ol-openedx-course-translations 0.1.0__py3-none-any.whl → 0.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ol-openedx-course-translations might be problematic. Click here for more details.
- ol_openedx_course_translations/apps.py +12 -2
- ol_openedx_course_translations/glossaries/machine_learning/ar.txt +175 -0
- ol_openedx_course_translations/glossaries/machine_learning/de.txt +175 -0
- ol_openedx_course_translations/glossaries/machine_learning/el.txt +988 -0
- ol_openedx_course_translations/glossaries/machine_learning/es.txt +175 -0
- ol_openedx_course_translations/glossaries/machine_learning/fr.txt +175 -0
- ol_openedx_course_translations/glossaries/machine_learning/ja.txt +175 -0
- ol_openedx_course_translations/glossaries/machine_learning/pt-br.txt +175 -0
- ol_openedx_course_translations/glossaries/machine_learning/ru.txt +213 -0
- ol_openedx_course_translations/management/commands/sync_and_translate_language.py +1866 -0
- ol_openedx_course_translations/management/commands/translate_course.py +419 -470
- ol_openedx_course_translations/middleware.py +143 -0
- ol_openedx_course_translations/providers/__init__.py +1 -0
- ol_openedx_course_translations/providers/base.py +278 -0
- ol_openedx_course_translations/providers/deepl_provider.py +292 -0
- ol_openedx_course_translations/providers/llm_providers.py +565 -0
- ol_openedx_course_translations/settings/cms.py +17 -0
- ol_openedx_course_translations/settings/common.py +57 -30
- ol_openedx_course_translations/settings/lms.py +15 -0
- ol_openedx_course_translations/tasks.py +222 -0
- ol_openedx_course_translations/urls.py +16 -0
- ol_openedx_course_translations/utils/__init__.py +0 -0
- ol_openedx_course_translations/utils/command_utils.py +197 -0
- ol_openedx_course_translations/utils/constants.py +216 -0
- ol_openedx_course_translations/utils/course_translations.py +581 -0
- ol_openedx_course_translations/utils/translation_sync.py +808 -0
- ol_openedx_course_translations/views.py +73 -0
- ol_openedx_course_translations-0.3.0.dist-info/METADATA +407 -0
- ol_openedx_course_translations-0.3.0.dist-info/RECORD +35 -0
- ol_openedx_course_translations-0.3.0.dist-info/entry_points.txt +5 -0
- ol_openedx_course_translations-0.1.0.dist-info/METADATA +0 -63
- ol_openedx_course_translations-0.1.0.dist-info/RECORD +0 -11
- ol_openedx_course_translations-0.1.0.dist-info/entry_points.txt +0 -2
- {ol_openedx_course_translations-0.1.0.dist-info → ol_openedx_course_translations-0.3.0.dist-info}/WHEEL +0 -0
- {ol_openedx_course_translations-0.1.0.dist-info → ol_openedx_course_translations-0.3.0.dist-info}/licenses/LICENSE.txt +0 -0
|
@@ -0,0 +1,175 @@
|
|
|
1
|
+
# PT-BR HINTS
|
|
2
|
+
## TERM MAPPINGS
|
|
3
|
+
These are preferred terminology choices for this language. Use them whenever they sound natural; adapt freely if context requires.
