ol-openedx-course-translations 0.1.0__py3-none-any.whl → 0.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ol-openedx-course-translations might be problematic. Click here for more details.

Files changed (35) hide show
  1. ol_openedx_course_translations/apps.py +12 -2
  2. ol_openedx_course_translations/glossaries/machine_learning/ar.txt +175 -0
  3. ol_openedx_course_translations/glossaries/machine_learning/de.txt +175 -0
  4. ol_openedx_course_translations/glossaries/machine_learning/el.txt +988 -0
  5. ol_openedx_course_translations/glossaries/machine_learning/es.txt +175 -0
  6. ol_openedx_course_translations/glossaries/machine_learning/fr.txt +175 -0
  7. ol_openedx_course_translations/glossaries/machine_learning/ja.txt +175 -0
  8. ol_openedx_course_translations/glossaries/machine_learning/pt-br.txt +175 -0
  9. ol_openedx_course_translations/glossaries/machine_learning/ru.txt +213 -0
  10. ol_openedx_course_translations/management/commands/sync_and_translate_language.py +1866 -0
  11. ol_openedx_course_translations/management/commands/translate_course.py +419 -470
  12. ol_openedx_course_translations/middleware.py +143 -0
  13. ol_openedx_course_translations/providers/__init__.py +1 -0
  14. ol_openedx_course_translations/providers/base.py +278 -0
  15. ol_openedx_course_translations/providers/deepl_provider.py +292 -0
  16. ol_openedx_course_translations/providers/llm_providers.py +565 -0
  17. ol_openedx_course_translations/settings/cms.py +17 -0
  18. ol_openedx_course_translations/settings/common.py +57 -30
  19. ol_openedx_course_translations/settings/lms.py +15 -0
  20. ol_openedx_course_translations/tasks.py +222 -0
  21. ol_openedx_course_translations/urls.py +16 -0
  22. ol_openedx_course_translations/utils/__init__.py +0 -0
  23. ol_openedx_course_translations/utils/command_utils.py +197 -0
  24. ol_openedx_course_translations/utils/constants.py +216 -0
  25. ol_openedx_course_translations/utils/course_translations.py +581 -0
  26. ol_openedx_course_translations/utils/translation_sync.py +808 -0
  27. ol_openedx_course_translations/views.py +73 -0
  28. ol_openedx_course_translations-0.3.0.dist-info/METADATA +407 -0
  29. ol_openedx_course_translations-0.3.0.dist-info/RECORD +35 -0
  30. ol_openedx_course_translations-0.3.0.dist-info/entry_points.txt +5 -0
  31. ol_openedx_course_translations-0.1.0.dist-info/METADATA +0 -63
  32. ol_openedx_course_translations-0.1.0.dist-info/RECORD +0 -11
  33. ol_openedx_course_translations-0.1.0.dist-info/entry_points.txt +0 -2
  34. {ol_openedx_course_translations-0.1.0.dist-info → ol_openedx_course_translations-0.3.0.dist-info}/WHEEL +0 -0
  35. {ol_openedx_course_translations-0.1.0.dist-info → ol_openedx_course_translations-0.3.0.dist-info}/licenses/LICENSE.txt +0 -0
@@ -3,7 +3,7 @@ ol_openedx_course_translations Django application initialization.
3
3
  """
4
4
 
5
5
  from django.apps import AppConfig
6
- from edx_django_utils.plugins import PluginSettings
6
+ from edx_django_utils.plugins import PluginSettings, PluginURLs
7
7
  from openedx.core.djangoapps.plugins.constants import ProjectType, SettingsType
8
8
 
9
9
 
@@ -15,9 +15,19 @@ class OLOpenedXCourseTranslationsConfig(AppConfig):
15
15
  name = "ol_openedx_course_translations"
16
16
 
17
17
  plugin_app = {
18
+ PluginURLs.CONFIG: {
19
+ ProjectType.LMS: {
20
+ PluginURLs.NAMESPACE: "",
21
+ PluginURLs.REGEX: "^course-translations/",
22
+ PluginURLs.RELATIVE_PATH: "urls",
23
+ }
24
+ },
18
25
  PluginSettings.CONFIG: {
19
26
  ProjectType.CMS: {
20
- SettingsType.COMMON: {PluginSettings.RELATIVE_PATH: "settings.common"},
27
+ SettingsType.COMMON: {PluginSettings.RELATIVE_PATH: "settings.cms"},
28
+ },
29
+ ProjectType.LMS: {
30
+ SettingsType.COMMON: {PluginSettings.RELATIVE_PATH: "settings.lms"},
21
31
  },
22
32
  },
23
33
  }
@@ -0,0 +1,175 @@
1
+ # AR HINTS
2
+ ## TERM MAPPINGS
3
+ These are preferred terminology choices for this language. Use them whenever they sound natural; adapt freely if context requires.
