onnx-ir 0.0.1__py3-none-any.whl → 0.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of onnx-ir might be problematic. Click here for more details.

Files changed (46) hide show
  1. onnx_ir/__init__.py +23 -10
  2. onnx_ir/{_convenience.py → _convenience/__init__.py} +40 -102
  3. onnx_ir/_convenience/_constructors.py +213 -0
  4. onnx_ir/_core.py +874 -257
  5. onnx_ir/_display.py +2 -2
  6. onnx_ir/_enums.py +107 -5
  7. onnx_ir/_graph_comparison.py +2 -2
  8. onnx_ir/_graph_containers.py +373 -0
  9. onnx_ir/_io.py +57 -10
  10. onnx_ir/_linked_list.py +15 -7
  11. onnx_ir/_metadata.py +4 -3
  12. onnx_ir/_name_authority.py +2 -2
  13. onnx_ir/_polyfill.py +26 -0
  14. onnx_ir/_protocols.py +31 -13
  15. onnx_ir/_tape.py +139 -32
  16. onnx_ir/_thirdparty/asciichartpy.py +1 -4
  17. onnx_ir/_type_casting.py +18 -3
  18. onnx_ir/{_internal/version_utils.py → _version_utils.py} +2 -29
  19. onnx_ir/convenience.py +4 -2
  20. onnx_ir/external_data.py +401 -0
  21. onnx_ir/passes/__init__.py +8 -2
  22. onnx_ir/passes/_pass_infra.py +173 -56
  23. onnx_ir/passes/common/__init__.py +40 -0
  24. onnx_ir/passes/common/_c_api_utils.py +76 -0
  25. onnx_ir/passes/common/clear_metadata_and_docstring.py +60 -0
  26. onnx_ir/passes/common/common_subexpression_elimination.py +177 -0
  27. onnx_ir/passes/common/constant_manipulation.py +217 -0
  28. onnx_ir/passes/common/inliner.py +332 -0
  29. onnx_ir/passes/common/onnx_checker.py +57 -0
  30. onnx_ir/passes/common/shape_inference.py +112 -0
  31. onnx_ir/passes/common/topological_sort.py +33 -0
  32. onnx_ir/passes/common/unused_removal.py +196 -0
  33. onnx_ir/serde.py +288 -124
  34. onnx_ir/tape.py +15 -0
  35. onnx_ir/tensor_adapters.py +122 -0
  36. onnx_ir/testing.py +197 -0
  37. onnx_ir/traversal.py +4 -3
  38. onnx_ir-0.1.1.dist-info/METADATA +53 -0
  39. onnx_ir-0.1.1.dist-info/RECORD +42 -0
  40. {onnx_ir-0.0.1.dist-info → onnx_ir-0.1.1.dist-info}/WHEEL +1 -1
  41. onnx_ir-0.1.1.dist-info/licenses/LICENSE +202 -0
  42. onnx_ir/_external_data.py +0 -323
  43. onnx_ir-0.0.1.dist-info/LICENSE +0 -22
  44. onnx_ir-0.0.1.dist-info/METADATA +0 -73
  45. onnx_ir-0.0.1.dist-info/RECORD +0 -26
  46. {onnx_ir-0.0.1.dist-info → onnx_ir-0.1.1.dist-info}/top_level.txt +0 -0
onnx_ir/tape.py ADDED
@@ -0,0 +1,15 @@
1
+ # Copyright (c) ONNX Project Contributors
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ """Taping module to facilitate building IR graphs."""
4
+
5
+ # NOTE: Be *selective* about what this module exports because it is part of the public API.
6
+
7
+ from __future__ import annotations
8
+
9
+ __all__ = [
10
+ "Tape",
11
+ ]
12
+
13
+ from onnx_ir._tape import Tape
14
+
15
+ Tape.__module__ = __name__
@@ -0,0 +1,122 @@
1
+ # Copyright (c) ONNX Project Contributors
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ """Compatible adapters implementing the TensorProtocol interface for various framework tensor types.
4
+
5
+ This module provides public classes that implement the :class:`onnx_ir.TensorProtocol`
6
+ interface for various tensor types from popular deep learning frameworks.
7
+
8
+ You can use these classes to create tensors and use them in the IR graph like any other tensor.
