onnx-ir 0.0.1__py3-none-any.whl → 0.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of onnx-ir might be problematic. Click here for more details.
- onnx_ir/__init__.py +23 -10
- onnx_ir/{_convenience.py → _convenience/__init__.py} +40 -102
- onnx_ir/_convenience/_constructors.py +213 -0
- onnx_ir/_core.py +874 -257
- onnx_ir/_display.py +2 -2
- onnx_ir/_enums.py +107 -5
- onnx_ir/_graph_comparison.py +2 -2
- onnx_ir/_graph_containers.py +373 -0
- onnx_ir/_io.py +57 -10
- onnx_ir/_linked_list.py +15 -7
- onnx_ir/_metadata.py +4 -3
- onnx_ir/_name_authority.py +2 -2
- onnx_ir/_polyfill.py +26 -0
- onnx_ir/_protocols.py +31 -13
- onnx_ir/_tape.py +139 -32
- onnx_ir/_thirdparty/asciichartpy.py +1 -4
- onnx_ir/_type_casting.py +18 -3
- onnx_ir/{_internal/version_utils.py → _version_utils.py} +2 -29
- onnx_ir/convenience.py +4 -2
- onnx_ir/external_data.py +401 -0
- onnx_ir/passes/__init__.py +8 -2
- onnx_ir/passes/_pass_infra.py +173 -56
- onnx_ir/passes/common/__init__.py +40 -0
- onnx_ir/passes/common/_c_api_utils.py +76 -0
- onnx_ir/passes/common/clear_metadata_and_docstring.py +60 -0
- onnx_ir/passes/common/common_subexpression_elimination.py +177 -0
- onnx_ir/passes/common/constant_manipulation.py +217 -0
- onnx_ir/passes/common/inliner.py +332 -0
- onnx_ir/passes/common/onnx_checker.py +57 -0
- onnx_ir/passes/common/shape_inference.py +112 -0
- onnx_ir/passes/common/topological_sort.py +33 -0
- onnx_ir/passes/common/unused_removal.py +196 -0
- onnx_ir/serde.py +288 -124
- onnx_ir/tape.py +15 -0
- onnx_ir/tensor_adapters.py +122 -0
- onnx_ir/testing.py +197 -0
- onnx_ir/traversal.py +4 -3
- onnx_ir-0.1.1.dist-info/METADATA +53 -0
- onnx_ir-0.1.1.dist-info/RECORD +42 -0
- {onnx_ir-0.0.1.dist-info → onnx_ir-0.1.1.dist-info}/WHEEL +1 -1
- onnx_ir-0.1.1.dist-info/licenses/LICENSE +202 -0
- onnx_ir/_external_data.py +0 -323
- onnx_ir-0.0.1.dist-info/LICENSE +0 -22
- onnx_ir-0.0.1.dist-info/METADATA +0 -73
- onnx_ir-0.0.1.dist-info/RECORD +0 -26
- {onnx_ir-0.0.1.dist-info → onnx_ir-0.1.1.dist-info}/top_level.txt +0 -0
onnx_ir/passes/_pass_infra.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
|
1
|
-
# Copyright (c)
|
|
2
|
-
#
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
3
|
#
|
|
4
4
|
# This module implements some APIs described in
|
|
5
5
|
# https://pytorch.org/executorch/stable/compiler-custom-compiler-passes.html
|
|
@@ -16,10 +16,14 @@ from __future__ import annotations
|
|
|
16
16
|
|
|
17
17
|
import dataclasses
|
|
18
18
|
import logging
|
|
19
|
-
from
|
|
19
|
+
from collections.abc import Sequence
|
|
20
|
+
from typing import Literal, final
|
|
20
21
|
|
|
21
22
|
__all__ = [
|
|
22
23
|
"PassBase",
|
|
24
|
+
"Sequential",
|
|
25
|
+
"InPlacePass",
|
|
26
|
+
"FunctionalPass",
|
|
23
27
|
"PassManager",
|
|
24
28
|
"PassResult",
|
|
25
29
|
# Errors
|
|
@@ -58,7 +62,7 @@ class PassResult:
|
|
|
58
62
|
|
|
59
63
|
Attributes:
|
|
60
64
|
model: The transformed model.
|
|
61
|
-
modified: Whether the model
|
|
65
|
+
modified: Whether the resulting model is different from the input model.
|
|
62
66
|
"""
|
|
63
67
|
|
|
64
68
|
model: ir.Model
|
|
@@ -68,14 +72,89 @@ class PassResult:
|
|
|
68
72
|
class PassBase(abc.ABC):
|
|
69
73
|
"""Base class for all passes.
