ol-openedx-course-translations 0.1.0__py3-none-any.whl → 0.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ol-openedx-course-translations might be problematic. Click here for more details.

Files changed (35) hide show
  1. ol_openedx_course_translations/apps.py +12 -2
  2. ol_openedx_course_translations/glossaries/machine_learning/ar.txt +175 -0
  3. ol_openedx_course_translations/glossaries/machine_learning/de.txt +175 -0
  4. ol_openedx_course_translations/glossaries/machine_learning/el.txt +988 -0
  5. ol_openedx_course_translations/glossaries/machine_learning/es.txt +175 -0
  6. ol_openedx_course_translations/glossaries/machine_learning/fr.txt +175 -0
  7. ol_openedx_course_translations/glossaries/machine_learning/ja.txt +175 -0
  8. ol_openedx_course_translations/glossaries/machine_learning/pt-br.txt +175 -0
  9. ol_openedx_course_translations/glossaries/machine_learning/ru.txt +213 -0
  10. ol_openedx_course_translations/management/commands/sync_and_translate_language.py +1866 -0
  11. ol_openedx_course_translations/management/commands/translate_course.py +419 -470
  12. ol_openedx_course_translations/middleware.py +143 -0
  13. ol_openedx_course_translations/providers/__init__.py +1 -0
  14. ol_openedx_course_translations/providers/base.py +278 -0
  15. ol_openedx_course_translations/providers/deepl_provider.py +292 -0
  16. ol_openedx_course_translations/providers/llm_providers.py +565 -0
  17. ol_openedx_course_translations/settings/cms.py +17 -0
  18. ol_openedx_course_translations/settings/common.py +57 -30
  19. ol_openedx_course_translations/settings/lms.py +15 -0
  20. ol_openedx_course_translations/tasks.py +222 -0
  21. ol_openedx_course_translations/urls.py +16 -0
  22. ol_openedx_course_translations/utils/__init__.py +0 -0
  23. ol_openedx_course_translations/utils/command_utils.py +197 -0
  24. ol_openedx_course_translations/utils/constants.py +216 -0
  25. ol_openedx_course_translations/utils/course_translations.py +581 -0
  26. ol_openedx_course_translations/utils/translation_sync.py +808 -0
  27. ol_openedx_course_translations/views.py +73 -0
  28. ol_openedx_course_translations-0.3.0.dist-info/METADATA +407 -0
  29. ol_openedx_course_translations-0.3.0.dist-info/RECORD +35 -0
  30. ol_openedx_course_translations-0.3.0.dist-info/entry_points.txt +5 -0
  31. ol_openedx_course_translations-0.1.0.dist-info/METADATA +0 -63
  32. ol_openedx_course_translations-0.1.0.dist-info/RECORD +0 -11
  33. ol_openedx_course_translations-0.1.0.dist-info/entry_points.txt +0 -2
  34. {ol_openedx_course_translations-0.1.0.dist-info → ol_openedx_course_translations-0.3.0.dist-info}/WHEEL +0 -0
  35. {ol_openedx_course_translations-0.1.0.dist-info → ol_openedx_course_translations-0.3.0.dist-info}/licenses/LICENSE.txt +0 -0
@@ -0,0 +1,175 @@
1
+ # ES HINTS
2
+ ## TERM MAPPINGS
3
+ These are preferred terminology choices for this language. Use them whenever they sound natural; adapt freely if context requires.