|
|
4
|
+
|
|
5
|
+
- 'accuracy' -> 'precisão'
|
|
6
|
+
- 'activation function' -> 'função de ativação'
|
|
7
|
+
- 'artificial intelligence' -> 'inteligência artificial'
|
|
8
|
+
- 'AUC' -> 'AUC'
|
|
9
|
+
- 'AUC (Area under the ROC curve)' -> 'AUC (área sob a curva ROC)'
|
|
10
|
+
- 'backpropagation' -> 'retropropagação'
|
|
11
|
+
- 'batch' -> 'lote'
|
|
12
|
+
- 'batch size' -> 'tamanho do lote'
|
|
13
|
+
- 'bias (ethics/fairness)' -> 'viés (ética/justiça)'
|
|
14
|
+
- 'bias (math) or bias term' -> 'viés (matemática) ou termo de viés'
|
|
15
|
+
- 'bias in ethics and fairness' -> 'viés em ética e justiça'
|
|
16
|
+
- 'bias term' -> 'termo de viés'
|
|
17
|
+
- 'binary classification' -> 'classificação binária'
|
|
18
|
+
- 'bucketing' -> 'agrupamento por classes'
|
|
19
|
+
- 'categorical' -> 'categórico'
|
|
20
|
+
- 'categorical data' -> 'dados categóricos'
|
|
21
|
+
- 'class' -> 'classe'
|
|
22
|
+
- 'class-imbalanced dataset' -> 'conjunto de dados não balanceado'
|
|
23
|
+
- 'class-imbalanced datasets' -> 'conjuntos de dados com classes desbalanceadas'
|
|
24
|
+
- 'classification' -> 'classificação'
|
|
25
|
+
- 'classification model' -> 'modelo de classificação'
|
|
26
|
+
- 'classification threshold' -> 'limiar de classificação'
|
|
27
|
+
- 'classifier' -> 'classificador'
|
|
28
|
+
- 'clipping' -> 'corte'
|
|
29
|
+
- 'confusion matrix' -> 'matriz de confusão'
|
|
30
|
+
- 'continuous feature' -> 'atributo contínuo'
|
|
31
|
+
- 'convergence' -> 'convergência'
|
|
32
|
+
- 'data set or dataset' -> 'conjunto de dados'
|
|
33
|
+
- 'DataFrame' -> 'DataFrame'
|
|
34
|
+
- 'dataset' -> 'conjunto de dados'
|
|
35
|
+
- 'deep learning' -> 'aprendizado profundo'
|
|
36
|
+
- 'deep model' -> 'modelo profundo'
|
|
37
|
+
- 'dense feature' -> 'atributo denso'
|
|
38
|
+
- 'depth' -> 'profundidade'
|
|
39
|
+
- 'discrete feature' -> 'atributo discreto'
|
|
40
|
+
- 'discrete features' -> 'recursos discretos'
|
|
41
|
+
- 'dynamic' -> 'dinâmico'
|
|
42
|
+
- 'dynamic model' -> 'modelo dinâmico'
|
|
43
|
+
- 'early stopping' -> 'parada antecipada'
|
|
44
|
+
- 'embedding layer' -> 'camada de embedding'
|
|
45
|
+
- 'embedding layers' -> 'camadas de embedding'
|
|
46
|
+
- 'epoch' -> 'época'
|
|
47
|
+
- 'example' -> 'exemplo'
|
|
48
|
+
- 'false negative (FN)' -> 'falso negativo (FN)'
|
|
49
|
+
- 'false negatives' -> 'falsos negativos'
|
|
50
|
+
- 'false positive (FP)' -> 'falso positivo (FP)'
|
|
51
|
+
- 'false positive rate' -> 'taxa de falso positivo'
|
|
52
|
+
- 'false positive rate (FPR)' -> 'taxa de falso positivo (FPR)'
|
|
53
|
+
- 'false positives' -> 'falsos positivos'
|
|
54
|
+
- 'feature' -> 'recurso'
|
|
55
|
+
- 'feature cross' -> 'cruzamento de atributos'
|
|
56
|
+
- 'feature crosses' -> 'cruzamentos de recursos'
|
|
57
|
+
- 'feature engineering' -> 'engenharia de atributos'
|
|
58
|
+
- 'feature set' -> 'conjunto de atributos'
|
|
59
|
+
- 'feature vector' -> 'vetor de atributos'
|
|
60
|
+
- 'feedback loop' -> 'ciclo de feedback'
|
|
61
|
+
- 'generalization' -> 'generalização'
|
|
62
|
+
- 'generalization curve' -> 'curva de generalização'
|
|
63
|
+
- 'gradient descent' -> 'gradiente descendente'
|
|
64
|
+
- 'ground truth' -> 'informações empíricas'
|
|
65
|
+
- 'hidden layer' -> 'camada oculta'
|
|
66
|
+
- 'hidden layer(s)' -> 'camadas ocultas'
|
|
67
|
+
- 'hyperparameter' -> 'hiperparâmetro'
|
|
68
|
+
- 'independently and identically distributed (i.i.d)' -> 'independente e identicamente distribuído (i.i.d)'
|
|
69
|
+
- 'inference' -> 'inferência'
|
|
70
|
+
- 'input layer' -> 'camada de entrada'
|
|
71
|
+
- 'interpretability' -> 'interpretabilidade'
|
|
72
|
+
- 'iteration' -> 'iteração'
|
|
73
|
+
- 'L0regularization' -> 'Regularização L0'
|
|
74
|
+
- 'L1loss' -> 'L1'
|
|
75
|
+
- 'L1regularization' -> 'regularização L1'
|
|
76
|
+
- 'L2loss' -> 'perda L2'
|
|
77
|
+
- 'L2regularization' -> 'regularizaçãoL2'
|
|
78
|
+
- 'label' -> 'o rótulo.'