9
+
10
+ Example::
11
+ import torch
12
+ import onnx_ir as ir
13
+
14
+ # Create a PyTorch tensor
15
+ torch_tensor = torch.tensor([1, 2, 3])
16
+
17
+ # Wrap the PyTorch tensor in a TorchTensor object
18
+ ir_tensor = ir.tensor_adapters.TorchTensor(torch_tensor)
19
+
20
+ # Use the IR tensor in the graph
21
+ attr = ir.AttrTensor("x", ir_tensor)
22
+ print(attr)
23
+ """
24
+
25
+ # pylint: disable=import-outside-toplevel
26
+
27
+ # NOTE: DO NOT import any framework-specific modules here in the global namespace.
28
+
29
+ from __future__ import annotations
30
+
31
+ __all__ = [
32
+ "TorchTensor",
33
+ ]
34
+
35
+ import ctypes
36
+ from typing import TYPE_CHECKING, Any
37
+
38
+ import numpy.typing as npt
39
+
40
+ import onnx_ir as ir
41
+ from onnx_ir import _core
42
+
43
+ if TYPE_CHECKING:
44
+ import torch
45
+
46
+
47
+ class TorchTensor(_core.Tensor):
48
+ def __init__(
49
+ self, tensor: torch.Tensor, name: str | None = None, doc_string: str | None = None
50
+ ):
51
+ # Pass the tensor as the raw data to ir.Tensor's constructor
52
+ import torch
53
+
54
+ _TORCH_DTYPE_TO_ONNX: dict[torch.dtype, ir.DataType] = {
55
+ torch.bfloat16: ir.DataType.BFLOAT16,
56
+ torch.bool: ir.DataType.BOOL,
57
+ torch.complex128: ir.DataType.COMPLEX128,
58
+ torch.complex64: ir.DataType.COMPLEX64,
59
+ torch.float16: ir.DataType.FLOAT16,
60
+ torch.float32: ir.DataType.FLOAT,
61
+ torch.float64: ir.DataType.DOUBLE,
62
+ torch.float8_e4m3fn: ir.DataType.FLOAT8E4M3FN,
63
+ torch.float8_e4m3fnuz: ir.DataType.FLOAT8E4M3FNUZ,
64
+ torch.float8_e5m2: ir.DataType.FLOAT8E5M2,
65
+ torch.float8_e5m2fnuz: ir.DataType.FLOAT8E5M2FNUZ,
66
+ torch.int16: ir.DataType.INT16,
67
+ torch.int32: ir.DataType.INT32,
68
+ torch.int64: ir.DataType.INT64,
69
+ torch.int8: ir.DataType.INT8,
70
+ torch.uint8: ir.DataType.UINT8,
71
+ torch.uint16: ir.DataType.UINT16,
72
+ torch.uint32: ir.DataType.UINT32,
73
+ torch.uint64: ir.DataType.UINT64,
74
+ }
75
+ super().__init__(
76
+ tensor, dtype=_TORCH_DTYPE_TO_ONNX[tensor.dtype], name=name, doc_string=doc_string
77
+ )
78
+
79
+ def numpy(self) -> npt.NDArray:
80
+ import torch
81
+
82
+ self.raw: torch.Tensor
83
+ if self.dtype == ir.DataType.BFLOAT16:
84
+ return self.raw.view(torch.uint16).numpy(force=True).view(self.dtype.numpy())
85
+ if self.dtype in {
86
+ ir.DataType.FLOAT8E4M3FN,
87
+ ir.DataType.FLOAT8E4M3FNUZ,
88
+ ir.DataType.FLOAT8E5M2,
89
+ ir.DataType.FLOAT8E5M2FNUZ,
90
+ }:
91
+ return self.raw.view(torch.uint8).numpy(force=True).view(self.dtype.numpy())
92
+
93
+ return self.raw.numpy(force=True)
94
+
95
+ def __array__(self, dtype: Any = None, copy: bool | None = None) -> npt.NDArray:
96
+ del copy # Unused, but needed for the signature
97
+ if dtype is None:
98
+ return self.numpy()
99
+ return self.numpy().__array__(dtype)
100
+
101
+ def tobytes(self) -> bytes:
102
+ # Implement tobytes to support native PyTorch types so we can use types like bloat16
103
+ # Reading from memory directly is also more efficient because
104
+ # it avoids copying to a NumPy array
105
+ import torch._subclasses.fake_tensor
106
+
107
+ with torch._subclasses.fake_tensor.unset_fake_temporarily(): # pylint: disable=protected-access
108
+ # Disable any fake mode so calling detach() etc. will return a real tensor
109
+ tensor = self.raw.detach().cpu().contiguous()
110
+
111
+ if isinstance(tensor, torch._subclasses.fake_tensor.FakeTensor): # pylint: disable=protected-access
112
+ raise TypeError(
113
+ f"Cannot take content out from the FakeTensor ('{self.name}'). Please replace the tensor "
114
+ "with a tensor backed by real data using ONNXProgram.apply_weights() "
115
+ "or save the model without initializers by setting include_initializers=False."