4
+
5
+ - 'accuracy' -> 'exactitud'
6
+ - 'activation function' -> 'función de activación'
7
+ - 'artificial intelligence' -> 'inteligencia artificial'
8
+ - 'AUC' -> 'AUC'
9
+ - 'AUC (Area under the ROC curve)' -> 'AUC (área bajo la curva ROC)'
10
+ - 'backpropagation' -> 'propagación inversa'
11
+ - 'batch' -> 'lote'
12
+ - 'batch size' -> 'tamaño del lote'
13
+ - 'bias (ethics/fairness)' -> 'sesgo (ética/equidad)'
14
+ - 'bias (math) or bias term' -> 'ordenada al origen (matemática) o término de sesgo'
15
+ - 'bias in ethics and fairness' -> 'sesgo en ética y equidad'
16
+ - 'bias term' -> 'término de sesgo'
17
+ - 'binary classification' -> 'Clasificación binaria'
18
+ - 'bucketing' -> 'Agrupamiento'
19
+ - 'categorical' -> 'categórico'
20
+ - 'categorical data' -> 'datos categóricos'
21
+ - 'class' -> 'clase'
22
+ - 'class-imbalanced dataset' -> 'conjunto de datos con desequilibrio de clases'
23
+ - 'class-imbalanced datasets' -> 'conjuntos de datos con desequilibrio de clases'
24
+ - 'classification' -> 'clasificación'
25
+ - 'classification model' -> 'modelo de clasificación'
26
+ - 'classification threshold' -> 'umbral de clasificación'
27
+ - 'classifier' -> 'clasificador'
28
+ - 'clipping' -> 'recorte'
29
+ - 'confusion matrix' -> 'matriz de confusión'
30
+ - 'continuous feature' -> 'atributo continuo'
31
+ - 'convergence' -> 'convergencia'
32
+ - 'data set or dataset' -> 'conjunto de datos (data set o dataset)'
33
+ - 'DataFrame' -> 'DataFrame'
34
+ - 'dataset' -> 'conjunto de datos'
35
+ - 'deep learning' -> 'aprendizaje profundo'
36
+ - 'deep model' -> 'modelo profundo'
37
+ - 'dense feature' -> 'atributo denso'
38
+ - 'depth' -> 'depth'
39
+ - 'discrete feature' -> 'atributo discreto'
40
+ - 'discrete features' -> 'atributos discretos'
41
+ - 'dynamic' -> 'dinámico'
42
+ - 'dynamic model' -> 'modelo dinámico'
43
+ - 'early stopping' -> 'Interrupción anticipada'
44
+ - 'embedding layer' -> 'Capa de embedding'
45
+ - 'embedding layers' -> 'capas de incorporación'
46
+ - 'epoch' -> 'época'
47
+ - 'example' -> 'ejemplo'
48
+ - 'false negative (FN)' -> 'falso negativo (FN)'
49
+ - 'false negatives' -> 'falsos negativos'
50
+ - 'false positive (FP)' -> 'Falso positivo (FP)'
51
+ - 'false positive rate' -> 'tasa de falsos positivos'
52
+ - 'false positive rate (FPR)' -> 'tasa de falsos positivos (FPR)'
53
+ - 'false positives' -> 'falsos positivos'
54
+ - 'feature' -> 'función'
55
+ - 'feature cross' -> 'combinación de atributos'
56
+ - 'feature crosses' -> 'combinaciones de atributos'
57
+ - 'feature engineering' -> 'ingeniería de atributos.'
58
+ - 'feature set' -> 'conjunto de atributos'
59
+ - 'feature vector' -> 'vector de atributos'
60
+ - 'feedback loop' -> 'ciclo de retroalimentación'
61
+ - 'generalization' -> 'generalización'
62
+ - 'generalization curve' -> 'Curva de generalización'
63
+ - 'gradient descent' -> 'descenso de gradientes'
64
+ - 'ground truth' -> 'Verdad fundamental'
65
+ - 'hidden layer' -> 'Capa oculta'
66
+ - 'hidden layer(s)' -> 'capas ocultas'
67
+ - 'hyperparameter' -> 'hiperparámetro'
68
+ - 'independently and identically distributed (i.i.d)' -> 'independiente e idénticamente distribuido (i.i.d.)'
69
+ - 'inference' -> 'Inferencia'
70
+ - 'input layer' -> 'capa de entrada'
71
+ - 'interpretability' -> 'interpretabilidad'
72
+ - 'iteration' -> 'iteración'
73
+ - 'L0regularization' -> 'Regularización L0'
74
+ - 'L1loss' -> 'pérdida L1'
75
+ - 'L1regularization' -> 'regularización L1'
76
+ - 'L2loss' -> 'pérdida L2'
77
+ - 'L2regularization' -> 'regularización L2'
78
+ - 'label' -> 'etiqueta'
79
+ - 'labeled example' -> 'ejemplo etiquetado'
80
+ - 'lambda' -> 'lambda'
81
+ - 'layer' -> 'oculta'
82
+ - 'learning rate' -> 'Tasa de aprendizaje'
83
+ - 'linear' -> 'linear'
84
+ - 'linear model' -> 'modelo lineal'
85
+ - 'linear models' -> 'modelos lineales'
86
+ - 'linear regression' -> 'regresión lineal'
87
+ - 'Log Loss' -> 'pérdida logística'
88
+ - 'log-odds' -> 'Logaritmo de probabilidad'
89
+ - 'logistic regression' -> 'regresión logística'
90
+ - 'loss' -> 'pérdida'
91
+ - 'loss curve' -> 'Curva de pérdida'
92
+ - 'loss function' -> 'función de pérdida'
93
+ - 'machine learning' -> 'aprendizaje automático'
94
+ - 'majority class' -> 'clase mayoritaria'
95