4
+
5
+ - 'accuracy' -> 'الدقة'
6
+ - 'activation function' -> 'دالّة التفعيل'
7
+ - 'artificial intelligence' -> 'الذكاء الاصطناعي'
8
+ - 'AUC' -> 'AUC'
9
+ - 'AUC (Area under the ROC curve)' -> 'المساحة تحت منحنى ROC'
10
+ - 'backpropagation' -> 'الانتشار العكسي'
11
+ - 'batch' -> 'دفعة'
12
+ - 'batch size' -> 'حجم الدفعة'
13
+ - 'bias (ethics/fairness)' -> 'التحيّز (الأخلاقيات/الإنصاف)'
14
+ - 'bias (math) or bias term' -> 'الانحياز (في الرياضيات) أو مصطلح الانحياز'
15
+ - 'bias in ethics and fairness' -> 'التحيز في الأخلاق والعدالة'
16
+ - 'bias term' -> 'مصطلح التحيز'
17
+ - 'binary classification' -> 'التصنيف الثنائي'
18
+ - 'bucketing' -> 'تصنيف البيانات'
19
+ - 'categorical' -> 'فئوية'
20
+ - 'categorical data' -> 'البيانات الفئوية'
21
+ - 'class' -> 'صنف'
22
+ - 'class-imbalanced dataset' -> 'مجموعة بيانات غير متوازنة الفئات'
23
+ - 'class-imbalanced datasets' -> 'مجموعات بيانات غير متوازنة الفئات'
24
+ - 'classification' -> 'التصنيف'
25
+ - 'classification model' -> 'نموذج التصنيف'
26
+ - 'classification threshold' -> 'عتبة التصنيف'
27
+ - 'classifier' -> 'مصنِّف'
28
+ - 'clipping' -> 'القص'
29
+ - 'confusion matrix' -> 'مصفوفة نجاح التوقعات'
30
+ - 'continuous feature' -> 'خاصية مستمرة'
31
+ - 'convergence' -> 'التقارب'
32
+ - 'data set or dataset' -> 'مجموعة البيانات'
33
+ - 'DataFrame' -> 'DataFrame'
34
+ - 'dataset' -> 'مجموعة بيانات'
35
+ - 'deep learning' -> 'التعلم العميق'
36
+ - 'deep model' -> 'نموذج عميق'
37
+ - 'dense feature' -> 'خاصية كثيفة'
38
+ - 'depth' -> 'العمق'
39
+ - 'discrete feature' -> 'خاصية محدّدة القيم'
40
+ - 'discrete features' -> 'الميزات المنفصلة'
41
+ - 'dynamic' -> 'ديناميكي'
42
+ - 'dynamic model' -> 'نموذج ديناميكي'
43
+ - 'early stopping' -> 'الإيقاف المبكر'
44
+ - 'embedding layer' -> 'طبقة التضمين'
45
+ - 'embedding layers' -> 'طبقات تضمين'
46
+ - 'epoch' -> 'حقبة'
47
+ - 'example' -> 'على سبيل المثال'
48
+ - 'false negative (FN)' -> 'سالب خاطئ (FN)'
49
+ - 'false negatives' -> 'الحالات السالبة الخاطئة'
50
+ - 'false positive (FP)' -> 'موجب خاطئ (FP)'
51
+ - 'false positive rate' -> 'معدّل الموجب الخاطئ'
52
+ - 'false positive rate (FPR)' -> 'معدّل الموجب الخاطئ'
53
+ - 'false positives' -> 'الحالات الموجبة الخاطئة'
54
+ - 'feature' -> 'ميزة'
55
+ - 'feature cross' -> 'مضروب مجموعات الخصائص'
56
+ - 'feature crosses' -> 'تقاطع الميزات'
57
+ - 'feature engineering' -> 'هندسة الميزات'
58
+ - 'feature set' -> 'مجموعة الميزات'
59
+ - 'feature vector' -> 'متّجه الميزات'
60
+ - 'feedback loop' -> 'حلقة الملاحظات'
61
+ - 'generalization' -> 'التعميم'
62
+ - 'generalization curve' -> 'منحنى التعميم'
63
+ - 'gradient descent' -> 'النزول المتدرّج'
64