|
|
70
74
|
|
|
71
|
-
|
|
72
|
-
|
|
75
|
+
``in_place`` and ``changes_input`` properties and what they mean:
|
|
76
|
+
|
|
77
|
+
+------------+------------------+----------------------------+
|
|
78
|
+
| | changes_inputs | not changes_inputs |
|
|
79
|
+
+------------+------------------+----------------------------+
|
|
80
|
+
| in_place | in place | Side-effect-only pass |
|
|
81
|
+
+------------+------------------+----------------------------+
|
|
82
|
+
| not | destructive | functional |
|
|
83
|
+
| in_place | | |
|
|
84
|
+
+------------+------------------+----------------------------+
|
|
73
85
|
"""
|
|
74
86
|
|
|
75
|
-
|
|
87
|
+
@property
|
|
88
|
+
@abc.abstractmethod
|
|
89
|
+
def in_place(self) -> bool:
|
|
90
|
+
"""Whether the pass modifies the model in place and returns it.
|
|
91
|
+
|
|
92
|
+
If True, the pass will return the same model object that was passed in.
|
|
93
|
+
If False, the pass will return a new model object.
|
|
94
|
+
"""
|
|
95
|
+
raise NotImplementedError
|
|
96
|
+
|
|
97
|
+
@property
|
|
98
|
+
@abc.abstractmethod
|
|
99
|
+
def changes_input(self) -> bool:
|
|
100
|
+
"""Whether the pass modifies input model."""
|
|
101
|
+
raise NotImplementedError
|
|
102
|
+
|
|
103
|
+
@property
|
|
104
|
+
def destructive(self) -> bool:
|
|
105
|
+
"""Whether the pass will destroy the input model when ``in_place=False``.
|
|
76
106
|
|
|
77
|
-
|
|
78
|
-
|
|
107
|
+
A pass is destructive if it is not in place and it modifies the input model.
|
|
108
|
+
"""
|
|
109
|
+
return not self.in_place and self.changes_input
|
|
110
|
+
|
|
111
|
+
def __call__(self, model_or_result: ir.Model | PassResult, /) -> PassResult:
|
|
112
|
+
if isinstance(model_or_result, PassResult):
|
|
113
|
+
model = model_or_result.model
|
|
114
|
+
else:
|
|
115
|
+
model = model_or_result
|
|
116
|
+
# Check preconditions
|
|
117
|
+
try:
|
|
118
|
+
self.requires(model)
|
|
119
|
+
except PreconditionError:
|
|
120
|
+
raise
|
|
121
|
+
except Exception as e:
|
|
122
|
+
raise PreconditionError(
|
|
123
|
+
f"Pre-condition for pass '{self.__class__.__name__}' failed"
|
|
124
|
+
) from e
|
|
125
|
+
|
|
126
|
+
result = self.call(model)
|
|
127
|
+
|
|
128
|
+
# Check postconditions
|
|
129
|
+
try:
|
|
130
|
+
self.ensures(model)
|
|
131
|
+
except PostconditionError:
|
|
132
|
+
raise
|
|
133
|
+
except Exception as e:
|
|
134
|
+
raise PostconditionError(
|
|
135
|
+
f"Post-condition for pass '{self.__class__.__name__}' failed"
|
|
136
|
+
) from e
|
|
137
|
+
|
|
138
|
+
if not isinstance(result, PassResult):
|
|
139
|
+
raise TypeError(
|
|
140
|
+
f"The result of the pass '{self.__class__.__name__}' should be type PassResult. "
|
|
141
|
+
"Please create one with ir.passes.PassResult()."
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
# Checks that the declared in-place property is respected
|
|
145
|
+
if self.in_place and result.model is not model:
|
|
146
|
+
raise PassError(
|
|
147
|
+
f"The pass '{self.__class__.__name__}' is declared in-place, "
|
|
148
|
+
"but the model returned is *not* the same object as the input model. "
|
|
149
|
+
"Pass developer: Pass should return the same model object or the in_place property should return False."
|
|
150
|
+
)
|
|
151
|
+
if not self.in_place and result.model is model:
|
|
152
|
+
raise PassError(
|
|
153
|
+
f"The pass '{self.__class__.__name__}' is declared not in-place, "
|
|
154
|
+
"but the model returned *is* the same object as the input model. "
|
|
155
|
+
"Pass developer: Pass should return a new model object or the in_place property should return True."