+ - 'mini-batch' -> 'minilote'
96
+ - 'minority class' -> 'clase minoritaria'
97
+ - 'model' -> 'modelo'
98
+ - 'multi-class classification' -> 'clasificación de clases múltiples'
99
+ - 'negative class' -> 'clase negativa'
100
+ - 'negative classes' -> 'clases negativas'
101
+ - 'neural network' -> 'neuronal prealimentada'
102
+ - 'neural networks' -> 'redes neuronales'
103
+ - 'neuron' -> 'neurona'
104
+ - 'node (neural network)' -> 'nodo (red neuronal)'
105
+ - 'nonlinear' -> 'no lineal'
106
+ - 'nonstationarity' -> 'no estacionariedad'
107
+ - 'normalization' -> 'Normalización'
108
+ - 'numerical data' -> 'datos numéricos'
109
+ - 'offline' -> 'Sin conexión'
110
+ - 'offline inference' -> 'inferencia sin conexión'
111
+ - 'one-hot encoding' -> 'codificación one-hot'
112
+ - 'one-hot vector' -> 'vector de un solo 1'
113
+ - 'one-vs.-all' -> 'uno frente a todos'
114
+ - 'online' -> 'en línea'
115
+ - 'online inference' -> 'inferencia en línea'
116
+ - 'output layer' -> 'capa de salida'
117
+ - 'output layers' -> 'capas de salida'
118
+ - 'overfitting' -> 'sobreajuste'
119
+ - 'pandas' -> 'pandas'
120
+ - 'parameter' -> 'parámetro'
121
+ - 'positive class' -> 'clase positiva'
122
+ - 'positive classes' -> 'clases positivas'
123
+ - 'post-processing' -> 'posprocesamiento'
124
+ - 'precision' -> 'precision'
125
+ - 'prediction' -> 'predicción'
126
+ - 'proxy labels' -> 'etiquetas de proxy'
127
+ - 'RAG' -> 'RAG'
128
+ - 'rater' -> 'evaluador'
129
+ - 'recall' -> 'recall'
130
+ - 'Rectified Linear Unit (ReLU)' -> 'Unidad lineal rectificada (ReLU)'
131
+ - 'regression model' -> 'modelo de regresión'
132
+ - 'regularization' -> 'regularización'
133
+ - 'regularization rate' -> 'tasa de regularización'
134
+ - 'ReLU' -> 'ReLU'
135
+ - 'retrieval-augmented generation' -> 'generación aumentada por recuperación'
136
+ - 'retrieval-augmented generation (RAG)' -> 'Generación mejorada por recuperación (RAG)'
137
+ - 'ROC (receiver operating characteristic) Curve' -> 'Curva ROC (característica operativa del receptor)'
138
+ - 'ROC curve' -> 'curva ROC'
139
+ - 'Root Mean Squared Error (RMSE)' -> 'Raíz cuadrada del error cuadrático medio (RMSE)'
140
+ - 'sigmoid function' -> 'función sigmoidea'
141
+ - 'softmax' -> 'softmax'
142
+ - 'sparse feature' -> 'atributo disperso'
143
+ - 'sparse representation' -> 'representación dispersa'
144
+ - 'sparse vector' -> 'vector disperso'
145
+ - 'squared loss' -> 'Pérdida al cuadrado'
146
+ - 'static' -> 'static'
147
+ - 'static inference' -> 'Inferencia estática'
148
+ - 'static model' -> 'modelo estático'
149
+ - 'stationarity' -> 'Estacionariedad'
150
+ - 'Stochastic Gradient Descent (SGD)' -> 'Descenso de gradientes estocástico (SGD)'
151
+ - 'supervised learning' -> 'aprendizaje supervisado'
152
+ - 'supervised machine learning' -> 'aprendizaje automático supervisado'
153
+ - 'synthetic feature' -> 'atributo sintético'
154
+ - 'synthetic features' -> 'atributos sintéticos'
155
+ - 'test loss' -> 'Pérdida de prueba'
156
+ - 'training' -> 'entrenamiento'
157
+ - 'training loss' -> 'Pérdida de entrenamiento'
158
+ - 'training set' -> 'conjunto de entrenamiento'
159
+ - 'training-serving skew' -> 'Sesgo entre el entrenamiento y la entrega'
160
+ - 'true negative (TN)' -> 'verdadero negativo (VN)'
161
+ - 'true negatives' -> 'verdaderos negativos'
162
+ - 'true positive (TP)' -> 'verdadero positivo (VP)'
163
+ - 'true positive rate' -> 'tasa de verdaderos positivos'
164
+ - 'true positive rate (TPR)' -> 'tasa de verdaderos positivos (TVP)'
165
+ - 'true positives' -> 'verdaderos positivos'
166
+ - 'underfitting' -> 'Subajuste'
167
+ - 'unlabeled example' -> 'ejemplo sin etiqueta'
168
+ - 'unsupervised machine learning' -> 'aprendizaje automático no supervisado'
169
+ - 'validation' -> 'validación'
170
+ - 'validation dataset' -> 'conjunto de datos de validación'
171
+ - 'validation loss' -> 'Pérdida de validación'
172
+ - 'validation set' -> 'conjunto de validación'
173
+ - 'weight' -> 'peso'
174
+ - 'weighted sum' -> 'suma ponderada'
175
+ - 'Z-score normalization' -> 'normalización de la puntuación Z'
@@ -0,0 +1,175 @@
1
+ # FR HINTS
2
+ ## TERM MAPPINGS
3
+ These are preferred terminology choices for this language. Use them whenever they sound natural; adapt freely if context requires.