|
|
79
|
+
- 'labeled example' -> 'exemplo rotulado'
|
|
80
|
+
- 'lambda' -> 'lambda'
|
|
81
|
+
- 'layer' -> 'layer'
|
|
82
|
+
- 'learning rate' -> 'taxa de aprendizado'
|
|
83
|
+
- 'linear' -> 'linear'
|
|
84
|
+
- 'linear model' -> 'modelo linear'
|
|
85
|
+
- 'linear models' -> 'modelos lineares'
|
|
86
|
+
- 'linear regression' -> 'regressão linear'
|
|
87
|
+
- 'Log Loss' -> 'perda logarítmica'
|
|
88
|
+
- 'log-odds' -> 'log-odds'
|
|
89
|
+
- 'logistic regression' -> 'regressão logística'
|
|
90
|
+
- 'loss' -> 'perda'
|
|
91
|
+
- 'loss curve' -> 'curva de perda'
|
|
92
|
+
- 'loss function' -> 'função de perda'
|
|
93
|
+
- 'machine learning' -> 'machine learning'
|
|
94
|
+
- 'majority class' -> 'classe majoritária'
|
|
95
|
+
- 'mini-batch' -> 'minilote'
|
|
96
|
+
- 'minority class' -> 'classe minoritária'
|
|
97
|
+
- 'model' -> 'modelo'
|
|
98
|
+
- 'multi-class classification' -> 'classificação multiclasse'
|
|
99
|
+
- 'negative class' -> 'classe negativa'
|
|
100
|
+
- 'negative classes' -> 'classes negativas'
|
|
101
|
+
- 'neural network' -> 'do feedforward'
|
|
102
|
+
- 'neural networks' -> 'redes neurais'
|
|
103
|
+
- 'neuron' -> 'neurônio'
|
|
104
|
+
- 'node (neural network)' -> 'nó (rede neural)'
|
|
105
|
+
- 'nonlinear' -> 'não linear'
|
|
106
|
+
- 'nonstationarity' -> 'não estacionariedade'
|
|
107
|
+
- 'normalization' -> 'normalização'
|
|
108
|
+
- 'numerical data' -> 'dados numéricos'
|
|
109
|
+
- 'offline' -> 'off-line'
|
|
110
|
+
- 'offline inference' -> 'inferência off-line'
|
|
111
|
+
- 'one-hot encoding' -> 'codificação one-hot'
|
|
112
|
+
- 'one-hot vector' -> 'vetor one-hot'
|
|
113
|
+
- 'one-vs.-all' -> 'um-contra-todos'
|
|
114
|
+
- 'online' -> 'on-line'
|
|
115
|
+
- 'online inference' -> 'inferência on-line'
|
|
116
|
+
- 'output layer' -> 'camada de saída'
|
|
117
|
+
- 'output layers' -> 'camadas de saída'
|
|
118
|
+
- 'overfitting' -> 'overfitting'
|
|
119
|
+
- 'pandas' -> 'pandas'
|
|
120
|
+
- 'parameter' -> 'parâmetro'
|
|
121
|
+
- 'positive class' -> 'classe positiva'
|
|
122
|
+
- 'positive classes' -> 'classes positivas'
|
|
123
|
+
- 'post-processing' -> 'pós-processamento'
|
|
124
|
+
- 'precision' -> 'precision'
|
|
125
|
+
- 'prediction' -> 'previsão'
|
|
126
|
+
- 'proxy labels' -> 'rotulação indireta'
|
|
127
|
+
- 'RAG' -> 'RAG'
|
|
128
|
+
- 'rater' -> 'rotulador'
|
|
129
|
+
- 'recall' -> 'recall'
|
|
130
|
+
- 'Rectified Linear Unit (ReLU)' -> 'Unidade linear retificada (ReLU)'
|
|
131
|
+
- 'regression model' -> 'modelo de regressão'
|
|
132
|
+
- 'regularization' -> 'regularização'
|
|
133
|
+
- 'regularization rate' -> 'taxa de regularização'
|
|
134
|
+
- 'ReLU' -> 'ReLU'
|
|
135
|
+