|
|
156
|
+
)
|
|
157
|
+
return result
|
|
79
158
|
|
|
80
159
|
@abc.abstractmethod
|
|
81
160
|
def call(self, model: ir.Model) -> PassResult:
|
|
@@ -97,76 +176,114 @@ class PassBase(abc.ABC):
|
|
|
97
176
|
del model # Unused
|
|
98
177
|
|
|
99
178
|
|
|
100
|
-
class
|
|
179
|
+
class InPlacePass(PassBase):
|
|
180
|
+
"""A pass that modifies the input model in place and returns it."""
|
|
181
|
+
|
|
182
|
+
@property
|
|
183
|
+
@final
|
|
184
|
+
def in_place(self) -> Literal[True]:
|
|
185
|
+
"""An in-place pass is in place."""
|
|
186
|
+
return True
|
|
187
|
+
|
|
188
|
+
@property
|
|
189
|
+
@final
|
|
190
|
+
def changes_input(self) -> Literal[True]:
|
|
191
|
+
"""An in-place pass changes the input model."""
|
|
192
|
+
return True
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
class FunctionalPass(PassBase):
|
|
196
|
+
"""A pass that returns a new model but does not modify the input model."""
|
|
197
|
+
|
|
198
|
+
@property
|
|
199
|
+
@final
|
|
200
|
+
def in_place(self) -> Literal[False]:
|
|
201
|
+
"""A functional pass is not in place."""
|
|
202
|
+
return False
|
|
203
|
+
|
|
204
|
+
@property
|
|
205
|
+
@final
|
|
206
|
+
def changes_input(self) -> Literal[False]:
|
|
207
|
+
"""A functional pass does not change the input model."""
|
|
208
|
+
return False
|
|
209
|
+
|
|
210
|
+
|
|
211
|
+
class Sequential(PassBase):
|
|
212
|
+
"""Run a sequence of passes in order."""
|
|
213
|
+
|
|
214
|
+
def __init__(self, *passes: PassBase):
|
|
215
|
+
if not passes:
|
|
216
|
+
raise ValueError("Sequential must take at least one pass")
|
|
217
|
+
self.passes = passes
|
|
218
|
+
self._in_place = all(pass_.in_place for pass_ in passes)
|
|
219
|
+
# The reason changes_inputs is decided by the first pass is that if the first pass is either in-place,
|
|
220
|
+
# or if it is not designed to be in-place but somehow changes the input (destructive),
|
|
221
|
+
# this pass sequence will change inputs.
|
|
222
|
+
self._changes_input = self.passes[0].changes_input or self.passes[0].in_place
|
|
223
|
+
|
|
224
|
+
@property
|
|
225
|
+
def in_place(self) -> bool:
|
|
226
|
+
return self._in_place
|
|
227
|
+
|
|
228
|
+
@property
|
|
229
|
+
def changes_input(self) -> bool:
|
|
230
|
+
return self._changes_input
|
|
231
|
+
|
|
232
|
+
def call(self, model: ir.Model) -> PassResult:
|
|
233
|
+
modified = False
|
|
234
|
+
for i, pass_ in enumerate(self.passes):
|
|
235
|
+
logger.debug("Running the %s-th pass '%s'", i, pass_)
|
|
236
|
+
try:
|
|
237
|
+
pass_result = pass_(model)
|
|
238
|
+
except Exception as e:
|
|
239
|
+
prev_pass_names = [str(p) for p in self.passes[:i]]
|
|
240
|
+
raise PassError(
|
|
241
|
+
f"An error occurred when running the '{pass_}' pass after the "
|
|
242
|
+
f"following passes: {prev_pass_names}"
|
|
243
|
+
) from e
|
|
244
|
+
|
|
245
|
+
model = pass_result.model
|
|
246
|
+
modified = modified or pass_result.modified
|
|
247
|
+
|
|
248
|
+
return PassResult(model, modified)
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
class PassManager(Sequential):
|
|
101
252
|
"""Pass manager for the IR.
|
|
102
253
|
|
|
103
|
-
The PassManager is a
|
|
254
|
+
The PassManager is a Pass that runs a sequence of passes on a model.
|
|
104
255
|
|
|
105
256
|
Attributes:
|
|
106
257
|
passes: The passes to run.
|
|
107
|
-
check_invariants: Whether to check invariants before and after each pass.
|
|
108
258
|
steps: The number of times to run the passes.
|
|
259
|
+
early_stop: Whether to stop running the passes if the graph stops changing.