4
+
5
+ - 'accuracy' -> 'accuracy'
6
+ - 'activation function' -> 'fonction d'activation'
7
+ - 'artificial intelligence' -> 'intelligence artificielle'
8
+ - 'AUC' -> 'AUC'
9
+ - 'AUC (Area under the ROC curve)' -> 'AUC (aire sous la courbe ROC)'
10
+ - 'backpropagation' -> 'rétropropagation'
11
+ - 'batch' -> 'lot'
12
+ - 'batch size' -> 'taille du lot'
13
+ - 'bias (ethics/fairness)' -> 'biais (éthique/équité) (bias (ethics/fairness))'
14
+ - 'bias (math) or bias term' -> 'biais (mathématiques) ou terme de biais'
15
+ - 'bias in ethics and fairness' -> 'biais en matière d'éthique et d'équité'
16
+ - 'bias term' -> 'biais'
17
+ - 'binary classification' -> 'classification binaire'
18
+ - 'bucketing' -> 'le binning'
19
+ - 'categorical' -> 'catégorielle'
20
+ - 'categorical data' -> 'données catégorielles'
21
+ - 'class' -> 'classe'
22
+ - 'class-imbalanced dataset' -> 'ensemble de données avec déséquilibre des classes'
23
+ - 'class-imbalanced datasets' -> 'ensembles de données déséquilibrés en termes de classes'
24
+ - 'classification' -> 'classification'
25
+ - 'classification model' -> 'modèle de classification'
26
+ - 'classification threshold' -> 'seuil de classification'
27
+ - 'classifier' -> 'classificateur'
28
+ - 'clipping' -> 'écrêtage'
29
+ - 'confusion matrix' -> 'matrice de confusion'
30
+ - 'continuous feature' -> 'caractéristique continue'
31
+ - 'convergence' -> 'convergence'
32
+ - 'data set or dataset' -> 'ensemble de données (data set ou dataset)'
33
+ - 'DataFrame' -> 'DataFrame'
34
+ - 'dataset' -> 'ensemble de données'
35
+ - 'deep learning' -> 'deep learning'
36
+ - 'deep model' -> 'modèle deep learning'
37
+ - 'dense feature' -> 'caractéristique dense'
38
+ - 'depth' -> 'profondeur'
39
+ - 'discrete feature' -> 'caractéristique discrète'
40
+ - 'discrete features' -> 'caractéristiques discrètes'
41
+ - 'dynamic' -> 'dynamic'
42
+ - 'dynamic model' -> 'modèle dynamique'
43
+ - 'early stopping' -> 'arrêt prématuré'
44
+ - 'embedding layer' -> 'couche d'embedding'
45
+ - 'embedding layers' -> 'couches d'embedding'
46
+ - 'epoch' -> 'epoch'
47
+ - 'example' -> 'exemple'
48
+ - 'false negative (FN)' -> 'Faux négatif (FN)'
49
+ - 'false negatives' -> 'faux négatifs'
50
+ - 'false positive (FP)' -> 'Faux positif (FP)'
51
+ - 'false positive rate' -> 'taux de faux positifs'
52
+ - 'false positive rate (FPR)' -> 'taux de faux positifs (TFP) (false positive rate (FPR))'
53
+ - 'false positives' -> 'faux positifs'
54
+ - 'feature' -> 'fonctionnalité'
55
+ - 'feature cross' -> 'croisement de caractéristiques'
56
+ - 'feature crosses' -> 'caractéristiques croisées'
57
+ - 'feature engineering' -> 'l'ingénierie des caractéristiques.'