116
+ )
117
+
118
+ return bytes(
119
+ (ctypes.c_ubyte * tensor.element_size() * tensor.numel()).from_address(
120
+ tensor.data_ptr()
121
+ )
122
+ )
onnx_ir/testing.py ADDED
@@ -0,0 +1,197 @@
1
+ # Copyright (c) ONNX Project Contributors
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ """Utilities for testing."""
4
+
5
+ from __future__ import annotations
6
+
7
+ __all__ = [
8
+ "assert_onnx_proto_equal",
9
+ ]
10
+
11
+ import difflib
12
+ import math
13
+ from collections.abc import Collection, Sequence
14
+ from typing import Any
15
+
16
+ import google.protobuf.message
17
+ import onnx
18
+
19
+
20
+ def _opset_import_key(opset_import: onnx.OperatorSetIdProto) -> tuple[str, int]:
21
+ return (opset_import.domain, opset_import.version)
22
+
23
+
24
+ def _value_info_key(value_info: onnx.ValueInfoProto) -> str:
25
+ return value_info.name
26
+
27
+
28
+ def _function_key(function: onnx.FunctionProto) -> tuple[str, str, str]:
29
+ return (function.domain, function.name, getattr(function, "overload", ""))
30
+
31
+
32
+ def _find_duplicates(with_duplicates: Collection[Any]) -> list[Any]:
33
+ """Return a list of duplicated elements in a collection."""
34
+ seen = set()
35
+ duplicates = []
36
+ for x in with_duplicates:
37
+ if x in seen:
38
+ duplicates.append(x)
39
+ seen.add(x)
40
+ return duplicates
41
+
42
+
43
+ def assert_onnx_proto_equal(
44
+ actual: google.protobuf.message.Message | Any,
45
+ expected: google.protobuf.message.Message | Any,
46
+ ignore_initializer_value_proto: bool = False,
47
+ ) -> None:
48
+ """Assert that two ONNX protos are equal.
49
+
50
+ Equality is defined as having the same fields with the same values. When
51
+ a field takes the default value, it is considered equal to the field
52
+ not being set.
53
+
54
+ Sequential fields with name `opset_import`, `value_info`, and `functions` are
55
+ compared disregarding the order of their elements.
56
+
57
+ Args:
58
+ actual: The first ONNX proto.
59
+ expected: The second ONNX proto.
60
+ ignore_initializer_value_proto: Ignore value protos for initializers if there
61
+ are extra ones in the actual proto.
62
+ """
63
+ assert type(actual) is type(expected), (
64
+ f"Type not equal: {type(actual)} != {type(expected)}"
65
+ )
66
+
67
+ a_fields = {field.name: value for field, value in actual.ListFields()}
68
+ b_fields = {field.name: value for field, value in expected.ListFields()}
69
+ all_fields = sorted(set(a_fields.keys()) | set(b_fields.keys()))
70
+ if isinstance(actual, onnx.GraphProto) and isinstance(expected, onnx.GraphProto):
71
+ actual_initializer_names = {i.name for i in actual.initializer}
72
+ expected_initializer_names = {i.name for i in expected.initializer}
73
+ else:
74
+ actual_initializer_names = set()
75
+ expected_initializer_names = set()
76
+
77
+ # Record and report all errors
78
+ errors = []
79
+ for field in all_fields: # pylint: disable=too-many-nested-blocks
80
+ # Obtain the default value if the field is not set. This way we can compare the two fields.
