openlit 1.1.3__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
openlit/__init__.py CHANGED
@@ -18,9 +18,14 @@ from openlit.instrumentation.anthropic import AnthropicInstrumentor
18
18
  from openlit.instrumentation.cohere import CohereInstrumentor
19
19
  from openlit.instrumentation.mistral import MistralInstrumentor
20
20
  from openlit.instrumentation.bedrock import BedrockInstrumentor
21
+ from openlit.instrumentation.vertexai import VertexAIInstrumentor
22
+ from openlit.instrumentation.groq import GroqInstrumentor
21
23
  from openlit.instrumentation.langchain import LangChainInstrumentor
24
+ from openlit.instrumentation.llamaindex import LlamaIndexInstrumentor
25
+ from openlit.instrumentation.haystack import HaystackInstrumentor
22
26
  from openlit.instrumentation.chroma import ChromaInstrumentor
23
27
  from openlit.instrumentation.pinecone import PineconeInstrumentor
28
+ from openlit.instrumentation.qdrant import QdrantInstrumentor
24
29
  from openlit.instrumentation.transformers import TransformersInstrumentor
25
30
 
26
31
  # Set up logging for error and information messages.
@@ -139,7 +144,6 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
139
144
  disable_metrics (bool): Flag to disable metrics (Optional)
140
145
  """
141
146
  disabled_instrumentors = disabled_instrumentors if disabled_instrumentors else []
142
-
143
147
  # Check for invalid instrumentor names
144
148
 
145
149
  module_name_map = {
@@ -148,9 +152,14 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
148
152
  "cohere": "cohere",
149
153
  "mistral": "mistralai",
150
154
  "bedrock": "boto3",
155
+ "vertexai": "vertexai",
156
+ "groq": "groq",
151
157
  "langchain": "langchain",
158
+ "llama_index": "llama_index",
159
+ "haystack": "haystack",
152
160
  "chroma": "chromadb",
153
161
  "pinecone": "pinecone",
162
+ "qdrant": "qdrant_client",
154
163
  "transformers": "transformers"
155
164
  }
156
165
 
@@ -195,9 +204,14 @@ def init(environment="default", application_name="default", tracer=None, otlp_en
195
204
  "cohere": CohereInstrumentor(),
196
205
  "mistral": MistralInstrumentor(),
197
206
  "bedrock": BedrockInstrumentor(),
207
+ "vertexai": VertexAIInstrumentor(),
208
+ "groq": GroqInstrumentor(),
198
209
  "langchain": LangChainInstrumentor(),
210
+ "llama_index": LlamaIndexInstrumentor(),
211
+ "haystack": HaystackInstrumentor(),
199
212
  "chroma": ChromaInstrumentor(),
200
213
  "pinecone": PineconeInstrumentor(),
214
+ "qdrant": QdrantInstrumentor(),
201
215
  "transformers": TransformersInstrumentor()
202
216
  }
203
217
 
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Anthropic API calls.
4
4
  """
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Anthropic API calls.
4
4
  """
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring ChromaDB.
4
4
  """
@@ -85,7 +85,7 @@ def general_wrap(gen_ai_endpoint, version, environment, application_name,
85
85
  if gen_ai_endpoint == "chroma.add":
86
86
  db_operation = SemanticConvetion.DB_OPERATION_ADD
87
87
  span.set_attribute(SemanticConvetion.DB_OPERATION,
88
- SemanticConvetion.DB_OPERATION_GET)
88
+ SemanticConvetion.DB_OPERATION_ADD)
89
89
  span.set_attribute(SemanticConvetion.DB_ID_COUNT,
90
90
  object_count(kwargs.get("ids")))
91
91
  span.set_attribute(SemanticConvetion.DB_VECTOR_COUNT,
@@ -1,4 +1,4 @@
1
- # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, possibly-used-before-assignment
2
2
  """
3
3
  Module for monitoring Cohere API calls.
4
4
  """
@@ -0,0 +1,50 @@
1
+ # pylint: disable=useless-return, bad-staticmethod-argument, disable=duplicate-code
2
+ """Initializer of Auto Instrumentation of Groq Functions"""
3
+
4
+ from typing import Collection
5
+ import importlib.metadata
6
+ from opentelemetry.instrumentation.instrumentor import BaseInstrumentor
7
+ from wrapt import wrap_function_wrapper
8
+
9
+ from openlit.instrumentation.groq.groq import chat
10
+ from openlit.instrumentation.groq.async_groq import async_chat
11
+
12
+ _instruments = ("groq >= 0.5.0",)
13
+
14
+ class GroqInstrumentor(BaseInstrumentor):
15
+ """
16
+ An instrumentor for Groq's client library.