58
+ - 'feature set' -> 'ensemble de fonctionnalités'
59
+ - 'feature vector' -> 'vecteur de caractéristiques'
60
+ - 'feedback loop' -> 'boucle de rétroaction'
61
+ - 'generalization' -> 'généralisation'
62
+ - 'generalization curve' -> 'courbe de généralisation'
63
+ - 'gradient descent' -> 'descente de gradient'
64
+ - 'ground truth' -> 'vérité terrain'
65
+ - 'hidden layer' -> 'couche cachée'
66
+ - 'hidden layer(s)' -> 'couches cachées'
67
+ - 'hyperparameter' -> 'hyperparamètre'
68
+ - 'independently and identically distributed (i.i.d)' -> 'variables indépendantes et identiquement distribuées (i.i.d)'
69
+ - 'inference' -> 'inférence'
70
+ - 'input layer' -> 'couche d'entrée'
71
+ - 'interpretability' -> 'interprétabilité'
72
+ - 'iteration' -> 'itération'
73
+ - 'L0regularization' -> 'Régularisation L0'
74
+ - 'L1loss' -> 'perte L1'
75
+ - 'L1regularization' -> 'régularisationL1'
76
+ - 'L2loss' -> 'perte L2'
77
+ - 'L2regularization' -> 'régularisationL2'
78
+ - 'label' -> 'étiquette'
79
+ - 'labeled example' -> 'exemple étiqueté'
80
+ - 'lambda' -> 'lambda'
81
+ - 'layer' -> 'cachée)'
82
+ - 'learning rate' -> 'taux d'apprentissage'
83
+ - 'linear' -> 'linear'
84
+ - 'linear model' -> 'modèle linéaire'
85
+ - 'linear models' -> 'modèles linéaires'
86
+ - 'linear regression' -> 'régression linéaire'
87
+ - 'Log Loss' -> 'perte logistique'
88
+ - 'log-odds' -> 'logarithme de cote'
89
+ - 'logistic regression' -> 'régression logistique'
90
+ - 'loss' -> 'perte'
91
+ - 'loss curve' -> 'courbe de perte'
92
+ - 'loss function' -> 'fonction de perte'
93
+ - 'machine learning' -> 'machine learning'
94
+ - 'majority class' -> 'classe majoritaire'
95
+ - 'mini-batch' -> 'mini-lot'
96
+ - 'minority class' -> 'classe minoritaire'
97
+ - 'model' -> 'modèle'
98
+ - 'multi-class classification' -> 'classification à classes multiples'
99
+ - 'negative class' -> 'classe négative'
100
+ - 'negative classes' -> 'classes négatives'
101
+ - 'neural network' -> 'neurones feedforward'
102
+ - 'neural networks' -> 'réseaux de neurones'
103
+ - 'neuron' -> 'neurone'
104
+ - 'node (neural network)' -> 'nœud (réseau de neurones)'
105
+ - 'nonlinear' -> 'non linéaire'
106
+ - 'nonstationarity' -> 'non-stationnarité'
107
+ - 'normalization' -> 'normalisation'
108
+ - 'numerical data' -> 'données numériques'
109
+ - 'offline' -> 'Hors connexion'
110
+ - 'offline inference' -> 'inférence hors connexion'
111
+ - 'one-hot encoding' -> 'Encodage one-hot'
112
+ - 'one-hot vector' -> 'vecteur one-hot'
113
+ - 'one-vs.-all' -> 'un contre tous'
114
+ - 'online' -> 'online'
115
+ - 'online inference' -> 'inférence en ligne'
116
+ - 'output layer' -> 'couche de sortie'
117
+ - 'output layers' -> 'couches de sortie'
118
+ - 'overfitting' -> 'surapprentissage'
119
+ - 'pandas' -> 'pandas'
120
+ - 'parameter' -> 'paramètre'
121
+ - 'positive class' -> 'classe positive'
122
+ - 'positive classes' -> 'classes positives'
123
+ - 'post-processing' -> 'post-traitement'
124
+ - 'precision' -> 'precision'
125
+ - 'prediction' -> 'prédiction'
126
+ - 'proxy labels' -> 'étiquettes de substitution'
