmethods,
46
+ this may be None.
47
+ - args (tuple): Positional arguments passed to the wrapped function.
48
+ - kwargs (dict): Keyword arguments passed to the wrapped function.
49
+
50
+ Returns:
51
+ - The result of the wrapped function call.
52
+
53
+ The wrapper initiates a span with the provided tracer, sets various attributes
54
+ on the span based on the function's execution and response, and ensures
55
+ errors are handled and logged appropriately.
56
+ """
57
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
58
+ response = wrapped(*args, **kwargs)
59
+
60
+ try:
61
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
62
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
63
+ SemanticConvetion.GEN_AI_SYSTEM_HAYSTACK)
64
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
65
+ gen_ai_endpoint)
66
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
67
+ environment)
68
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
69
+ SemanticConvetion.GEN_AI_TYPE_FRAMEWORK)
70
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
71
+ application_name)
72
+ span.set_status(Status(StatusCode.OK))
73
+
74
+ # Return original response
75
+ return response
76
+
77
+ except Exception as e:
78
+ handle_exception(span, e)
79
+ logger.error("Error in trace creation: %s", e)
80
+
81
+ # Return original response
82
+ return response
83
+
84
+ return wrapper
@@ -60,7 +60,7 @@ def general_wrap(gen_ai_endpoint, version, environment, application_name,
60
60
  try:
61
61
  span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
62
62
  span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
63
- "langchain")
63
+ SemanticConvetion.GEN_AI_SYSTEM_LANGCHAIN)
64
64
  span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
65
65
  gen_ai_endpoint)
66
66
  span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
@@ -0,0 +1,55 @@
1
+ # pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
2
+ """Initializer of Auto Instrumentation of LlamaIndex Functions"""
3
+ from typing import Collection
4
+ import importlib.metadata
5
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
6
+ from wrapt import wrap_function_wrapper
7
+
8
+ from openlit.instrumentation.llamaindex.llamaindex import load_data
9
+
10
+ _instruments = ("llama-index >= 0.10.0",)
11
+
12
+ WRAPPED_METHODS = [
13
+ {
14
+ "package": "llama_index.core.readers",
15
+ "object": "SimpleDirectoryReader.load_data",
16
+ "endpoint": "llamaindex.load_data",
17
+ "wrapper": load_data,
18
+ },
19
+ {
20
+ "package": "llama_index.core.node_parser",
21
+ "object": "SentenceSplitter.get_nodes_from_documents",
22
+ "endpoint": "llamaindex.data_splitter",
23
+ "wrapper": load_data,
24
+ },
25
+ ]
26
+
27
+ class LlamaIndexInstrumentor(BaseInstrumentor):
28
+ """An instrumentor for Cohere's client library."""
29
+
30
+ def instrumentation_dependencies(self) -> Collection[str]:
31
+ return _instruments
32
+
33
+ def _instrument(self, **kwargs):
34
+ application_name = kwargs.get("application_name")
35
+ environment = kwargs.get("environment")
36
+ tracer = kwargs.get("tracer")
37
+ pricing_info = kwargs.get("pricing_info")
38
+ trace_content = kwargs.get("trace_content")
39
+ version = importlib.metadata.version("llama-index")
40
+
41
+ for wrapped_method in WRAPPED_METHODS:
42
+ wrap_package = wrapped_method.get("package")
43
+ wrap_object = wrapped_method.get("object")
44
+ gen_ai_endpoint = wrapped_method.get("endpoint")
45
+ wrapper = wrapped_method.get("wrapper")
46
+ wrap_function_wrapper(
47
+ wrap_package,
48
+ wrap_object,
49
+ wrapper(gen_ai_endpoint, version, environment, application_name,
50
+ tracer, pricing_info, trace_content),
51
+ )
52
+
53
+ @staticmethod
54
+ def _uninstrument(self, **kwargs):
55
+ pass
@@ -0,0 +1,86 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
2
+ """
3
+ Module for monitoring LlamaIndex applications.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import handle_exception
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def load_data(gen_ai_endpoint, version, environment, application_name,
16
+ tracer, pricing_info, trace_content):
17
+ """
18
+ Creates a wrapper around a function call to trace and log its execution metrics.
19
+
20
+ This function wraps any given function to measure its execution time,
21
+ log its operation, and trace its execution using OpenTelemetry.
22
+
23
+ Parameters:
24
+ - gen_ai_endpoint (str): A descriptor or name for the endpoint being traced.
25
+ - version (str): The version of the LlamaIndex application.
26
+ - environment (str): The deployment environment (e.g., 'production', 'development').
27
+ - application_name (str): Name of the LlamaIndex application.
28
+ - tracer (opentelemetry.trace.Tracer): The tracer object used for OpenTelemetry tracing.
29
+ - pricing_info (dict): Information about the pricing for internal metrics (currently not used).
30
+ - trace_content (bool): Flag indicating whether to trace the content of the response.
31
+
32
+ Returns:
33
+ - function: A higher-order function that takes a function 'wrapped' and returns
34
+ a new function that wraps 'wrapped' with additional tracing and logging.
35
+ """
36
+
37
+ def wrapper(wrapped, instance, args, kwargs):
38
+ """
39
+ An inner wrapper function that executes the wrapped function, measures execution
40
+ time, and records trace data using OpenTelemetry.
41
+
42
+ Parameters:
43
+ - wrapped (Callable): The original function that this wrapper will execute.
44
+ - instance (object): The instance to which the wrapped function belongs. This
45
+ is used for instance methods. For static and classmethods,
46
+ this may be None.
47
+ - args (tuple): Positional arguments passed to the wrapped function.
48
+ - kwargs (dict): Keyword arguments passed to the wrapped function.
49
+
50
+ Returns:
51
+ - The result of the wrapped function call.
52
+
53
+ The wrapper initiates a span with the provided tracer, sets various attributes
54
+ on the span based on the function's execution and response, and ensures
55
+ errors are handled and logged appropriately.
56
+ """
57
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
58
+ response = wrapped(*args, **kwargs)
59
+
60
+ try:
61
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
62
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
63
+ SemanticConvetion.GEN_AI_SYSTEM_LLAMAINDEX)
64
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
65
+ gen_ai_endpoint)
66
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
67
+ environment)
68
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
69
+ SemanticConvetion.GEN_AI_TYPE_FRAMEWORK)
70
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
71
+ application_name)
72
+ span.set_attribute(SemanticConvetion.GEN_AI_RETRIEVAL_SOURCE,
73
+ response[0].metadata["file_path"])
74
+ span.set_status(Status(StatusCode.OK))
75
+
76
+ # Return original response
77
+ return response
78
+
79
+ except Exception as e:
80
+ handle_exception(span, e)
81
+ logger.error("Error in trace creation: %s", e)
82
+
83
+ # Return original response
84
+ return response
85
+
86
+ return wrapper
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Mistral API calls.
4
4
  """
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Mistral API calls.
4
4
  """
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Pinecone.
4
4
  """