17
+ """
18
+
19
+ def instrumentation_dependencies(self) -> Collection[str]:
20
+ return _instruments
21
+
22
+ def _instrument(self, **kwargs):
23
+ application_name = kwargs.get("application_name", "default_application")
24
+ environment = kwargs.get("environment", "default_environment")
25
+ tracer = kwargs.get("tracer")
26
+ metrics = kwargs.get("metrics_dict")
27
+ pricing_info = kwargs.get("pricing_info", {})
28
+ trace_content = kwargs.get("trace_content", False)
29
+ disable_metrics = kwargs.get("disable_metrics")
30
+ version = importlib.metadata.version("groq")
31
+
32
+ #sync
33
+ wrap_function_wrapper(
34
+ "groq.resources.chat.completions",
35
+ "Completions.create",
36
+ chat("groq.chat.completions", version, environment, application_name,
37
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
38
+ )
39
+
40
+ #async
41
+ wrap_function_wrapper(
42
+ "groq.resources.chat.completions",
43
+ "AsyncCompletions.create",
44
+ async_chat("groq.chat.completions", version, environment, application_name,
45
+ tracer, pricing_info, trace_content, metrics, disable_metrics),
46
+ )
47
+
48
+ def _uninstrument(self, **kwargs):
49
+ # Proper uninstrumentation logic to revert patched methods
50
+ pass
@@ -0,0 +1,331 @@
1
+ # pylint: disable=duplicate-code, broad-exception-caught, too-many-statements, unused-argument, used-before-assignment, too-many-branches
2
+ """
3
+ Module for monitoring Groq API calls.
4
+ """
5
+
6
+ import logging
7
+ from opentelemetry.trace import SpanKind, Status, StatusCode
8
+ from opentelemetry.sdk.resources import TELEMETRY_SDK_NAME
9
+ from openlit.__helpers import get_chat_model_cost, handle_exception
10
+ from openlit.semcov import SemanticConvetion
11
+
12
+ # Initialize logger for logging potential issues and operations
13
+ logger = logging.getLogger(__name__)
14
+
15
+ def async_chat(gen_ai_endpoint, version, environment, application_name,
16
+ tracer, pricing_info, trace_content, metrics, disable_metrics):
17
+ """
18
+ Generates a telemetry wrapper for chat completions to collect metrics.
19
+
20
+ Args:
21
+ gen_ai_endpoint: Endpoint identifier for logging and tracing.
22
+ version: Version of the monitoring package.
23
+ environment: Deployment environment (e.g., production, staging).
24
+ application_name: Name of the application using the Groq API.
25
+ tracer: OpenTelemetry tracer for creating spans.
26
+ pricing_info: Information used for calculating the cost of Groq usage.
27
+ trace_content: Flag indicating whether to trace the actual content.
28
+
29
+ Returns:
30
+ A function that wraps the chat completions method to add telemetry.
31
+ """
32
+
33
+ async def wrapper(wrapped, instance, args, kwargs):
34
+ """
35
+ Wraps the 'chat.completions' API call to add telemetry.
36
+
37
+ This collects metrics such as execution time, cost, and token usage, and handles errors
38
+ gracefully, adding details to the trace for observability.
39
+
40
+ Args:
41
+ wrapped: The original 'chat.completions' method to be wrapped.
42
+ instance: The instance of the class where the original method is defined.
43
+ args: Positional arguments for the 'chat.completions' method.
44
+ kwargs: Keyword arguments for the 'chat.completions' method.
45
+
46
+ Returns:
47
+ The response from the original 'chat.completions' method.