+ - 'ground truth' -> 'معلومات فعلية'
65
+ - 'hidden layer' -> 'الطبقة المخفية'
66
+ - 'hidden layer(s)' -> 'الطبقات المخفية'
67
+ - 'hyperparameter' -> 'المعلَمة الفائقة'
68
+ - 'independently and identically distributed (i.i.d)' -> 'موزّعة بشكل مستقل ومتشابه'
69
+ - 'inference' -> 'الاستنتاج'
70
+ - 'input layer' -> 'طبقة الإدخال'
71
+ - 'interpretability' -> 'القابلية للتفسير'
72
+ - 'iteration' -> 'التكرار'
73
+ - 'L0regularization' -> 'التسوية من النوع L0'
74
+ - 'L1loss' -> 'L1'
75
+ - 'L1regularization' -> 'التسوية من النوع L1'
76
+ - 'L2loss' -> 'فقدانL2'
77
+ - 'L2regularization' -> 'التسوية من النوع L2'
78
+ - 'label' -> 'التصنيف'
79
+ - 'labeled example' -> 'مثال مصنّف'
80
+ - 'lambda' -> 'lambda'
81
+ - 'layer' -> 'طبقة'
82
+ - 'learning rate' -> 'معدّل التعلّم'
83
+ - 'linear' -> 'خطي'
84
+ - 'linear model' -> 'النموذج الخطي'
85
+ - 'linear models' -> 'النماذج الخطية'
86
+ - 'linear regression' -> 'الانحدار الخطي'
87
+ - 'Log Loss' -> 'الخسارة اللوغاريتمية'
88
+ - 'log-odds' -> 'لوغاريتم فرص الأفضلية'
89
+ - 'logistic regression' -> 'الانحدار اللوجستي'
90
+ - 'loss' -> 'خسارة'
91
+ - 'loss curve' -> 'منحنى الخسارة'
92
+ - 'loss function' -> 'دالة الخسارة'
93
+ - 'machine learning' -> 'تعلُم الآلة'
94
+ - 'majority class' -> 'الفئة الأكبر'
95
+ - 'mini-batch' -> 'دفعة صغيرة'
96
+ - 'minority class' -> 'فئة الأقلية'
97
+ - 'model' -> 'نموذج'
98
+ - 'multi-class classification' -> 'التصنيف المتعدّد الفئات'
99
+ - 'negative class' -> 'فئة سالبة'
100
+ - 'negative classes' -> 'الفئات السلبية'
101
+ - 'neural network' -> 'شبكة عصبونية'
102
+ - 'neural networks' -> 'للشبكات العصبية'
103
+ - 'neuron' -> 'عصبون'
104
+ - 'node (neural network)' -> 'عقدة (شبكة عصبونية)'
105
+ - 'nonlinear' -> 'غير خطي'
106
+ - 'nonstationarity' -> 'عدم الثبات'
107
+ - 'normalization' -> 'التسوية'
108
+ - 'numerical data' -> 'البيانات الرقمية'
109
+ - 'offline' -> 'بلا إنترنت'
110
+ - 'offline inference' -> 'الاستنتاج المؤخَّر'
111
+ - 'one-hot encoding' -> 'الترميز الأحادي'
112
+ - 'one-hot vector' -> 'متجهًا ذا ترميز ساخن'
113
+ - 'one-vs.-all' -> 'واحد-مقابل-الكل'
114
+ - 'online' -> 'online'
115
+ - 'online inference' -> 'الاستنتاج الحي'
116
+ - 'output layer' -> 'الطبقة النهائية'
117
+ - 'output layers' -> 'الطبقات النهائية'
118
+ - 'overfitting' -> 'فرط التخصيص'
119
+ - 'pandas' -> 'باندا'
120
+ - 'parameter' -> 'مَعلمة'
121
+ - 'positive class' -> 'فئة موجبة'
122
+ - 'positive classes' -> 'الفئات الإيجابية'
123
+ - 'post-processing' -> 'المعالجة اللاحقة'
124
+ - 'precision' -> 'الدقة'
125
+ - 'prediction' -> 'التوقّع'
126
+ - 'proxy labels' -> 'تصنيفات تقريبية'
127
+ - 'RAG' -> 'التوليد المعزّز بالاسترجاع (RAG)'