81
+ a_value = getattr(actual, field)
82
+ b_value = getattr(expected, field)
83
+ if (
84
+ isinstance(a_value, Sequence)
85
+ and isinstance(b_value, Sequence)
86
+ and not isinstance(a_value, (str, bytes))
87
+ and not isinstance(b_value, (str, bytes))
88
+ ):
89
+ # Check length first
90
+ a_keys: list[Any] = []
91
+ b_keys: list[Any] = []
92
+ if field == "opset_import":
93
+ a_value = sorted(a_value, key=_opset_import_key)
94
+ b_value = sorted(b_value, key=_opset_import_key)
95
+ a_keys = [_opset_import_key(opset_import) for opset_import in a_value]
96
+ b_keys = [_opset_import_key(opset_import) for opset_import in b_value]
97
+ elif field == "value_info":
98
+ if (
99
+ ignore_initializer_value_proto
100
+ and isinstance(actual, onnx.GraphProto)
101
+ and isinstance(expected, onnx.GraphProto)
102
+ ):
103
+ # Filter out initializers from the value_info list
104
+ a_value = [
105
+ value_info
106
+ for value_info in a_value
107
+ if value_info.name not in actual_initializer_names
108
+ ]
109
+ b_value = [
110
+ value_info
111
+ for value_info in b_value
112
+ if value_info.name not in expected_initializer_names
113
+ ]
114
+ a_value = sorted(a_value, key=_value_info_key)
115
+ b_value = sorted(b_value, key=_value_info_key)
116
+ a_keys = [_value_info_key(value_info) for value_info in a_value]
117
+ b_keys = [_value_info_key(value_info) for value_info in b_value]
118
+ elif field == "functions":
119
+ a_value = sorted(a_value, key=_function_key)
120
+ b_value = sorted(b_value, key=_function_key)
121
+ a_keys = [_function_key(functions) for functions in a_value]
122
+ b_keys = [_function_key(functions) for functions in b_value]
123
+
124
+ if a_keys != b_keys:
125
+ keys_only_in_actual = set(a_keys) - set(b_keys)
126
+ keys_only_in_expected = set(b_keys) - set(a_keys)
127
+ error_message = (
128
+ f"Field {field} not equal: keys_only_in_actual={keys_only_in_actual}, keys_only_in_expected={keys_only_in_expected}. "
129
+ f"Field type: {type(a_value)}. "
130
+ f"Duplicated a_keys: {_find_duplicates(a_keys)}, duplicated b_keys: {_find_duplicates(b_keys)}"
131
+ )
132
+ errors.append(error_message)
133
+ elif len(a_value) != len(b_value):
134
+ error_message = (
135
+ f"Field {field} not equal: len(a)={len(a_value)}, len(b)={len(b_value)} "
136
+ f"Field type: {type(a_value)}"
137
+ )
138
+ errors.append(error_message)
139
+ else:
140
+ # Check every element
141
+ for i in range(len(a_value)): # pylint: disable=consider-using-enumerate
142
+ actual_value_i = a_value[i]
143
+ expected_value_i = b_value[i]
144
+ if isinstance(
145
+ actual_value_i, google.protobuf.message.Message
146
+ ) and isinstance(expected_value_i, google.protobuf.message.Message):
147
+ try:
148
+ assert_onnx_proto_equal(
149
+ actual_value_i,
150
+ expected_value_i,
151
+ ignore_initializer_value_proto=ignore_initializer_value_proto,
152
+ )
153
+ except AssertionError as e:
154
+ error_message = f"Field {field} index {i} in sequence not equal. type(actual_value_i): {type(actual_value_i)}, type(expected_value_i): {type(expected_value_i)}, actual_value_i: {actual_value_i}, expected_value_i: {expected_value_i}"
155
+ error_message = (
156
+ str(e) + "\n\nCaused by the above error\n\n" + error_message
157
+ )
158
+ errors.append(error_message)
159
+ elif actual_value_i != expected_value_i:
160
+ if (
161
+ isinstance(actual_value_i, float)
162
+ and isinstance(expected_value_i, float)
163
+ and math.isnan(actual_value_i)
164
+ and math.isnan(expected_value_i)
165
+ ):
166
+ # Consider NaNs equal
167
+ continue
168
+ error_message = f"Field {field} index {i} in sequence not equal. type(actual_value_i): {type(actual_value_i)}, type(expected_value_i): {type(expected_value_i)}"
169
+ for line in difflib.ndiff(
170
+ str(actual_value_i).splitlines(),
171
+ str(expected_value_i).splitlines(),
172
+ ):
173
+ error_message += "\n" + line
174
+ errors.append(error_message)
175
+ elif isinstance(a_value, google.protobuf.message.Message) and isinstance(
176
+ b_value, google.protobuf.message.Message
177
+ ):
178
+ assert_onnx_proto_equal(
179
+ a_value, b_value, ignore_initializer_value_proto=ignore_initializer_value_proto
180
+ )
181
+ elif a_value != b_value:
182
+ if (
183
+ isinstance(a_value, float)
184
+ and isinstance(b_value, float)
185
+ and math.isnan(a_value)
186
+ and math.isnan(b_value)
187
+ ):
188
+ # Consider NaNs equal
189
+ continue
190
+ error_message = (
191
+ f"Field {field} not equal. field_actual: {a_value}, field_expected: {b_value}"
192
+ )
193
+ errors.append(error_message)
194
+ if errors:
195
+ raise AssertionError(
196
+ f"Protos not equal: {type(actual)} != {type(expected)}\n" + "\n".join(errors)
197
+ )
onnx_ir/traversal.py CHANGED
@@ -1,5 +1,5 @@
1
- # Copyright (c) Microsoft Corporation.