|
|
109
260
|
"""
|
|
110
261
|
|
|
111
262
|
def __init__(
|
|
112
263
|
self,
|
|
113
264
|
passes: Sequence[PassBase],
|
|
114
|
-
check_invariants: bool = False,
|
|
115
265
|
steps: int = 1,
|
|
266
|
+
early_stop: bool = True,
|
|
116
267
|
):
|
|
117
268
|
# TODO(justinchuby): Implement constraints
|
|
118
|
-
|
|
119
|
-
self.check_invariants = check_invariants
|
|
269
|
+
super().__init__(*passes)
|
|
120
270
|
self.steps = steps
|
|
271
|
+
self.early_stop = early_stop
|
|
121
272
|
|
|
122
|
-
def
|
|
273
|
+
def call(self, model: ir.Model) -> PassResult:
|
|
123
274
|
"""Run the set of passes `steps` number of times or until the graph stops changing."""
|
|
124
275
|
overall_modified = False
|
|
125
276
|
for step in range(self.steps):
|
|
126
|
-
|
|
277
|
+
try:
|
|
278
|
+
# Call the call method of Sequential
|
|
279
|
+
step_result = super().call(model)
|
|
280
|
+
except Exception as e:
|
|
281
|
+
raise PassError(f"An error occurred at step {step}") from e
|
|
127
282
|
model = step_result.model
|
|
128
283
|
modified = step_result.modified
|
|
129
284
|
overall_modified = overall_modified or modified
|
|
130
285
|
# If the graph no longer changes, then we can stop running these passes
|
|
131
|
-
if not modified:
|
|
286
|
+
if not modified and self.early_stop:
|
|
132
287
|
logger.info("PassManager: No more graph changes detected after step %s", step)
|
|
133
288
|
break
|
|
134
289
|
return PassResult(model, overall_modified)
|
|
135
|
-
|
|
136
|
-
def _run_one_step(self, model: ir.Model, step: int) -> PassResult:
|
|
137
|
-
modified = False
|
|
138
|
-
for i, pass_ in enumerate(self.passes):
|
|
139
|
-
logger.debug("Running the %s-th pass '%s', (step %s)", i, pass_, step)
|
|
140
|
-
|
|
141
|
-
# 1. Check preconditions
|
|
142
|
-
if self.check_invariants:
|
|
143
|
-
try:
|
|
144
|
-
pass_.requires(model)
|
|
145
|
-
except Exception as e:
|
|
146
|
-
raise PreconditionError(f"Pre-condition failed for {pass_}") from e
|
|
147
|
-
|
|
148
|
-
# 2. Run the pass
|
|
149
|
-
try:
|
|
150
|
-
pass_result = pass_(model)
|
|
151
|
-
except Exception as e:
|
|
152
|
-
prev_pass_names = [str(p) for p in self.passes[:i]]
|
|
153
|
-
raise PassError(
|
|
154
|
-
f"An error occurred when running the '{pass_}' pass after the "
|
|
155
|
-
f"following passes: {prev_pass_names} during step {step}"
|
|
156
|
-
) from e
|
|
157
|
-
if not isinstance(pass_result, PassResult):
|
|
158
|
-
raise TypeError(
|
|
159
|
-
f"The result of the pass {pass_} should be type PassResult."
|
|
160
|
-
"Please create one with ir.passes.PassResult()."