128
+ - 'rater' -> 'مُصنِّف'
129
+ - 'recall' -> 'تذكُّر الإعلان'
130
+ - 'Rectified Linear Unit (ReLU)' -> 'وحدة خطية مصحَّحة (ReLU)'
131
+ - 'regression model' -> 'نموذج الانحدار'
132
+ - 'regularization' -> 'التسوية'
133
+ - 'regularization rate' -> 'معدّل التسوية'
134
+ - 'ReLU' -> 'ReLU'
135
+ - 'retrieval-augmented generation' -> 'التوليد المعزّز بالاسترجاع'
136
+ - 'retrieval-augmented generation (RAG)' -> 'التوليد المعزّز بالاسترجاع (RAG)'
137
+ - 'ROC (receiver operating characteristic) Curve' -> 'منحنى الأمثلة الإيجابية'
138
+ - 'ROC curve' -> 'منحنى ROC'
139
+ - 'Root Mean Squared Error (RMSE)' -> 'جذر الخطأ التربيعي المتوسّط (RMSE)'
140
+ - 'sigmoid function' -> 'الدالّة الإسية'
141
+ - 'softmax' -> 'softmax'
142
+ - 'sparse feature' -> 'خاصية متناثرة'
143
+ - 'sparse representation' -> 'التمثيل المتناثر'
144
+ - 'sparse vector' -> 'متّجه متناثر'
145
+ - 'squared loss' -> 'الخسارة التربيعية'
146
+ - 'static' -> 'ثابت'
147
+ - 'static inference' -> 'الاستنتاج الثابت'
148
+ - 'static model' -> 'النموذج الثابت'
149
+ - 'stationarity' -> 'الثبات'
150
+ - 'Stochastic Gradient Descent (SGD)' -> 'النزول المتدرّج العشوائي (SGD)'
151
+ - 'supervised learning' -> 'التعلم المُوجّه'
152
+ - 'supervised machine learning' -> 'تعلُّم الآلة الخاضع للإشراف'
153
+ - 'synthetic feature' -> 'خاصية مصطنعة'
154
+ - 'synthetic features' -> 'ميزات اصطناعية'
155
+ - 'test loss' -> 'فقدان الاختبار'
156
+ - 'training' -> 'التدريب'
157
+ - 'training loss' -> 'فقدان التدريب'
158
+ - 'training set' -> 'مجموعة التدريب'
159
+ - 'training-serving skew' -> 'اختلاف بين بيانات التدريب وبيانات العرض'
160
+ - 'true negative (TN)' -> 'سالب صحيح'
161
+ - 'true negatives' -> 'الحالات السالبة الصحيحة'
162
+ - 'true positive (TP)' -> 'موجب صحيح (TP)'
163
+ - 'true positive rate' -> 'معدّل الإيجابية الحقيقية'
164
+ - 'true positive rate (TPR)' -> 'معدّل الموجب الصحيح (TPR)'
165
+ - 'true positives' -> 'الحالات الموجبة الصحيحة'
166
+ - 'underfitting' -> 'فرط التعميم'
167
+ - 'unlabeled example' -> 'مثال غير مصنّف'
168
+ - 'unsupervised machine learning' -> 'تعلُّم الآلة غير الموجَّه'
169
+ - 'validation' -> 'الإثبات'
170
+ - 'validation dataset' -> 'مجموعة بيانات التحقّق من الصحة'
171
+ - 'validation loss' -> 'فقدان التحقّق من الصحة'
172
+ - 'validation set' -> 'مجموعة التحقّق'
173
+ - 'weight' -> 'الوزن'
174
+ - 'weighted sum' -> 'المجموع الموزون'
175
+ - 'Z-score normalization' -> 'التسوية باستخدام الدرجة المعيارية'
@@ -0,0 +1,175 @@
1
+ # DE HINTS
2
+ ## TERM MAPPINGS
3
+ These are preferred terminology choices for this language. Use them whenever they sound natural; adapt freely if context requires.