- 'retrieval-augmented generation' -> 'geração aumentada de recuperação'
|
|
136
|
+
- 'retrieval-augmented generation (RAG)' -> 'geração aumentada de recuperação (RAG)'
|
|
137
|
+
- 'ROC (receiver operating characteristic) Curve' -> 'Curva ROC'
|
|
138
|
+
- 'ROC curve' -> 'curva ROC'
|
|
139
|
+
- 'Root Mean Squared Error (RMSE)' -> 'Raiz do erro quadrático médio (RMSE)'
|
|
140
|
+
- 'sigmoid function' -> 'função sigmoide'
|
|
141
|
+
- 'softmax' -> 'softmax'
|
|
142
|
+
- 'sparse feature' -> 'atributo esparso'
|
|
143
|
+
- 'sparse representation' -> 'representação esparsa'
|
|
144
|
+
- 'sparse vector' -> 'vetor esparso'
|
|
145
|
+
- 'squared loss' -> 'perda quadrática'
|
|
146
|
+
- 'static' -> 'static'
|
|
147
|
+
- 'static inference' -> 'inferência estática'
|
|
148
|
+
- 'static model' -> 'modelo estático'
|
|
149
|
+
- 'stationarity' -> 'estacionariedade'
|
|
150
|
+
- 'Stochastic Gradient Descent (SGD)' -> 'Gradiente descendente estocástico (GDE)'
|
|
151
|
+
- 'supervised learning' -> 'aprendizado supervisionado'
|
|
152
|
+
- 'supervised machine learning' -> 'aprendizado de máquina supervisionado'
|
|
153
|
+
- 'synthetic feature' -> 'atributo sintético'
|
|
154
|
+
- 'synthetic features' -> 'recursos sintéticos'
|
|
155
|
+
- 'test loss' -> 'perda de teste'
|
|
156
|
+
- 'training' -> 'treinamento'
|
|
157
|
+
- 'training loss' -> 'perda de treinamento'
|
|
158
|
+
- 'training set' -> 'conjunto de treinamento'
|
|
159
|
+
- 'training-serving skew' -> 'desvio entre treinamento e disponibilização'
|
|
160
|
+
- 'true negative (TN)' -> 'verdadeiro negativo (VN)'
|
|
161
|
+
- 'true negatives' -> 'verdadeiros negativos'
|
|
162
|
+
- 'true positive (TP)' -> 'verdadeiro positivo (VP)'
|
|
163
|
+
- 'true positive rate' -> 'taxa de verdadeiros positivos'
|
|
164
|
+
- 'true positive rate (TPR)' -> 'taxa de verdadeiro positivo (TVP)'
|
|
165
|
+
- 'true positives' -> 'verdadeiros positivos'
|
|
166
|
+
- 'underfitting' -> 'underfitting'
|
|
167
|
+
- 'unlabeled example' -> 'exemplo sem rótulo'
|
|
168
|
+
- 'unsupervised machine learning' -> 'aprendizado de máquina sem supervisão'
|
|
169
|
+
- 'validation' -> 'validação'
|
|
170
|
+
- 'validation dataset' -> 'conjunto de dados de validação'
|
|
171
|
+
- 'validation loss' -> 'perda de validação'
|
|
172
|
+
- 'validation set' -> 'conjunto de validação'
|
|
173
|
+
- 'weight' -> 'peso'
|
|
174
|
+
- 'weighted sum' -> 'soma de pesos'
|
|
175
|
+
- 'Z-score normalization' -> 'Normalização de pontuação Z'
|
|
@@ -0,0 +1,213 @@
|
|
|
1
|
+
# RU HINTS
|
|
2
|
+
## TERM MAPPINGS
|
|
3
|
+
These are preferred terminology choices for this language. Use them whenever they sound natural; adapt freely if context requires.