48
+ """
49
+
50
+ # Check if streaming is enabled for the API call
51
+ streaming = kwargs.get("stream", False)
52
+
53
+ # pylint: disable=no-else-return
54
+ if streaming:
55
+ # Special handling for streaming response to accommodate the nature of data flow
56
+ async def stream_generator():
57
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
58
+ # Placeholder for aggregating streaming response
59
+ llmresponse = ""
60
+
61
+ # Loop through streaming events capturing relevant details
62
+ async for chunk in await wrapped(*args, **kwargs):
63
+ # Collect message IDs and aggregated response from events
64
+ if len(chunk.choices) > 0:
65
+ # pylint: disable=line-too-long
66
+ if hasattr(chunk.choices[0], "delta") and hasattr(chunk.choices[0].delta, "content"):
67
+ content = chunk.choices[0].delta.content
68
+ if content:
69
+ llmresponse += content
70
+ if chunk.x_groq is not None and chunk.x_groq.usage is not None:
71
+ prompt_tokens = chunk.x_groq.usage.prompt_tokens
72
+ completion_tokens = chunk.x_groq.usage.completion_tokens
73
+ total_tokens = chunk.x_groq.usage.total_tokens
74
+ response_id = chunk.x_groq.id
75
+ yield chunk
76
+
77
+ # Handling exception ensure observability without disrupting operation
78
+ try:
79
+ # Format 'messages' into a single string
80
+ message_prompt = kwargs.get("messages", "")
81
+ formatted_messages = []
82
+ for message in message_prompt:
83
+ role = message["role"]
84
+ content = message["content"]
85
+
86
+ if isinstance(content, list):
87
+ content_str = ", ".join(
88
+ # pylint: disable=line-too-long
89
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
90
+ if "type" in item else f'text: {item["text"]}'
91
+ for item in content
92
+ )
93
+ formatted_messages.append(f"{role}: {content_str}")
94
+ else:
95
+ formatted_messages.append(f"{role}: {content}")
96
+ prompt = "\n".join(formatted_messages)
97
+
98
+ # Calculate cost of the operation
99
+ cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
100
+ pricing_info, prompt_tokens,
101
+ completion_tokens)
102
+
103
+ # Set Span attributes
104
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
105
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
106
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ)
107
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
108
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
109
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
110
+ gen_ai_endpoint)
111
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
112
+ response_id)
113
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
114
+ environment)
115
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
116
+ application_name)
117
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
118
+ kwargs.get("model", "gpt-3.5-turbo"))
119
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
120
+ kwargs.get("user", ""))
121
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
122
+ kwargs.get("top_p", 1))
123
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
124
+ kwargs.get("max_tokens", ""))
125
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
126
+ kwargs.get("temperature", 1))
127
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
128
+ kwargs.get("presence_penalty", 0))
129
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
130
+ kwargs.get("frequency_penalty", 0))
131
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
132
+ kwargs.get("seed", ""))
133
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
134
+ True)
135
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
136
+ prompt_tokens)
137
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
138
+ completion_tokens)
139
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
140
+ prompt_tokens + completion_tokens)
141
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
142
+ cost)
143
+ if trace_content:
144
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
145
+ prompt)
146
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
147
+ llmresponse)
148
+
149
+ span.set_status(Status(StatusCode.OK))
150
+
151
+ if disable_metrics is False:
152
+ attributes = {
153
+ TELEMETRY_SDK_NAME:
154
+ "openlit",
155
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
156
+ application_name,
157
+ SemanticConvetion.GEN_AI_SYSTEM:
158
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ,
159
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
160
+ environment,
161
+ SemanticConvetion.GEN_AI_TYPE:
162
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
163
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
164
+ kwargs.get("model", "gpt-3.5-turbo")
165
+ }
166
+
167
+ metrics["genai_requests"].add(1, attributes)
168
+ metrics["genai_total_tokens"].add(
169
+ total_tokens, attributes
170
+ )
171
+ metrics["genai_completion_tokens"].add(completion_tokens, attributes)
172
+ metrics["genai_prompt_tokens"].add(prompt_tokens, attributes)
173
+ metrics["genai_cost"].record(cost, attributes)
174
+
175
+ except Exception as e:
176
+ handle_exception(span, e)
177
+ logger.error("Error in trace creation: %s", e)
178
+
179
+ return stream_generator()
180
+
181
+ # Handling for non-streaming responses
182
+ else:
183
+ # pylint: disable=line-too-long
184
+ with tracer.start_as_current_span(gen_ai_endpoint, kind= SpanKind.CLIENT) as span:
185
+ response = await wrapped(*args, **kwargs)
186
+
187
+ try:
188
+ # Format 'messages' into a single string
189
+ message_prompt = kwargs.get("messages", "")
190
+ formatted_messages = []
191
+ for message in message_prompt:
192