4
+
5
+ - 'accuracy' -> ‚Genauigkeit'
6
+ - 'activation function' -> ‚Aktivierungsfunktion'
7
+ - 'artificial intelligence' -> ‚künstliche Intelligenz'
8
+ - 'AUC' -> ‚AUC'
9
+ - 'AUC (Area under the ROC curve)' -> ‚AUC (Area Under the ROC Curve, Bereich unter der ROC-Kurve)'
10
+ - 'backpropagation' -> ‚Rückpropagation'
11
+ - 'batch' -> ‚Batch'
12
+ - 'batch size' -> ‚Batchgröße'
13
+ - 'bias (ethics/fairness)' -> ‚Bias (Ethik/Fairness)'
14
+ - 'bias (math) or bias term' -> ‚Bias (mathematisch) oder Bias-Term'
15
+ - 'bias in ethics and fairness' -> ‚Bias in Bezug auf Ethik und Fairness'
16
+ - 'bias term' -> ‚Bias-Term'
17
+ - 'binary classification' -> ‚Binärklassifizierung'
18
+ - 'bucketing' -> ‚Bucketing'
19
+ - 'categorical' -> ‚kategorialen'
20
+ - 'categorical data' -> ‚Kategoriale Daten'
21
+ - 'class' -> ‚Klasse'
22
+ - 'class-imbalanced dataset' -> ‚Dataset mit Klassenungleichgewicht'
23
+ - 'class-imbalanced datasets' -> ‚Datasets mit ungleichmäßiger Klassenverteilung'
24
+ - 'classification' -> ‚Klassifizierungsaufgabe'
25
+ - 'classification model' -> ‚Klassifikationsmodell'
26
+ - 'classification threshold' -> ‚Klassifizierungsschwellenwert'
27
+ - 'classifier' -> ‚Klassifikator'
28
+ - 'clipping' -> ‚Clipping'
29
+ - 'confusion matrix' -> ‚Wahrheitsmatrix'
30
+ - 'continuous feature' -> ‚stetiges Feature'
31
+ - 'convergence' -> ‚Konvergenz'
32
+ - 'data set or dataset' -> ‚Dataset oder Dataset'
33
+ - 'DataFrame' -> ‚DataFrame'
34
+ - 'dataset' -> ‚Dataset'
35
+ - 'deep learning' -> ‚Deep Learning'
36
+ - 'deep model' -> ‚Deep-Modell'
37
+ - 'dense feature' -> ‚vollbesetztes Feature'
38
+ - 'depth' -> ‚Tiefe'
39
+ - 'discrete feature' -> ‚diskretes Feature'
40
+ - 'discrete features' -> ‚diskrete Features'
41
+ - 'dynamic' -> ‚dynamic'
42
+ - 'dynamic model' -> ‚dynamisches Modell'
43
+ - 'early stopping' -> ‚Vorzeitiges Beenden'
44
+ - 'embedding layer' -> ‚Einbettungsebene'
45
+ - 'embedding layers' -> ‚Einbettungsebenen'
46
+ - 'epoch' -> ‚Epoche'
47
+ - 'example' -> ‚Beispiel'
48
+ - 'false negative (FN)' -> ‚falsch negativ (FN)'
49
+ - 'false negatives' -> ‚falsch negativen Ergebnisse'
50
+ - 'false positive (FP)' -> ‚falsch positiv (FP)'
51
+ - 'false positive rate' -> ‚Falsch-Positiv-Rate'
52
+ - 'false positive rate (FPR)' -> ‚Rate falsch positiver Ergebnisse (False Positive Rate, FPR)'
53
+ - 'false positives' -> ‚falsch positiven Ergebnisse'
54
+ - 'feature' -> ‚Feature'
55
+ - 'feature cross' -> ‚Featureverknüpfung'
56
+ - 'feature crosses' -> ‚Feature-Kombinationen'
57
+ - 'feature engineering' -> ‚Feature Engineering'
58
+ - 'feature set' -> ‚Feature-Set'
59
+ - 'feature vector' -> ‚Featurevektor'
60
+ - 'feedback loop' -> ‚Feedbackschleife'
61
+ - 'generalization' -> ‚Generalisierung'
62
+ - 'generalization curve' -> ‚Verallgemeinerungskurve'
63
+ - 'gradient descent' -> ‚Gradientenabstieg'
64
+ - 'ground truth' -> ‚Ground Truth'
65
+ - 'hidden layer' -> ‚versteckte Ebene'
66
+ - 'hidden layer(s)' -> ‚verborgenen Schichten'
67
+ - 'hyperparameter' -> ‚Hyperparameter'
68
+ - 'independently and identically distributed (i.i.d)' -> ‚unabhängig und identisch verteilt (i.i.d.)'