2
- # Licensed under the MIT License.
1
+ # Copyright (c) ONNX Project Contributors
2
+ # SPDX-License-Identifier: Apache-2.0
3
3
  """Utilities for traversing the IR graph."""
4
4
 
5
5
  from __future__ import annotations
@@ -8,7 +8,8 @@ __all__ = [
8
8
  "RecursiveGraphIterator",
9
9
  ]
10
10
 
11
- from typing import Callable, Iterator, Reversible, Union
11
+ from collections.abc import Iterator, Reversible
12
+ from typing import Callable, Union
12
13
 
13
14
  from typing_extensions import Self
14
15
 
@@ -0,0 +1,53 @@
1
+ Metadata-Version: 2.4
2
+ Name: onnx-ir
3
+ Version: 0.1.1
4
+ Summary: Efficient in-memory representation for ONNX
5
+ Author-email: ONNX Contributors <onnx-technical-discuss@lists.lfaidata.foundation>
6
+ License: Apache License v2.0
7
+ Project-URL: Homepage, https://onnx.ai/onnx-ir
8
+ Project-URL: Issues, https://github.com/onnx/onnx-ir/issues
9
+ Project-URL: Repository, https://github.com/onnx/onnx-ir
10
+ Classifier: Development Status :: 4 - Beta
11
+ Classifier: Programming Language :: Python :: 3.9
12
+ Classifier: Programming Language :: Python :: 3.10
13
+ Classifier: Programming Language :: Python :: 3.11
14
+ Classifier: Programming Language :: Python :: 3.12
15
+ Classifier: Programming Language :: Python :: 3.13
16
+ Classifier: License :: OSI Approved :: Apache Software License
17
+ Requires-Python: >=3.9
18
+ Description-Content-Type: text/markdown
19
+ License-File: LICENSE
20
+ Requires-Dist: numpy
21
+ Requires-Dist: onnx>=1.16
22
+ Requires-Dist: typing_extensions>=4.10
23
+ Requires-Dist: ml_dtypes
24
+ Dynamic: license-file
25
+
26
+ # ONNX IR
27
+
28
+ [![PyPI - Version](https://img.shields.io/pypi/v/onnx-ir.svg)](https://pypi.org/project/onnx-ir)
29
+ [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/onnx-ir.svg)](https://pypi.org/project/onnx-ir)
30
+ [![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
31
+ [![codecov](https://codecov.io/gh/onnx/ir-py/graph/badge.svg?token=SPQ3G9T78Z)](https://codecov.io/gh/onnx/ir-py)
32
+ [![DeepWiki](https://img.shields.io/badge/DeepWiki-onnx%2Fir--py-blue.svg?logo=)](https://deepwiki.com/onnx/ir-py)
33
+
34
+ An in-memory IR that supports the full ONNX spec, designed for graph construction, analysis and transformation.
35
+
36
+ ## Features ✨
37
+
38
+ - Full ONNX spec support: all valid models representable by ONNX protobuf, and a subset of invalid models (so you can load and fix them).