127
+ - 'RAG' -> 'RAG'
128
+ - 'rater' -> 'évaluateur'
129
+ - 'recall' -> 'recall (rappel)'
130
+ - 'Rectified Linear Unit (ReLU)' -> 'Unité de rectification linéaire (ReLU)'
131
+ - 'regression model' -> 'modèle de régression'
132
+ - 'regularization' -> 'régularisation'
133
+ - 'regularization rate' -> 'taux de régularisation'
134
+ - 'ReLU' -> 'ReLU'
135
+ - 'retrieval-augmented generation' -> 'génération augmentée par récupération'
136
+ - 'retrieval-augmented generation (RAG)' -> 'génération augmentée par récupération (RAG)'
137
+ - 'ROC (receiver operating characteristic) Curve' -> 'Courbe ROC (receiver operating characteristic)'
138
+ - 'ROC curve' -> 'courbe ROC'
139
+ - 'Root Mean Squared Error (RMSE)' -> 'la racine carrée de l'erreur quadratique moyenne (RMSE, Root Mean Squared Error)'
140
+ - 'sigmoid function' -> 'fonction sigmoïde'
141
+ - 'softmax' -> 'softmax'
142
+ - 'sparse feature' -> 'caractéristique creuse'
143
+ - 'sparse representation' -> 'représentation creuse'
144
+ - 'sparse vector' -> 'vecteur creux'
145
+ - 'squared loss' -> 'perte quadratique'
146
+ - 'static' -> 'static'
147
+ - 'static inference' -> 'inférence statique'
148
+ - 'static model' -> 'modèle statique'
149
+ - 'stationarity' -> 'stationnarité'
150
+ - 'Stochastic Gradient Descent (SGD)' -> 'Descente de gradient stochastique (SGD, Stochastic Gradient Descent)'
151
+ - 'supervised learning' -> 'apprentissage supervisé'
152
+ - 'supervised machine learning' -> 'machine learning supervisé'
153
+ - 'synthetic feature' -> 'caractéristique synthétique'
154
+ - 'synthetic features' -> 'caractéristiques synthétiques'
155
+ - 'test loss' -> 'perte de test'
156
+ - 'training' -> 'entraînement'
157
+ - 'training loss' -> 'perte d'entraînement'
158
+ - 'training set' -> 'ensemble d'entraînement'
159
+ - 'training-serving skew' -> 'décalage entraînement/mise en service'
160
+ - 'true negative (TN)' -> 'vrai négatif (VN)'
161
+ - 'true negatives' -> 'vrais négatifs'
162
+ - 'true positive (TP)' -> 'vrai positif (VP)'
163
+ - 'true positive rate' -> 'taux de vrais positifs'
164
+ - 'true positive rate (TPR)' -> 'taux de vrais positifs (TVP)'
165
+ - 'true positives' -> 'vrais positifs'
166
+ - 'underfitting' -> 'sous-ajustement'
167
+ - 'unlabeled example' -> 'exemple sans étiquette'
168
+ - 'unsupervised machine learning' -> 'machine learning non supervisé'
169
+ - 'validation' -> 'validation'
170
+ - 'validation dataset' -> 'ensemble de données de validation'
171
+ - 'validation loss' -> 'perte de validation'
172
+ - 'validation set' -> 'ensemble de validation'
173
+ - 'weight' -> 'weight'
174
+ - 'weighted sum' -> 'Somme pondérée'
175
+ - 'Z-score normalization' -> 'Normalisation du score Z'
@@ -0,0 +1,175 @@
1
+ # JA HINTS
2
+ ## TERM MAPPINGS
3
+ These are preferred terminology choices for this language. Use them whenever they sound natural; adapt freely if context requires.
4
+
5
+ - 'accuracy' -> 「accuracy」
6
+ - 'activation function' -> 「活性化関数」
7
+ - 'artificial intelligence' -> 「AI」
8
+ - 'AUC' -> 「AUC」
9