|
|
161
|
-
)
|
|
162
|
-
|
|
163
|
-
model = pass_result.model
|
|
164
|
-
modified = modified or pass_result.modified
|
|
165
|
-
|
|
166
|
-
# 3. Check postconditions
|
|
167
|
-
if self.check_invariants:
|
|
168
|
-
try:
|
|
169
|
-
pass_.ensures(model)
|
|
170
|
-
except Exception as e:
|
|
171
|
-
raise PostconditionError(f"Post-condition failed for {pass_}") from e
|
|
172
|
-
return PassResult(model, modified)
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
|
|
4
|
+
__all__ = [
|
|
5
|
+
"AddInitializersToInputsPass",
|
|
6
|
+
"CheckerPass",
|
|
7
|
+
"ClearMetadataAndDocStringPass",
|
|
8
|
+
"CommonSubexpressionEliminationPass",
|
|
9
|
+
"InlinePass",
|
|
10
|
+
"LiftConstantsToInitializersPass",
|
|
11
|
+
"LiftSubgraphInitializersToMainGraphPass",
|
|
12
|
+
"RemoveInitializersFromInputsPass",
|
|
13
|
+
"RemoveUnusedFunctionsPass",
|
|
14
|
+
"RemoveUnusedNodesPass",
|
|
15
|
+
"RemoveUnusedOpsetsPass",
|
|
16
|
+
"ShapeInferencePass",
|
|
17
|
+
"TopologicalSortPass",
|
|
18
|
+
]
|
|
19
|
+
|
|
20
|
+
from onnx_ir.passes.common.clear_metadata_and_docstring import (
|
|
21
|
+
ClearMetadataAndDocStringPass,
|
|
22
|
+
)
|
|
23
|
+
from onnx_ir.passes.common.common_subexpression_elimination import (
|
|
24
|
+
CommonSubexpressionEliminationPass,
|
|
25
|
+
)
|
|
26
|
+
from onnx_ir.passes.common.constant_manipulation import (
|
|
27
|
+
AddInitializersToInputsPass,
|
|
28
|
+
LiftConstantsToInitializersPass,
|
|
29
|
+
LiftSubgraphInitializersToMainGraphPass,
|
|
30
|
+
RemoveInitializersFromInputsPass,
|
|
31
|
+
)
|
|
32
|
+
from onnx_ir.passes.common.inliner import InlinePass
|
|
33
|
+
from onnx_ir.passes.common.onnx_checker import CheckerPass
|
|
34
|
+
from onnx_ir.passes.common.shape_inference import ShapeInferencePass
|
|
35
|
+
from onnx_ir.passes.common.topological_sort import TopologicalSortPass
|
|
36
|
+
from onnx_ir.passes.common.unused_removal import (
|
|
37
|
+
RemoveUnusedFunctionsPass,
|
|
38
|
+
RemoveUnusedNodesPass,
|
|
39
|
+
RemoveUnusedOpsetsPass,
|
|
40
|
+
)
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
"""Utilities for interfacing with onnx C APIs."""
|
|
4
|
+
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
import logging
|
|
8
|
+
from typing import TYPE_CHECKING, Callable, TypeVar
|
|
9
|
+
|
|
10
|
+
import onnx_ir as ir
|
|
11
|
+
|
|
12
|
+
if TYPE_CHECKING:
|
|
13
|
+
import onnx
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
logger = logging.getLogger(__name__)
|
|
17
|
+
# Temporarily remove initializers larger than this size to keep model size down
|
|
18
|
+
# for the onnx.shape_inference call because it needs to serialize the model
|
|
19
|
+
_BIG_TENSOR_SIZE_LIMIT = 1000 # 1KB
|
|
20
|
+
_R = TypeVar("_R")
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def call_onnx_api(func: Callable[[onnx.ModelProto], _R], model: ir.Model) -> _R:
|
|
24
|
+
"""Call an ONNX C API function by temporarily removing initializers.
|
|
25
|
+
|
|
26
|
+
This is necessary because the ONNX C API does not support large models
|
|
27
|
+
with initializers that have large tensor values. The input model is left
|
|
28
|
+
unchanged no matter the call succeeds or not.
|
|
29
|
+
|
|
30
|
+
Args:
|
|
31
|
+
func: Partially applied function that takes a model proto and returns anything.
|
|
32
|
+
model: The IR model to pass to the API function.
|
|
33
|
+
|
|
34
|
+
Returns:
|
|
35
|
+
The resulting ModelProto that contains the result of the API call.
|
|
36
|
+
"""
|
|
37
|
+
# Store the original initializer values so they can be restored
|
|
38
|
+
initializer_values = tuple(model.graph.initializers.values())
|
|
39
|
+
tensors = {v.name: v.const_value for v in initializer_values}
|
|
40
|
+
original_inputs_len = len(model.graph.inputs)
|
|
41
|
+
|
|
42
|
+
# Turn the initializers into inputs and clear the initializers
|
|
43
|
+
# to limit the model size
|
|
44
|
+
for initializer in initializer_values:
|
|
45
|
+
# Make sure the initializer has its shape/type set
|
|
46
|
+
assert initializer.const_value is not None
|
|
47
|
+
if initializer.shape is None:
|
|
48
|
+
initializer.shape = initializer.const_value.shape # type: ignore[assignment]
|
|
49
|
+
if initializer.dtype is None:
|
|
50
|
+
initializer.dtype = initializer.const_value.dtype
|
|
51
|
+
if initializer not in model.graph.inputs:
|
|
52
|
+
model.graph.inputs.append(initializer)
|
|
53
|
+
if initializer.const_value.nbytes > _BIG_TENSOR_SIZE_LIMIT:
|
|
54
|
+
# Temporarily remove the initializer value to reduce model size
|
|
55
|
+
# for onnx.shape_inference
|
|
56
|
+
initializer.const_value = None
|
|
57
|
+
assert initializer.name is not None
|
|
58
|
+
model.graph.initializers.pop(initializer.name)
|
|
59
|
+
|
|
60
|
+
proto = ir.serde.serialize_model(model)
|
|
61
|
+
|
|
62
|
+
try:
|
|
63
|
+
# Call the ONNX C API function
|
|
64
|
+
result = func(proto)
|
|
65
|
+
finally:
|
|
66
|
+
# Restore the original initializer values so the model is unchanged
|
|
67
|
+
for initializer in initializer_values:
|
|
68
|
+
initializer.const_value = tensors[initializer.name]
|
|
69
|
+
model.graph.register_initializer(initializer)
|
|
70
|
+
|
|
71
|
+
# Restore the original inputs
|
|
72
|
+
inputs = model.graph.inputs[:original_inputs_len]
|
|
73
|
+
model.graph.inputs.clear()
|
|
74
|
+
model.graph.inputs.extend(inputs)
|
|
75
|
+
|
|
76
|
+
return result
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
"""Clear all metadata and docstring from the model, graphs, nodes, and functions."""