|
|
4
|
+
|
|
5
|
+
- 'accuracy' -> «точность»
|
|
6
|
+
- 'activation function' -> «функция активации»
|
|
7
|
+
- 'artificial intelligence' -> «искусственный интеллект»
|
|
8
|
+
- 'AUC' -> «AUC»
|
|
9
|
+
- 'AUC (Area under the ROC curve)' -> «AUC (площадь под ROC-кривой)»
|
|
10
|
+
- 'backpropagation' -> «обратное распространение»
|
|
11
|
+
- 'batch' -> «партия»
|
|
12
|
+
- 'batch size' -> «размер партии»
|
|
13
|
+
- 'bias (ethics/fairness)' -> «предвзятость (этика/справедливость)»
|
|
14
|
+
- 'bias (math) or bias term' -> «предвзятость (математика) или термин предвзятости»
|
|
15
|
+
- 'bias in ethics and fairness' -> «предвзятостью в этике и справедливости»
|
|
16
|
+
- 'bias term' -> «термином «смещение»»
|
|
17
|
+
- 'binary classification' -> «бинарная классификация»
|
|
18
|
+
- 'bucketing' -> «распределение»
|
|
19
|
+
- 'categorical' -> «категориальном»
|
|
20
|
+
- 'categorical data' -> «категориальные данные»
|
|
21
|
+
- 'class' -> «сорт»
|
|
22
|
+
- 'class-imbalanced dataset' -> «набор данных с несбалансированным классом»
|
|
23
|
+
- 'class-imbalanced datasets' -> «несбалансированные по классам наборы данных»
|
|
24
|
+
- 'classification' -> «классификации»
|
|
25
|
+
- 'classification model' -> «модель классификации»
|
|
26
|
+
- 'classification threshold' -> «порог классификации»
|
|
27
|
+
- 'classifier' -> «классификатор»
|
|
28
|
+
- 'clipping' -> «вырезка»
|
|
29
|
+
- 'confusion matrix' -> «матрица путаницы»
|
|
30
|
+
- 'continuous feature' -> «непрерывная функция»
|
|
31
|
+
- 'convergence' -> «конвергенция»
|
|
32
|
+
- 'data set or dataset' -> «набор данных или набор данных»
|
|
33
|
+
- 'DataFrame' -> «DataFrame»
|
|
34
|
+
- 'dataset' -> «Набор данных»
|
|
35
|
+
- 'deep learning' -> «глубоком обучении»
|
|
36
|
+
- 'deep model' -> «глубокая модель»
|
|
37
|
+
- 'dense feature' -> «плотная особенность»
|
|
38
|
+
- 'depth' -> «глубина»
|
|
39
|
+
- 'discrete feature' -> «дискретная особенность»
|
|
40
|
+
- 'discrete features' -> «дискретными признаками»
|
|
41
|
+
- 'dynamic' -> «динамический»
|
|
42
|
+
- 'dynamic model' -> «динамическая модель»
|
|
43
|
+
- 'early stopping' -> «ранняя остановка»
|
|
44
|
+
- 'embedding layer' -> «слой внедрения»
|
|
45
|
+
- 'embedding layers' -> «встраиваемых слоев»
|
|
46
|
+
- 'epoch' -> «эпоха»
|
|
47
|
+
- 'example' -> «пример»
|
|
48
|
+
- 'false negative (FN)' -> «ложноотрицательный результат (ЛО)»
|
|
49
|
+
- 'false negatives' -> «ложноотрицательных результатов»
|
|
50
|
+
- 'false positive (FP)' -> «ложноположительный результат (ЛП)»
|
|
51
|
+
- 'false positive rate' -> «false positive rate»
|
|
52
|
+
- 'false positive rate (FPR)' -> «частота ложноположительных результатов (FPR)»
|
|
53
|
+
- 'false positives' -> «ложноположительных результатов»
|
|
54
|
+
