nv-sgl 0.6.0__cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Sign up to get free protection for your applications and to get access to all the features.
- include/tevclient.h +393 -0
- nv_sgl-0.6.0.dist-info/LICENSE +29 -0
- nv_sgl-0.6.0.dist-info/METADATA +21 -0
- nv_sgl-0.6.0.dist-info/RECORD +133 -0
- nv_sgl-0.6.0.dist-info/WHEEL +6 -0
- nv_sgl-0.6.0.dist-info/top_level.txt +1 -0
- sgl/__init__.py +15 -0
- sgl/__init__.pyi +6738 -0
- sgl/include/sgl/app/app.h +113 -0
- sgl/include/sgl/core/bitmap.h +302 -0
- sgl/include/sgl/core/crypto.h +89 -0
- sgl/include/sgl/core/data_type.h +46 -0
- sgl/include/sgl/core/dds_file.h +103 -0
- sgl/include/sgl/core/enum.h +201 -0
- sgl/include/sgl/core/error.h +161 -0
- sgl/include/sgl/core/file_stream.h +77 -0
- sgl/include/sgl/core/file_system_watcher.h +141 -0
- sgl/include/sgl/core/format.h +36 -0
- sgl/include/sgl/core/fwd.h +90 -0
- sgl/include/sgl/core/hash.h +45 -0
- sgl/include/sgl/core/input.h +522 -0
- sgl/include/sgl/core/logger.h +214 -0
- sgl/include/sgl/core/macros.h +184 -0
- sgl/include/sgl/core/maths.h +45 -0
- sgl/include/sgl/core/memory_mapped_file.h +112 -0
- sgl/include/sgl/core/memory_mapped_file_stream.h +32 -0
- sgl/include/sgl/core/memory_stream.h +74 -0
- sgl/include/sgl/core/object.h +683 -0
- sgl/include/sgl/core/platform.h +239 -0
- sgl/include/sgl/core/plugin.h +331 -0
- sgl/include/sgl/core/resolver.h +39 -0
- sgl/include/sgl/core/short_vector.h +141 -0
- sgl/include/sgl/core/static_vector.h +111 -0
- sgl/include/sgl/core/stream.h +54 -0
- sgl/include/sgl/core/string.h +276 -0
- sgl/include/sgl/core/struct.h +360 -0
- sgl/include/sgl/core/thread.h +28 -0
- sgl/include/sgl/core/timer.h +52 -0
- sgl/include/sgl/core/traits.h +15 -0
- sgl/include/sgl/core/type_utils.h +19 -0
- sgl/include/sgl/core/window.h +177 -0
- sgl/include/sgl/device/agility_sdk.h +24 -0
- sgl/include/sgl/device/blit.h +88 -0
- sgl/include/sgl/device/buffer_cursor.h +162 -0
- sgl/include/sgl/device/command.h +539 -0
- sgl/include/sgl/device/cuda_api.h +766 -0
- sgl/include/sgl/device/cuda_interop.h +39 -0
- sgl/include/sgl/device/cuda_utils.h +107 -0
- sgl/include/sgl/device/cursor_utils.h +129 -0
- sgl/include/sgl/device/device.h +668 -0
- sgl/include/sgl/device/device_resource.h +37 -0
- sgl/include/sgl/device/fence.h +91 -0
- sgl/include/sgl/device/formats.h +330 -0
- sgl/include/sgl/device/framebuffer.h +85 -0
- sgl/include/sgl/device/fwd.h +164 -0
- sgl/include/sgl/device/helpers.h +20 -0
- sgl/include/sgl/device/hot_reload.h +75 -0
- sgl/include/sgl/device/input_layout.h +74 -0
- sgl/include/sgl/device/kernel.h +69 -0
- sgl/include/sgl/device/memory_heap.h +155 -0
- sgl/include/sgl/device/native_formats.h +342 -0
- sgl/include/sgl/device/native_handle.h +73 -0
- sgl/include/sgl/device/native_handle_traits.h +65 -0
- sgl/include/sgl/device/pipeline.h +138 -0
- sgl/include/sgl/device/print.h +45 -0
- sgl/include/sgl/device/python/cursor_utils.h +853 -0
- sgl/include/sgl/device/query.h +52 -0
- sgl/include/sgl/device/raytracing.h +84 -0
- sgl/include/sgl/device/reflection.h +1254 -0
- sgl/include/sgl/device/resource.h +705 -0
- sgl/include/sgl/device/sampler.h +57 -0
- sgl/include/sgl/device/shader.h +516 -0
- sgl/include/sgl/device/shader_cursor.h +85 -0
- sgl/include/sgl/device/shader_object.h +94 -0
- sgl/include/sgl/device/shader_offset.h +67 -0
- sgl/include/sgl/device/shared_handle.h +12 -0
- sgl/include/sgl/device/slang_utils.h +54 -0
- sgl/include/sgl/device/swapchain.h +74 -0
- sgl/include/sgl/device/types.h +782 -0
- sgl/include/sgl/math/colorspace.h +56 -0
- sgl/include/sgl/math/constants.h +7 -0
- sgl/include/sgl/math/float16.h +146 -0
- sgl/include/sgl/math/matrix.h +6 -0
- sgl/include/sgl/math/matrix_math.h +746 -0
- sgl/include/sgl/math/matrix_types.h +207 -0
- sgl/include/sgl/math/python/primitivetype.h +33 -0
- sgl/include/sgl/math/quaternion.h +6 -0
- sgl/include/sgl/math/quaternion_math.h +484 -0
- sgl/include/sgl/math/quaternion_types.h +83 -0