69
+ - 'inference' -> ‚Inferenz'
70
+ - 'input layer' -> ‚Eingabelayer'
71
+ - 'interpretability' -> ‚Interpretierbarkeit'
72
+ - 'iteration' -> ‚Iteration'
73
+ - 'L0regularization' -> ‚L0-Regularisierung'
74
+ - 'L1loss' -> ‚L1-Verlust'
75
+ - 'L1regularization' -> ‚L1-Regularisierung'
76
+ - 'L2loss' -> ‚L2-Verlust'
77
+ - 'L2regularization' -> ‚L2-Regularisierung'
78
+ - 'label' -> ‚Label'
79
+ - 'labeled example' -> ‚Beispiel mit Label'
80
+ - 'lambda' -> ‚Lambda'
81
+ - 'layer' -> ‚Layer'
82
+ - 'learning rate' -> ‚Lernrate'
83
+ - 'linear' -> ‚Linear'
84
+ - 'linear model' -> ‚Lineares Modell'
85
+ - 'linear models' -> ‚linearen Modellen'
86
+ - 'linear regression' -> ‚lineare Regression'
87
+ - 'Log Loss' -> ‚Log Loss'
88
+ - 'log-odds' -> ‚Log-Odds'
89
+ - 'logistic regression' -> ‚logistische Regression'
90
+ - 'loss' -> ‚Niederlage'
91
+ - 'loss curve' -> ‚Verlustkurve'
92
+ - 'loss function' -> ‚Verlustfunktion'
93
+ - 'machine learning' -> ‚Machine Learning'
94
+ - 'majority class' -> ‚Mehrheitsklasse'
95
+ - 'mini-batch' -> ‚Mini-Batch'
96
+ - 'minority class' -> ‚Minderheitsklasse'
97
+ - 'model' -> ‚Modell'
98
+ - 'multi-class classification' -> ‚Klassifizierung mit mehreren Klassen'
99
+ - 'negative class' -> ‚negative Klasse'
100
+ - 'negative classes' -> ‚negativen Klassen'
101
+ - 'neural network' -> ‚neuronales Netzwerk'
102
+ - 'neural networks' -> ‚neuronale Netze'
103
+ - 'neuron' -> ‚Neuron'
104
+ - 'node (neural network)' -> ‚Knoten (neuronales Netzwerk)'
105
+ - 'nonlinear' -> ‚nicht linear'
106
+ - 'nonstationarity' -> ‚Nichtstationarität'
107
+ - 'normalization' -> ‚Normalisierung'
108
+ - 'numerical data' -> ‚Numerische Daten'
109
+ - 'offline' -> ‚offline'
110
+ - 'offline inference' -> ‚Offlineinferenz'
111
+ - 'one-hot encoding' -> ‚One-Hot-Codierung'
112
+ - 'one-hot vector' -> ‚One-Hot-Vektor'
113
+ - 'one-vs.-all' -> ‚One-vs.-All'
114
+ - 'online' -> ‚online'
115
+ - 'online inference' -> ‚Onlineinferenz'
116
+ - 'output layer' -> ‚Ausgabeschicht'
117
+ - 'output layers' -> ‚Ausgabelayer'
118
+ - 'overfitting' -> ‚Überanpassung'
119
+ - 'pandas' -> ‚pandas'
120
+ - 'parameter' -> ‚Parameter'
121
+ - 'positive class' -> ‚positive Klasse'
122
+ - 'positive classes' -> ‚positive Klassen'
123
+ - 'post-processing' -> ‚Nachbearbeitung'
124
+ - 'precision' -> ‚Precision'
125
+ - 'prediction' -> ‚Vorhersage-'
126
+ - 'proxy labels' -> ‚Proxy-Labels'
127
+ - 'RAG' -> ‚RAG'
128
+ - 'rater' -> ‚Bewerter'
129
+ - 'recall' -> ‚Rückruf'
130
+ - 'Rectified Linear Unit (ReLU)' -> ‚Rektifizierte lineare Einheit (ReLU)'