+ - 'AUC (Area under the ROC curve)' -> 「AUC(ROC 曲線の下の面積)」
10
+ - 'backpropagation' -> 「バックプロパゲーション」
11
+ - 'batch' -> 「Batch」
12
+ - 'batch size' -> 「バッチサイズ」
13
+ - 'bias (ethics/fairness)' -> 「バイアス(倫理/公平性)」
14
+ - 'bias (math) or bias term' -> 「バイアス(数学)またはバイアス項」
15
+ - 'bias in ethics and fairness' -> 「倫理と公平性のバイアス」
16
+ - 'bias term' -> 「バイアス項」
17
+ - 'binary classification' -> 「バイナリ分類」
18
+ - 'bucketing' -> 「バケット化、」
19
+ - 'categorical' -> 「カテゴリカル」
20
+ - 'categorical data' -> 「カテゴリデータ」
21
+ - 'class' -> 「クラス」
22
+ - 'class-imbalanced dataset' -> 「クラスの不均衡なデータセット」
23
+ - 'class-imbalanced datasets' -> 「クラス不均衡データセット」
24
+ - 'classification' -> 「分類」
25
+ - 'classification model' -> 「分類モデル」
26
+ - 'classification threshold' -> 「分類しきい値」
27
+ - 'classifier' -> 「分類器」
28
+ - 'clipping' -> 「クリッピング」
29
+ - 'confusion matrix' -> 「混同行列」
30
+ - 'continuous feature' -> 「連続特徴」
31
+ - 'convergence' -> 「収束」
32
+ - 'data set or dataset' -> 「データセット」
33
+ - 'DataFrame' -> 「DataFrame」
34
+ - 'dataset' -> 「データセット」
35
+ - 'deep learning' -> 「ディープ ラーニング」
36
+ - 'deep model' -> 「ディープモデル」
37
+ - 'dense feature' -> 「密な特徴」
38
+ - 'depth' -> 「深さ」
39
+ - 'discrete feature' -> 「離散特徴」
40
+ - 'discrete features' -> 「離散特徴」
41
+ - 'dynamic' -> 「動的」
42
+ - 'dynamic model' -> 「動的モデル」
43
+ - 'early stopping' -> 「早期停止」
44
+ - 'embedding layer' -> 「エンベディング レイヤ」
45
+ - 'embedding layers' -> 「エンベディング レイヤ」
46
+ - 'epoch' -> 「エポック」
47
+ - 'example' -> 「例」
48
+ - 'false negative (FN)' -> 「偽陰性(FN)」
49
+ - 'false negatives' -> 「偽陰性」
50
+ - 'false positive (FP)' -> 「偽陽性(FP)」
51
+ - 'false positive rate' -> 「偽陽性率」
52
+ - 'false positive rate (FPR)' -> 「偽陽性率(FPR)」
53
+ - 'false positives' -> 「偽陽性」
54
+ - 'feature' -> 「機能」
55
+ - 'feature cross' -> 「特徴クロス」
56
+ - 'feature crosses' -> 「特徴交差」
57
+ - 'feature engineering' -> 「2つのステップが含まれます」
58
+ - 'feature set' -> 「機能セット」
59
+ - 'feature vector' -> 「特徴ベクトル」
60
+ - 'feedback loop' -> 「フィードバック ループ」
61
+ - 'generalization' -> 「一般化」
62
+ - 'generalization curve' -> 「汎化曲線」
63
+ - 'gradient descent' -> 「勾配降下法」
64
+ - 'ground truth' -> 「グラウンド トゥルース」
65
+ - 'hidden layer' -> 「隠れ層」
66
+ - 'hidden layer(s)' -> 「隠れ層」
67
+ - 'hyperparameter' -> 「ハイパーパラメータ」
68
+ - 'independently and identically distributed (i.i.d)' -> 「独立同分布(i.i.d)」
69
+ - 'inference' -> 「推論」
70
+ - 'input layer' -> 「入力レイヤ」
71
+ - 'interpretability' -> 「解釈可能性」
72
+ - 'iteration' -> 「繰り返し」
73
+ - 'L0regularization' -> 「L0正規化」
74
+ - 'L1loss' -> 「L1損失」
75
+ - 'L1regularization' -> 「L1正則化」
76
+ - 'L2loss' -> 「L2損失」
77
+ - 'L2regularization' -> 「L2正則化」
78
+ - 'label' -> 「ラベル」
79
+ - 'labeled example' -> 「ラベル付きの例」
80
+ - 'lambda' -> 「lambda」
81
+ - 'layer' -> 「レイヤ」
82
+ - 'learning rate' -> 「学習率」
83
+ - 'linear' -> 「線形」
84
+ - 'linear model' -> 「線形モデル」
85
+ - 'linear models' -> 「線形モデル」
86
+ - 'linear regression' -> 「線形回帰」
87
+ - 'Log Loss' -> 「対数損失」
88
+ - 'log-odds' -> 「対数オッズ」
89
+ - 'logistic regression' -> 「ロジスティック回帰」
90
+ - 'loss' -> 「損失」
91
+ - 'loss curve' -> 「損失曲線」
92
+ - 'loss function' -> 「損失関数」
93
+ - 'machine learning' -> 「機械学習」
94
+ - 'majority class' -> 「多数派クラス」
95
+ - 'mini-batch' -> 「ミニバッチ」