39
+ - Low memory footprint: mmap'ed external tensors; unified interface for ONNX TensorProto, Numpy arrays and PyTorch Tensors etc. No tensor size limitation. Zero copies.
40
+ - Straightforward access patterns: Access value information and traverse the graph topology at ease.
41
+ - Robust mutation: Create as many iterators as you like on the graph while mutating it.
42
+ - Speed: Performant graph manipulation, serialization/deserialization to Protobuf.
43
+ - Pythonic and familiar APIs: Classes define Pythonic apis and still map to ONNX protobuf concepts in an intuitive way.
44
+ - No protobuf dependency: The IR does not require protobuf once the model is converted to the IR representation, decoupling from the serialization format.
45
+
46
+ ## Code Organization 🗺️
47
+
48
+ - [`_protocols.py`](src/onnx_ir/_protocols.py): Interfaces defined for all entities in the IR.
49
+ - [`_core.py`](src/onnx_ir/_core.py): Implementation of the core entities in the IR, including `Model`, `Graph`, `Node`, `Value`, and others.
50
+ - [`_enums.py`](src/onnx_ir/_enums.py): Definition of the type enums that correspond to the `DataType` and `AttributeType` in `onnx.proto`.
51
+ - [`_name_authority.py`](src/onnx_ir/_name_authority.py): The authority for giving names to entities in the graph, used internally.
52
+ - [`_linked_list.py`](src/onnx_ir/_linked_list.py): The data structure as the node container in the graph that supports robust iteration and mutation. Internal.
53
+ - [`_metadata.py`](src/onnx_ir/_metadata.py): Metadata store for all entities in the IR.
@@ -0,0 +1,42 @@
1
+ onnx_ir/__init__.py,sha256=0fD02tkU7-bC9BfPS68TP2500619oJ8NZyGx3CdGmVk,3352
2
+ onnx_ir/_core.py,sha256=7nufz-9r8J3d6R4BzmRKq0DwmWosOZp3ICNr9MfMG0E,128316
3
+ onnx_ir/_display.py,sha256=230bMN_hVy47Ug3HkA4o5Tf5Hr21AnBEoq5w0fxjyTs,1300
4
+ onnx_ir/_enums.py,sha256=zMvRvYyxOg0Rf3DCQ5Sn1TyZ5znj4NuGO-OAOKZCiDM,7880
5
+ onnx_ir/_graph_comparison.py,sha256=8_D1gu547eCDotEUqxfIJhUGU_Ufhfji7sfsSraOj3g,727
6
+ onnx_ir/_graph_containers.py,sha256=hK3R3OrQTMXF8_z9Kx1DBtJriq_NQx8MUAFy7GpTZ2U,14154
7
+ onnx_ir/_io.py,sha256=XmVqvM2lyX7QtXGr0KcV4bboRGTOPJ8BP4YtQ-jh4dg,3886
8
+ onnx_ir/_linked_list.py,sha256=PXVcbHLMXHLZ6DxZnElnJLWfhBPvYcXUxM8Y3K4J7lM,10592
9
+ onnx_ir/_metadata.py,sha256=lzmCaYy4kAJrPW-PSGKF4a78LisxF0hiofySNQ3Mwhg,1544
10
+ onnx_ir/_name_authority.py,sha256=PnoV9TRgMLussZNufWavJXosDWx5avPfldVjMWEEz18,3036
11
+ onnx_ir/_polyfill.py,sha256=LzAGBKQbVDlURC0tgQgaxgkYU4rESgCYnqVs-u-Vsx8,887
12
+ onnx_ir/_protocols.py,sha256=M29sIOAvtdlis3QtBvCQPH4pnvSwhJCQNCvs3IrN9FY,21276
13
+ onnx_ir/_tape.py,sha256=nEGY6VZVKuB8FDyXeYr0MTq8j7E4HKOE2yN8qpz4ia0,7007
14
+ onnx_ir/_type_casting.py,sha256=evx6P4A0lI_V68SfKLqTN8pH7Q8GZb0So5wvf1eKCNw,3315