|
|
4
|
+
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
__all__ = [
|
|
8
|
+
"ClearMetadataAndDocStringPass",
|
|
9
|
+
]
|
|
10
|
+
|
|
11
|
+
import logging
|
|
12
|
+
|
|
13
|
+
import onnx_ir as ir
|
|
14
|
+
|
|
15
|
+
logger = logging.getLogger(__name__)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class ClearMetadataAndDocStringPass(ir.passes.InPlacePass):
|
|
19
|
+
"""Clear all metadata and docstring from the model, graphs, nodes, and functions."""
|
|
20
|
+
|
|
21
|
+
def call(self, model: ir.Model) -> ir.passes.PassResult:
|
|
22
|
+
# 0. TODO: Should we clean model metadata and docstring?
|
|
23
|
+
|
|
24
|
+
# 1. Clean up the graph and the belonged nodes metadata properties
|
|
25
|
+
modified = self._clear_graph_or_function_metadata_and_docstring(model.graph)
|
|
26
|
+
|
|
27
|
+
# 2. Clean up all of the functions metadata properties
|
|
28
|
+
for function in model.functions.values():
|
|
29
|
+
modified = (
|
|
30
|
+
self._clear_graph_or_function_metadata_and_docstring(function) or modified
|
|
31
|
+
)
|
|
32
|
+
return ir.passes.PassResult(model, modified=modified)
|
|
33
|
+
|
|
34
|
+
def _clear_graph_or_function_metadata_and_docstring(
|
|
35
|
+
self,
|
|
36
|
+
graph_or_function: ir.Graph | ir.Function,
|
|
37
|
+
) -> bool:
|
|
38
|
+
"""Clear metadata and docstring from the graph or function."""
|
|
39
|
+
checked_graphs_or_functions: set[ir.Graph | ir.Function] = set()
|
|
40
|
+
modified = False
|
|
41
|
+
# Clean up all of the nodes metadata properties
|
|
42
|
+
for node in ir.traversal.RecursiveGraphIterator(graph_or_function):
|
|
43
|
+
if node.metadata_props:
|
|
44
|
+
modified = True
|
|
45
|
+
logger.debug("Removed metadata from %s nodes", node.name)
|
|
46
|
+
node.metadata_props.clear()
|
|
47
|
+
node.doc_string = None
|
|
48
|
+
|
|
49
|
+
# Clean up the owning graph/function metadata properties
|
|
50
|
+
# and doc_string if the graph/function is not already checked
|
|
51
|
+
assert node.graph is not None
|
|
52
|
+
if node.graph not in checked_graphs_or_functions and (
|
|
53
|
+
node.graph.metadata_props or node.graph.doc_string
|
|
54
|
+
):
|
|
55
|
+
modified = True
|
|
56
|
+
logger.debug("Removed metadata from %s graph/function", node.graph.name)
|
|
57
|
+
node.graph.metadata_props.clear()
|
|
58
|
+
node.graph.doc_string = None
|
|
59
|
+
checked_graphs_or_functions.add(node.graph)
|
|
60
|
+
return modified
|
|
@@ -0,0 +1,177 @@
|
|
|
1
|
+
# Copyright (c) ONNX Project Contributors
|
|
2
|
+
# SPDX-License-Identifier: Apache-2.0
|
|
3
|
+
"""Eliminate common subexpression in ONNX graphs."""