131
+ - 'regression model' -> ‚Regressionsmodell'
132
+ - 'regularization' -> ‚Regularisierung'
133
+ - 'regularization rate' -> ‚Regularisierungsrate'
134
+ - 'ReLU' -> ‚ReLU'
135
+ - 'retrieval-augmented generation' -> ‚Retrieval-Augmented Generation'
136
+ - 'retrieval-augmented generation (RAG)' -> ‚Retrieval-Augmented Generation (RAG)'
137
+ - 'ROC (receiver operating characteristic) Curve' -> ‚ROC-Kurve (Receiver Operating Characteristic)'
138
+ - 'ROC curve' -> ‚ROC-Kurve'
139
+ - 'Root Mean Squared Error (RMSE)' -> ‚Wurzel der mittleren Fehlerquadratsumme (RMSE)'
140
+ - 'sigmoid function' -> ‚Sigmoidfunktion'
141
+ - 'softmax' -> ‚Softmax-Funktion'
142
+ - 'sparse feature' -> ‚dünnbesetztes Feature'
143
+ - 'sparse representation' -> ‚dünnbesetzte Darstellung'
144
+ - 'sparse vector' -> ‚dünnbesetzter Vektor'
145
+ - 'squared loss' -> ‚Quadratischer Verlust'
146
+ - 'static' -> ‚Statisch'
147
+ - 'static inference' -> ‚Statische Inferenz'
148
+ - 'static model' -> ‚statischen Modell'
149
+ - 'stationarity' -> ‚Stationarität'
150
+ - 'Stochastic Gradient Descent (SGD)' -> ‚Stochastic Gradient Descent (SGD)'
151
+ - 'supervised learning' -> ‚überwachtes Lernen'
152
+ - 'supervised machine learning' -> ‚überwachtes maschinelles Lernen'
153
+ - 'synthetic feature' -> ‚synthetisches Feature'
154
+ - 'synthetic features' -> ‚synthetische Features'
155
+ - 'test loss' -> ‚Testverlust'
156
+ - 'training' -> ‚Training'
157
+ - 'training loss' -> ‚Trainingsverlust'
158
+ - 'training set' -> ‚Trainings-Dataset'
159
+ - 'training-serving skew' -> ‚Abweichungen zwischen Training und Bereitstellung'
160
+ - 'true negative (TN)' -> ‚richtig negativ (RN)'
161
+ - 'true negatives' -> ‚richtig negativen Ergebnisse'
162
+ - 'true positive (TP)' -> ‚Richtig positiv (TP)'
163
+ - 'true positive rate' -> ‚Rate der richtig positiven Ergebnisse'
164
+ - 'true positive rate (TPR)' -> ‚Rate richtig positiver Ergebnisse (True Positive Rate, TPR)'
165
+ - 'true positives' -> ‚richtig positiven Ergebnisse'
166
+ - 'underfitting' -> ‚Unteranpassung'
167
+ - 'unlabeled example' -> ‚Beispiel ohne Label'
168
+ - 'unsupervised machine learning' -> ‚unüberwachtes maschinelles Lernen'
169
+ - 'validation' -> ‚Validierung'
170
+ - 'validation dataset' -> ‚Validierungs-Dataset'
171
+ - 'validation loss' -> ‚Validierungsverlust'
172
+ - 'validation set' -> ‚Validierungs-Dataset'
173
+ - 'weight' -> ‚Gewicht'
174
+ - 'weighted sum' -> ‚gewichtete Summe'
175
+ - 'Z-score normalization' -> ‚Z-Score-Normalisierung'