15
+ onnx_ir/_version_utils.py,sha256=A51xvGq4I81vV4VuvDx7zc4Xe0XPSp0CTjsh_M7yX4A,2669
16
+ onnx_ir/convenience.py,sha256=48mqMeva9Sb39P_9IUOud8V1Zc79wZUNcQEuMv-fT-Y,871
17
+ onnx_ir/external_data.py,sha256=Aul9O5j7zNCayFP77sMHUU-FrUnwK9BL7mXm8wJmgHY,16511
18
+ onnx_ir/serde.py,sha256=xtMaSdOW_JfSkvM_cdYzVx1By6Z-R9NVsVEZNECIvL8,70131
19
+ onnx_ir/tape.py,sha256=4FyfAHmVhQoMsfHMYnBwP2azi6UF6b6pj--ercObqZs,350
20
+ onnx_ir/tensor_adapters.py,sha256=J2z0gxkxwZqBrob1pYT53lgz1XQ1r7kCxhoSZa5NHaQ,4469
21
+ onnx_ir/testing.py,sha256=WTrjf2joWizDWaYMJlV1KjZMQw7YmZ8NvuBTVn1uY6s,8803
22
+ onnx_ir/traversal.py,sha256=Z69wzYBNljn1S7PhVTYgwMftrfsdEBLoa0JYteOhLL0,2863
23
+ onnx_ir/_convenience/__init__.py,sha256=szllgzSyKafBsmrTFRazkxURjUYVjIEzwQRA593uSo4,14389
24
+ onnx_ir/_convenience/_constructors.py,sha256=nA0tytizoFhQeN6gpxVx3khJQXq-tRtIh0UBM0CdTOg,8174
25
+ onnx_ir/_thirdparty/asciichartpy.py,sha256=afQ0fsqko2uYRPAR4TZBrQxvCb4eN8lxZ2yDFbVQq_s,10533
26
+ onnx_ir/passes/__init__.py,sha256=M_Tcl_-qGSNPluFIvOoeDyh0qAwNayaYyXDS5UJUJPQ,764
27
+ onnx_ir/passes/_pass_infra.py,sha256=HEzxDbXjIUPVubv4pxsPTFXiCDPoiM_tPEoEH1mHO70,9560
28
+ onnx_ir/passes/common/__init__.py,sha256=aHjx2y7L7LJChixmKsSUCdiaTP1u-zSmcmEISduqeG4,1335
29
+ onnx_ir/passes/common/_c_api_utils.py,sha256=cr0vOhnZ-0lOcZV_mOS3Gn-cUK73CPzjAjfbYA-PJuQ,2891
30
+ onnx_ir/passes/common/clear_metadata_and_docstring.py,sha256=YwouLfsNFSaTuGd7uMOGjdvVwG9yHQTkSphUgDlM0ME,2365
31
+ onnx_ir/passes/common/common_subexpression_elimination.py,sha256=WMsTAI-12A3iVqptmWw0tiBmGwVKsls5VNxZEbjvp2A,6527
32
+ onnx_ir/passes/common/constant_manipulation.py,sha256=_fGDwn0Axl2Q8APfc2m_mLMH28T-Mc9kIlpzBXoe3q4,8779
33
+ onnx_ir/passes/common/inliner.py,sha256=wBoO6yXt6F1AObQjYZHMQ0wn3YH681N4HQQVyaMAYd4,13702
34
+ onnx_ir/passes/common/onnx_checker.py,sha256=4RdWgleYHs36pRRiUCbojkBrw80b1LX88xmj5NLclMg,1675
35
+ onnx_ir/passes/common/shape_inference.py,sha256=J5VWsLbx9dPwV1JTuaRBObliiVHEb978AxHq_9dOGII,3976
36
+ onnx_ir/passes/common/topological_sort.py,sha256=Vcu1YhBdfRX4LROr0NScjB1Pwz2DjBFD0Z_GxqaxPF8,999
37
+ onnx_ir/passes/common/unused_removal.py,sha256=n1Vr8kSv3HGZyxFin_Kyx79GasfmhlQRVdJ0hGeZnv0,7597
38
+ onnx_ir-0.1.1.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
39
+ onnx_ir-0.1.1.dist-info/METADATA,sha256=W3i284mv7QuWNNkjRy7x_zHEsMwgUpXvmoux6VE0vZQ,4586
40
+ onnx_ir-0.1.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
41
+ onnx_ir-0.1.1.dist-info/top_level.txt,sha256=W5tROO93YjO0XRxIdjMy4wocp-5st5GiI2ukvW7UhDo,8
42
+ onnx_ir-0.1.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.0)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -0,0 +1,202 @@
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.