- 'feature' -> «особенность»
|
|
55
|
+
- 'feature cross' -> «кросс-функция»
|
|
56
|
+
- 'feature crosses' -> «пересечение признаков»
|
|
57
|
+
- 'feature engineering' -> «проектирование функций»
|
|
58
|
+
- 'feature set' -> «набор функций»
|
|
59
|
+
- 'feature vector' -> «вектор признаков»
|
|
60
|
+
- 'feedback loop' -> «петля обратной связи»
|
|
61
|
+
- 'generalization' -> «обобщение»
|
|
62
|
+
- 'generalization curve' -> «кривая обобщения»
|
|
63
|
+
- 'gradient descent' -> «градиентный спуск»
|
|
64
|
+
- 'ground truth' -> «истина»
|
|
65
|
+
- 'hidden layer' -> «скрытый слой»
|
|
66
|
+
- 'hidden layer(s)' -> «скрытых слоях»
|
|
67
|
+
- 'hyperparameter' -> «гиперпараметр»
|
|
68
|
+
- 'independently and identically distributed (i.i.d)' -> «независимо и одинаково распределены (iid)»
|
|
69
|
+
- 'inference' -> «вывод»
|
|
70
|
+
- 'input layer' -> «входной слой»
|
|
71
|
+
- 'interpretability' -> «интерпретируемость»
|
|
72
|
+
- 'iteration' -> «итерация»
|
|
73
|
+
- 'L0regularization' -> «L0регуляризация»
|
|
74
|
+
- 'L1loss' -> «потеряL1»
|
|
75
|
+
- 'L1regularization' -> «регуляризации L1»
|
|
76
|
+
- 'L2loss' -> «Потери L2»
|
|
77
|
+
- 'L2regularization' -> «регуляризацииL2»
|
|
78
|
+
- 'label' -> «этикетка»
|
|
79
|
+
- 'labeled example' -> «помеченный пример»
|
|
80
|
+
- 'lambda' -> «лямбда»
|
|
81
|
+
- 'layer' -> «слой»
|
|
82
|
+
- 'learning rate' -> «скорость обучения»
|
|
83
|
+
- 'linear' -> «линейный»
|
|
84
|
+
- 'linear model' -> «линейная модель»
|
|
85
|
+
- 'linear models' -> «линейных моделях»
|
|
86
|
+
- 'linear regression' -> «линейная регрессия»
|
|
87
|
+
- 'Log Loss' -> «Log Loss»
|
|
88
|
+
- 'log-odds' -> «логарифмические шансы»
|
|
89
|
+
- 'logistic regression' -> «логистическая регрессия»
|
|
90
|
+
- 'loss' -> «потеря»
|
|
91
|
+
- 'loss curve' -> «кривая потерь»
|
|
92
|
+
- 'loss function' -> «функция потерь»
|
|
93
|
+
- 'machine learning' -> «машинное обучение»
|
|
94
|
+
- 'majority class' -> «класс большинства»
|
|
95
|
+
- 'mini-batch' -> «мини-партия»
|
|
96
|
+
- 'minority class' -> «класс меньшинства»
|
|
97
|
+
- 'model' -> «модель»
|
|
98
|
+
- 'multi-class classification' -> «многоклассовой классификацией»
|
|
99
|
+
- 'negative class' -> «отрицательный класс»
|
|
100
|
+
- 'negative classes' -> «отрицательные классы»
|
|
101
|
+
- 'neural network' -> «нейронная сеть»
|
|
102
|
+
- 'neural networks' -> «нейронным сетям»
|
|
103
|
+
- 'neuron' -> «нейрон»
|
|
104
|
+
- 'node (neural network)' -> «узел (нейронная сеть)»
|
|
105
|
+
- 'nonlinear' -> «нелинейный»
|
|
106
|
+
- 'nonstationarity' -> «нестационарность»
|
|
107
|
+
- 'normalization' -> «нормализация»
|
|
108
|
+
- 'numerical data' -> «числовые данные»
|
|
109
|
+
- 'offline' -> «офлайн»
|
|
110
|
+
- 'offline inference' -> «автономный вывод»