96
+ - 'minority class' -> 「少数派クラス」
97
+ - 'model' -> 「モデル」
98
+ - 'multi-class classification' -> 「マルチクラス分類」
99
+ - 'negative class' -> 「陰性クラス」
100
+ - 'negative classes' -> 「陰性クラス」
101
+ - 'neural network' -> 「ニューラル ネットワークの」
102
+ - 'neural networks' -> 「ニューラル ネットワーク」
103
+ - 'neuron' -> 「ニューロン」
104
+ - 'node (neural network)' -> 「ノード(ニューラル ネットワーク)」
105
+ - 'nonlinear' -> 「非線形」
106
+ - 'nonstationarity' -> 「非定常性」
107
+ - 'normalization' -> 「正規化」
108
+ - 'numerical data' -> 「数値データ」
109
+ - 'offline' -> 「オフライン」
110
+ - 'offline inference' -> 「オフライン推論」
111
+ - 'one-hot encoding' -> 「ワンホット エンコード」
112
+ - 'one-hot vector' -> 「ワンホット ベクトル」
113
+ - 'one-vs.-all' -> 「1 対すべて」
114
+ - 'online' -> 「オンライン」
115
+ - 'online inference' -> 「オンライン推論」
116
+ - 'output layer' -> 「出力レイヤ」
117
+ - 'output layers' -> 「出力レイヤ」
118
+ - 'overfitting' -> 「過学習」
119
+ - 'pandas' -> 「pandas」
120
+ - 'parameter' -> 「パラメータ」
121
+ - 'positive class' -> 「陽性クラス」
122
+ - 'positive classes' -> 「陽性クラス」
123
+ - 'post-processing' -> 「後処理」
124
+ - 'precision' -> 「precision」
125
+ - 'prediction' -> 「予測」
126
+ - 'proxy labels' -> 「プロキシラベル」
127
+ - 'RAG' -> 「RAG」
128
+ - 'rater' -> 「rater」
129
+ - 'recall' -> 「recall」
130
+ - 'Rectified Linear Unit (ReLU)' -> 「正規化線形ユニット(ReLU)」
131
+ - 'regression model' -> 「回帰モデル」
132
+ - 'regularization' -> 「正則化」
133
+ - 'regularization rate' -> 「正則化率」
134
+ - 'ReLU' -> 「ReLU」
135
+ - 'retrieval-augmented generation' -> 「検索拡張生成」
136
+ - 'retrieval-augmented generation (RAG)' -> 「検索拡張生成(RAG)」
137
+ - 'ROC (receiver operating characteristic) Curve' -> 「ROC(受信者操作特性)曲線」
138
+ - 'ROC curve' -> 「ROC 曲線」
139
+ - 'Root Mean Squared Error (RMSE)' -> 「二乗平均平方根誤差(RMSE)」
140
+ - 'sigmoid function' -> 「シグモイド関数」
141
+ - 'softmax' -> 「Softmax」
142
+ - 'sparse feature' -> 「スパース特徴」
143
+ - 'sparse representation' -> 「スパース表現」
144
+ - 'sparse vector' -> 「スパース ベクトル」
145
+ - 'squared loss' -> 「二乗損失」
146
+ - 'static' -> 「static」
147
+ - 'static inference' -> 「静的推論」
148
+ - 'static model' -> 「静的モデル」
149
+ - 'stationarity' -> 「定常性」
150
+ - 'Stochastic Gradient Descent (SGD)' -> 「確率的勾配降下法(SGD)」
151
+ - 'supervised learning' -> 「教師あり学習」
152
+ - 'supervised machine learning' -> 「教師あり機械学習」
153
+ - 'synthetic feature' -> 「合成特徴」
154
+ - 'synthetic features' -> 「合成特徴」
155
+ - 'test loss' -> 「テスト損失」
156
+ - 'training' -> 「トレーニング」
157
+ - 'training loss' -> 「トレーニングの損失」
158
+ - 'training set' -> 「トレーニング セット」
159
+ - 'training-serving skew' -> 「トレーニング サービング スキュー」
160
+ - 'true negative (TN)' -> 「真陰性(TN)」
161
+ - 'true negatives' -> 「真陰性」
162
+ - 'true positive (TP)' -> 「真陽性(TP)」
163
+ - 'true positive rate' -> 「真陽性率」
164
+ - 'true positive rate (TPR)' -> 「真陽性率(TPR)」
165
+ - 'true positives' -> 「真陽性」
166
+ - 'underfitting' -> 「アンダーフィット」
167
+ - 'unlabeled example' -> 「ラベルのない例」
168
+ - 'unsupervised machine learning' -> 「教師なし機械学習」
169
+ - 'validation' -> 「検証」
170
+ - 'validation dataset' -> 「検証データセット」
171
+ - 'validation loss' -> 「検証損失」
172
+ - 'validation set' -> 「検証セット」
173
+ - 'weight' -> 「weight」
174
+ - 'weighted sum' -> 「加重合計」
175
+ - 'Z-score normalization' -> 「Z スコアの正規化」