|
|
4
|
+
|
|
5
|
+
from __future__ import annotations
|
|
6
|
+
|
|
7
|
+
__all__ = [
|
|
8
|
+
"CommonSubexpressionEliminationPass",
|
|
9
|
+
]
|
|
10
|
+
|
|
11
|
+
import logging
|
|
12
|
+
from collections.abc import Sequence
|
|
13
|
+
|
|
14
|
+
import onnx_ir as ir
|
|
15
|
+
|
|
16
|
+
logger = logging.getLogger(__name__)
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class CommonSubexpressionEliminationPass(ir.passes.InPlacePass):
|
|
20
|
+
"""Eliminate common subexpression in ONNX graphs."""
|
|
21
|
+
|
|
22
|
+
def call(self, model: ir.Model) -> ir.passes.PassResult:
|
|
23
|
+
"""Return the same ir.Model but with CSE applied to the graph."""
|
|
24
|
+
modified = False
|
|
25
|
+
graph = model.graph
|
|
26
|
+
|
|
27
|
+
modified = _eliminate_common_subexpression(graph, modified)
|
|
28
|
+
|
|
29
|
+
return ir.passes.PassResult(
|
|
30
|
+
model,
|
|
31
|
+
modified=modified,
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def _eliminate_common_subexpression(graph: ir.Graph, modified: bool) -> bool:
|
|
36
|
+
"""Eliminate common subexpression in ONNX graphs."""
|
|
37
|
+
# node to node identifier, length of outputs, inputs, and attributes
|
|
38
|
+
existing_node_info_to_the_node: dict[
|
|
39
|
+
tuple[
|
|
40
|
+
ir.OperatorIdentifier,
|
|
41
|
+
int, # len(outputs)
|
|
42
|
+
tuple[int, ...], # input ids
|
|
43
|
+
tuple[tuple[str, object], ...], # attributes
|
|
44
|
+
],
|
|
45
|
+
ir.Node,
|
|
46
|
+
] = {}
|
|
47
|
+
|
|
48
|
+
for node in graph:
|
|
49
|
+
# Skip control flow ops like Loop and If.
|
|
50
|
+
control_flow_op: bool = False
|
|
51
|
+
# Use equality to check if the node is a common subexpression.
|
|
52
|
+
attributes = {}
|
|
53
|
+
for k, v in node.attributes.items():
|
|
54
|
+
# TODO(exporter team): CSE subgraphs.
|
|
55
|
+
# NOTE: control flow ops like Loop and If won't be CSEd
|
|
56
|
+
# because attribute: graph won't match.
|
|
57
|
+
if v.type in (ir.AttributeType.GRAPH, ir.AttributeType.GRAPHS):
|
|
58
|
+
control_flow_op = True
|
|
59
|
+
logger.debug("Skipping control flow op %s", node)
|
|
60
|
+
# The attribute value could be directly taken from the original
|
|
61
|
+
# protobuf, so we need to make a copy of it.
|
|
62
|
+
value = v.value
|
|
63
|
+
if v.type in (
|
|
64
|
+
ir.AttributeType.INTS,
|
|
65
|
+
ir.AttributeType.FLOATS,
|
|
66
|
+
ir.AttributeType.STRINGS,
|
|
67
|
+
):
|
|
68
|
+
# For INT, FLOAT and STRING attributes, we convert them to tuples
|
|
69
|
+
# to ensure they are hashable.
|
|
70
|
+
value = tuple(value)
|
|
71
|
+
attributes[k] = value
|
|
72
|
+
|
|
73
|
+
if control_flow_op:
|
|
74
|
+
# If the node is a control flow op, we skip it.
|
|
75
|
+
logger.debug("Skipping control flow op %s", node)
|
|
76
|
+
continue
|
|
77
|
+
|
|
78
|
+
if _is_non_deterministic_op(node):
|
|
79
|
+
# If the node is a non-deterministic op, we skip it.
|
|
80
|
+
logger.debug("Skipping non-deterministic op %s", node)
|
|
81
|
+
continue
|
|
82
|
+
|
|
83
|
+
node_info = (
|
|
84
|
+
node.op_identifier(),
|
|
85
|
+
len(node.outputs),
|
|
86
|
+
tuple(id(input) for input in node.inputs),
|
|
87
|
+
tuple(sorted(attributes.items())),
|
|
88
|
+
)