|
|
111
|
+
- 'one-hot encoding' -> «горячее кодирование»
|
|
112
|
+
- 'one-hot vector' -> «вектор с одним целым»
|
|
113
|
+
- 'one-vs.-all' -> «один против всех»
|
|
114
|
+
- 'online' -> «онлайн»
|
|
115
|
+
- 'online inference' -> «онлайн-вывод»
|
|
116
|
+
- 'output layer' -> «выходной слой»
|
|
117
|
+
- 'output layers' -> «выходных слоев»
|
|
118
|
+
- 'overfitting' -> «переобучение»
|
|
119
|
+
- 'pandas' -> «панды»
|
|
120
|
+
- 'parameter' -> «параметр»
|
|
121
|
+
- 'positive class' -> «позитивный класс»
|
|
122
|
+
- 'positive classes' -> «положительные»
|
|
123
|
+
- 'post-processing' -> «постобработка»
|
|
124
|
+
- 'precision' -> «точность»
|
|
125
|
+
- 'prediction' -> «прогноз»
|
|
126
|
+
- 'proxy labels' -> «прокси-метки»
|
|
127
|
+
- 'RAG' -> «ТРЯПКА»
|
|
128
|
+
- 'rater' -> «оценщик»
|
|
129
|
+
- 'recall' -> «отзывать»
|
|
130
|
+
- 'Rectified Linear Unit (ReLU)' -> «Rectified Linear Unit (ReLU)»
|
|
131
|
+
- 'regression model' -> «регрессионная модель»
|
|
132
|
+
- 'regularization' -> «регуляризация»
|
|
133
|
+
- 'regularization rate' -> «regularization rate»
|
|
134
|
+
- 'ReLU' -> «РеЛУ»
|
|
135
|
+
- 'retrieval-augmented generation' -> «генерации с расширенным поиском»
|
|
136
|
+
- 'retrieval-augmented generation (RAG)' -> «retrieval-augmented generation (RAG)»
|
|
137
|
+
- 'ROC (receiver operating characteristic) Curve' -> «ROC (receiver operating characteristic) Curve»
|
|
138
|
+
- 'ROC curve' -> «ROC-кривой»
|
|
139
|
+
- 'Root Mean Squared Error (RMSE)' -> «Root Mean Squared Error (RMSE)»
|
|
140
|
+
- 'sigmoid function' -> «sigmoid function»
|
|
141
|
+
- 'softmax' -> «софтмакс»
|
|
142
|
+
- 'sparse feature' -> «sparse feature»
|
|
143
|
+
- 'sparse representation' -> «sparse representation»
|
|
144
|
+
- 'sparse vector' -> «sparse vector»
|
|
145
|
+
- 'squared loss' -> «квадрат потерь»
|
|
146
|
+
- 'static' -> «статический»
|
|
147
|
+
- 'static inference' -> «static inference»
|
|
148
|
+
- 'static model' -> «статической моделью»
|
|
149
|
+
- 'stationarity' -> «стационарность»
|
|
150
|
+
- 'Stochastic Gradient Descent (SGD)' -> «Стохастический градиентный спуск (SGD)»
|
|
151
|
+
- 'supervised learning' -> «контролируемом обучении»
|
|
152
|
+
- 'supervised machine learning' -> «контролируемое машинное обучение»
|
|
153
|
+
- 'synthetic feature' -> «synthetic feature»
|
|
154
|
+
- 'synthetic features' -> «синтетические признаки»
|
|
155
|
+
- 'test loss' -> «test loss»
|
|
156
|
+
- 'training' -> «обучение»
|
|
157
|
+
- 'training loss' -> «training loss»
|
|
158
|
+
- 'training set' -> «обучающий набор»
|
|
159
|
+
- 'training-serving skew' -> «training-serving skew»
|
|
160
|
+
- 'true negative (TN)' -> «true negative (TN)»
|
|
161
|
+
- 'true negatives' -> «истинно отрицательных результатов»
|
|
162