+ role = message["role"]
193
+ content = message["content"]
194
+
195
+ if isinstance(content, list):
196
+ content_str = ", ".join(
197
+ # pylint: disable=line-too-long
198
+ f'{item["type"]}: {item["text"] if "text" in item else item["image_url"]}'
199
+ if "type" in item else f'text: {item["text"]}'
200
+ for item in content
201
+ )
202
+ formatted_messages.append(f"{role}: {content_str}")
203
+ else:
204
+ formatted_messages.append(f"{role}: {content}")
205
+ prompt = "\n".join(formatted_messages)
206
+
207
+ # Set base span attribues
208
+ span.set_attribute(TELEMETRY_SDK_NAME, "openlit")
209
+ span.set_attribute(SemanticConvetion.GEN_AI_SYSTEM,
210
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ)
211
+ span.set_attribute(SemanticConvetion.GEN_AI_TYPE,
212
+ SemanticConvetion.GEN_AI_TYPE_CHAT)
213
+ span.set_attribute(SemanticConvetion.GEN_AI_ENDPOINT,
214
+ gen_ai_endpoint)
215
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_ID,
216
+ response.x_groq["id"])
217
+ span.set_attribute(SemanticConvetion.GEN_AI_ENVIRONMENT,
218
+ environment)
219
+ span.set_attribute(SemanticConvetion.GEN_AI_APPLICATION_NAME,
220
+ application_name)
221
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MODEL,
222
+ kwargs.get("model", "llama3-8b-8192"))
223
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TOP_P,
224
+ kwargs.get("top_p", 1))
225
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_MAX_TOKENS,
226
+ kwargs.get("max_tokens", ""))
227
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_USER,
228
+ kwargs.get("name", ""))
229
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_TEMPERATURE,
230
+ kwargs.get("temperature", 1))
231
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_PRESENCE_PENALTY,
232
+ kwargs.get("presence_penalty", 0))
233
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_FREQUENCY_PENALTY,
234
+ kwargs.get("frequency_penalty", 0))
235
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_SEED,
236
+ kwargs.get("seed", ""))
237
+ span.set_attribute(SemanticConvetion.GEN_AI_REQUEST_IS_STREAM,
238
+ False)
239
+ if trace_content:
240
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_PROMPT,
241
+ prompt)
242
+
243
+ # Set span attributes when tools is not passed to the function call
244
+ if "tools" not in kwargs:
245
+ # Calculate cost of the operation
246
+ cost = get_chat_model_cost(kwargs.get("model", "llama3-8b-8192"),
247
+ pricing_info, response.usage.prompt_tokens,
248
+ response.usage.completion_tokens)
249
+
250
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
251
+ response.usage.prompt_tokens)
252
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
253
+ response.usage.completion_tokens)
254
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
255
+ response.usage.total_tokens)
256
+ span.set_attribute(SemanticConvetion.GEN_AI_RESPONSE_FINISH_REASON,
257
+ response.choices[0].finish_reason)
258
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
259
+ cost)
260
+
261
+ # Set span attributes for when n = 1 (default)
262
+ if "n" not in kwargs or kwargs["n"] == 1:
263
+ if trace_content:
264
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
265
+ response.choices[0].message.content)
266
+
267
+ # Set span attributes for when n > 0
268
+ else:
269
+ i = 0
270
+ while i < kwargs["n"] and trace_content is True:
271
+ attribute_name = f"gen_ai.content.completion.{i}"
272
+ span.set_attribute(attribute_name,
273
+ response.choices[i].message.content)
274
+ i += 1
275
+
276
+ # Return original response
277
+ return response
278
+
279
+ # Set span attributes when tools is passed to the function call
280
+ elif "tools" in kwargs:
281
+ # Calculate cost of the operation
282
+ cost = get_chat_model_cost(kwargs.get("model", "gpt-3.5-turbo"),
283
+ pricing_info, response.usage.prompt_tokens,
284
+ response.usage.completion_tokens)
285
+
286
+ span.set_attribute(SemanticConvetion.GEN_AI_CONTENT_COMPLETION,
287
+ "Function called with tools")
288
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_PROMPT_TOKENS,
289
+ response.usage.prompt_tokens)
290
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COMPLETION_TOKENS,
291
+ response.usage.completion_tokens)
292
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_TOTAL_TOKENS,
293
+ response.usage.total_tokens)
294
+ span.set_attribute(SemanticConvetion.GEN_AI_USAGE_COST,
295
+ cost)
296
+
297
+ span.set_status(Status(StatusCode.OK))
298
+
299
+ if disable_metrics is False:
300
+ attributes = {
301
+ TELEMETRY_SDK_NAME:
302
+ "openlit",
303
+ SemanticConvetion.GEN_AI_APPLICATION_NAME:
304
+ application_name,
305
+ SemanticConvetion.GEN_AI_SYSTEM:
306
+ SemanticConvetion.GEN_AI_SYSTEM_GROQ,
307
+ SemanticConvetion.GEN_AI_ENVIRONMENT:
308
+ environment,
309
+ SemanticConvetion.GEN_AI_TYPE:
310
+ SemanticConvetion.GEN_AI_TYPE_CHAT,
311
+ SemanticConvetion.GEN_AI_REQUEST_MODEL:
312
+ kwargs.get("model", "gpt-3.5-turbo")
313
+ }
314
+
315
+ metrics["genai_requests"].add(1, attributes)
316
+ metrics["genai_total_tokens"].add(response.usage.total_tokens, attributes)
317
+ metrics["genai_completion_tokens"].add(response.usage.completion_tokens, attributes)
318
+ metrics["genai_prompt_tokens"].add(response.usage.prompt_tokens, attributes)
319
+ metrics["genai_cost"].record(cost, attributes)
320
+
321
+ # Return original response
322
+ return response
323
+
324
+ except Exception as e:
325
+ handle_exception(span, e)
326
+ logger.error("Error in trace creation: %s", e)
327
+
328
+ # Return original response
329
+ return response
330
+
331
+ return wrapper