|
|
89
|
+
# Check if the node is a common subexpression.
|
|
90
|
+
if node_info in existing_node_info_to_the_node:
|
|
91
|
+
# If it is, this node has an existing node with the same
|
|
92
|
+
# operator, number of outputs, inputs, and attributes.
|
|
93
|
+
# We replace the node with the existing node.
|
|
94
|
+
modified = True
|
|
95
|
+
existing_node = existing_node_info_to_the_node[node_info]
|
|
96
|
+
_remove_node_and_replace_values(
|
|
97
|
+
graph,
|
|
98
|
+
remove_node=node,
|
|
99
|
+
remove_values=node.outputs,
|
|
100
|
+
new_values=existing_node.outputs,
|
|
101
|
+
)
|
|
102
|
+
logger.debug("Reusing node %s", existing_node)
|
|
103
|
+
else:
|
|
104
|
+
# If it is not, add to the mapping.
|
|
105
|
+
existing_node_info_to_the_node[node_info] = node
|
|
106
|
+
return modified
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
def _remove_node_and_replace_values(
|
|
110
|
+
graph: ir.Graph,
|
|
111
|
+
/,
|
|
112
|
+
remove_node: ir.Node,
|
|
113
|
+
remove_values: Sequence[ir.Value],
|
|
114
|
+
new_values: Sequence[ir.Value],
|
|
115
|
+
) -> None:
|
|
116
|
+
"""Replaces nodes and values in the graph or function.
|
|
117
|
+
|
|
118
|
+
Args:
|
|
119
|
+
graph: The graph to replace nodes and values in.
|
|
120
|
+
remove_node: The node to remove.
|
|
121
|
+
remove_values: The values to replace.
|
|
122
|
+
new_values: The values to replace with.
|
|
123
|
+
"""
|
|
124
|
+
# Reconnect the users of the deleted values to use the new values
|
|
125
|
+
ir.convenience.replace_all_uses_with(remove_values, new_values)
|
|
126
|
+
# Update graph/function outputs if the node generates output
|
|
127
|
+
if any(remove_value.is_graph_output() for remove_value in remove_values):
|
|
128
|
+
replacement_mapping = dict(zip(remove_values, new_values))
|
|
129
|
+
for idx, graph_output in enumerate(graph.outputs):
|
|
130
|
+
if graph_output in replacement_mapping:
|
|
131
|
+
new_value = replacement_mapping[graph_output]
|
|
132
|
+
if new_value.is_graph_output() or new_value.is_graph_input():
|
|
133
|
+
# If the new value is also a graph input/output, we need to
|
|
134
|
+
# create a Identity node to preserve the remove_value and
|
|
135
|
+
# prevent from changing new_value name.
|
|
136
|
+
identity_node = ir.node(
|
|
137
|
+
"Identity",
|
|
138
|
+
inputs=[new_value],
|
|
139
|
+
outputs=[
|
|
140
|
+
ir.Value(
|
|
141
|
+
name=graph_output.name,
|
|
142
|
+
type=graph_output.type,
|
|
143
|
+
shape=graph_output.shape,
|
|
144
|
+
)
|
|
145
|
+
],
|
|
146
|
+
)
|
|
147
|
+
# reuse the name of the graph output
|
|
148
|
+
graph.outputs[idx] = identity_node.outputs[0]
|
|
149
|
+
graph.insert_before(
|
|
150
|
+
remove_node,
|
|
151
|
+
identity_node,
|
|
152
|
+
)
|
|
153
|
+
else:
|
|
154
|
+
# if new_value is not graph output, we just
|
|
155
|
+
# update it to use old_value name.
|
|
156
|
+
new_value.name = graph_output.name
|
|
157
|
+
graph.outputs[idx] = new_value
|
|
158
|
+
|
|
159
|
+
graph.remove(remove_node, safe=True)
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
def _is_non_deterministic_op(node: ir.Node) -> bool:
|
|
163
|
+
non_deterministic_ops = frozenset(
|
|
164
|
+
{
|
|
165
|
+
"RandomUniform",
|
|
166
|
+
"RandomNormal",
|
|
167
|
+
"RandomUniformLike",
|
|
168
|
+
"RandomNormalLike",
|
|
169
|
+
"Multinomial",
|
|
170
|
+
}
|
|
171
|
+
)
|
|
172
|
+
return node.op_type in non_deterministic_ops and _is_onnx_domain(node.domain)
|
|
173
|
+
|
|
174
|
+
|
|
175
|
+
def _is_onnx_domain(d: str) -> bool:
|
|
176
|
+
"""Check if the domain is the ONNX domain."""
|
|
177
|
+
return d == ""
|