|
+
- 'true positive (TP)' -> «true positive (TP)»
|
|
163
|
+
- 'true positive rate' -> «истинный положительный уровень»
|
|
164
|
+
- 'true positive rate (TPR)' -> «true positive rate (TPR)»
|
|
165
|
+
- 'true positives' -> «истинно положительных результатов»
|
|
166
|
+
- 'underfitting' -> «недообучение»
|
|
167
|
+
- 'unlabeled example' -> «unlabeled example»
|
|
168
|
+
- 'unsupervised machine learning' -> «неконтролируемое машинное обучение»
|
|
169
|
+
- 'validation' -> «проверка»
|
|
170
|
+
- 'validation dataset' -> «проверочном наборе данных»
|
|
171
|
+
- 'validation loss' -> «validation loss»
|
|
172
|
+
- 'validation set' -> «набор для проверки»
|
|
173
|
+
- 'weight' -> «масса»
|
|
174
|
+
- 'weighted sum' -> «взвешенная сумма»
|
|
175
|
+
- 'Z-score normalization' -> «нормализацию Z-показателя»
|
|
176
|
+
|
|
177
|
+
# STRICTNESS NOTE
|
|
178
|
+
TERM MAPPINGS above are flexible preferences. The following rules are STRICT and override them.
|
|
179
|
+
|
|
180
|
+
## 2. Strict, Binding Terminology Rules (MANDATORY)
|
|
181
|
+
This section defines terminology and formatting that must always be used in Russian translations.
|
|
182
|
+
These rules override any flexible terminology and must be followed exactly.
|
|
183
|
+
|
|
184
|
+
# MANDATORY RUSSIAN TERMINOLOGY RULES
|
|
185
|
+
## 2.1 Key Translations (Strict)
|
|
186
|
+
- 'Shared learning' -> «совместное обучение»
|
|
187
|
+
AVOID: «общее обучение».
|
|
188
|
+
- 'Multisource data' -> «данные из нескольких источников»
|
|
189
|
+
AVOID: «мультиисточниковые данные».
|
|
190
|
+
- 'Input embedding' -> «входное векторное представление (эмбеддинг)»
|
|
191
|
+
- 'Embedding' -> «эмбеддинг»
|
|
192
|
+
- 'Embedding space' -> «пространство представлений (пространство эмбеддингов)»
|
|
193
|
+
- 'Task-specific branches' -> «ветви, специфичные для задачи»
|
|
194
|
+
- 'Pipeline' -> «конвейер обработки данных»
|
|
195
|
+
«пайплайн» допускается только в неформальном контексте.
|
|
196
|
+
|
|
197
|
+
## 2.2 Official Google Colab UI (Strict)
|
|
198
|
+
Use the official Russian UI strings:
|
|
199
|
+
- 'Change Runtime Type' -> «Сменить среду выполнения»
|
|
200
|
+
- 'Save a copy in Drive' -> «Сохранить копию на Диске»
|
|
201
|
+
|
|
202
|
+
Filenames must remain in ENGLISH exactly as written.
|
|
203
|
+
Example: «Копия блокнота OriginalNotebookName.ipynb»
|
|
204
|
+
|
|
205
|
+
## 2.3 Abbreviations and Hyphenation (Strict)
|
|
206
|
+
Keep all ML/AI abbreviations in English: ROC, AUC, TPR, FPR, L1, L2, UI, API, CNN, RNN, GPT.
|
|
207
|
+
Do NOT invent Russian abbreviations for these.
|
|
208
|
+
|
|
209
|
+
When an English abbreviation precedes a Russian noun, use a hyphen:
|
|
210
|
+
- ROC-кривая
|
|
211
|
+
- AUC-показатель
|
|
212
|
+
- L1-регуляризация
|
|
213
|
+
- UI-дизайн
|