- sgl/include/sgl/math/ray.h +47 -0
- sgl/include/sgl/math/scalar_math.h +249 -0
- sgl/include/sgl/math/scalar_types.h +107 -0
- sgl/include/sgl/math/vector.h +6 -0
- sgl/include/sgl/math/vector_math.h +1796 -0
- sgl/include/sgl/math/vector_types.h +336 -0
- sgl/include/sgl/python/nanobind.h +489 -0
- sgl/include/sgl/python/py_doc.h +11600 -0
- sgl/include/sgl/python/sgl_ext_pch.h +8 -0
- sgl/include/sgl/sgl.h +21 -0
- sgl/include/sgl/sgl_pch.h +6 -0
- sgl/include/sgl/stl/bit.h +377 -0
- sgl/include/sgl/tests/testing.h +54 -0
- sgl/include/sgl/ui/fwd.h +34 -0
- sgl/include/sgl/ui/imgui_config.h +43 -0
- sgl/include/sgl/ui/ui.h +71 -0
- sgl/include/sgl/ui/widgets.h +918 -0
- sgl/include/sgl/utils/python/slangpy.h +366 -0
- sgl/include/sgl/utils/renderdoc.h +50 -0
- sgl/include/sgl/utils/slangpy.h +153 -0
- sgl/include/sgl/utils/tev.h +93 -0
- sgl/include/sgl/utils/texture_loader.h +106 -0
- sgl/libgfx.so +0 -0
- sgl/libsgl.so +0 -0
- sgl/libslang-glslang.so +0 -0
- sgl/libslang.so +0 -0
- sgl/libtevclient.a +0 -0
- sgl/math/__init__.pyi +5083 -0
- sgl/platform/__init__.pyi +102 -0
- sgl/renderdoc/__init__.pyi +51 -0
- sgl/sgl_ext.cpython-313-x86_64-linux-gnu.so +0 -0
- sgl/shaders/sgl/device/blit.slang +93 -0
- sgl/shaders/sgl/device/nvapi.slang +5 -0
- sgl/shaders/sgl/device/nvapi.slangh +7 -0
- sgl/shaders/sgl/device/print.slang +445 -0
- sgl/shaders/sgl/math/constants.slang +4 -0
- sgl/shaders/sgl/math/ray.slang +29 -0
- sgl/shaders/sgl/ui/imgui.slang +49 -0
- sgl/slangpy/__init__.pyi +268 -0
- sgl/tev/__init__.pyi +108 -0
- sgl/thread/__init__.pyi +4 -0
- sgl/ui/__init__.pyi +1118 -0
- share/cmake/tevclient/tevclient-config-release.cmake +19 -0
- share/cmake/tevclient/tevclient-config.cmake +103 -0
@@ -0,0 +1,746 @@
|
|
1
|
+
// SPDX-License-Identifier: Apache-2.0
|
2
|
+
|
3
|
+
// Most of this code is derived from the GLM library at https://github.com/g-truc/glm
|
4
|
+
// License: https://github.com/g-truc/glm/blob/master/copying.txt
|
5
|
+
|
6
|
+
#pragma once
|
7
|
+
|
8
|
+
#include "sgl/math/matrix_types.h"
|
9
|
+
#include "sgl/math/vector.h"
|
10
|
+
#include "sgl/math/quaternion.h"
|
11
|
+
#include "sgl/core/error.h"
|
12
|
+
#include "sgl/core/format.h"
|
13
|
+
|
14
|
+
namespace sgl::math {
|
15
|
+
|
16
|
+
// ----------------------------------------------------------------------------
|
17
|
+
// Binary operators (component-wise)
|
18
|
+
// ----------------------------------------------------------------------------
|
19
|
+
|
20
|
+
/// Binary * operator
|
21
|
+
template<typename T, int R, int C>
|
22
|
+
[[nodiscard]] matrix<T, R, C> operator*(const matrix<T, R, C>& lhs, const T& rhs)
|
23
|
+
{
|
24
|
+
matrix<T, R, C> result;
|
25
|
+
for (int r = 0; r < R; ++r)
|
26
|
+
for (int c = 0; c < C; ++c)
|
27
|
+
result[r][c] = lhs[r][c] * rhs;
|
28
|
+
return result;
|
29
|
+
}
|
30
|
+
|
31
|
+
// ----------------------------------------------------------------------------
|
32
|
+
// Multiplication
|
33
|
+
// ----------------------------------------------------------------------------
|
34
|
+
|
35
|
+
/// Multiply matrix and matrix.
|
36
|
+
template<typename T, int M, int N, int P>
|
37
|
+
[[nodiscard]] matrix<T, M, P> mul(const matrix<T, M, N>& lhs, const matrix<T, N, P>& rhs)
|
38
|
+
{
|
39
|
+
matrix<T, M, P> result;
|
40
|
+
for (int m = 0; m < M; ++m)
|
41
|
+
for (int p = 0; p < P; ++p)
|
42
|
+
result[m][p] = dot(lhs.get_row(m), rhs.get_col(p));
|
43
|
+
return result;
|
44
|
+
}
|
45
|
+
/// Multiply matrix and vector. Vector is treated as a column vector.
|
46
|
+
template<typename T, int R, int C>
|
47
|
+
[[nodiscard]] vector<T, R> mul(const matrix<T, R, C>& lhs, const vector<T, C>& rhs)
|
48
|
+
{
|
49
|
+
vector<T, R> result;
|
50
|
+
for (int r = 0; r < R; ++r)
|
51
|
+
result[r] = dot(lhs.get_row(r), rhs);
|
52
|
+
return result;
|
53
|
+
}
|
54
|
+
|
55
|
+
/// Multiply vector and matrix. Vector is treated as a row vector.
|
56
|
+
template<typename T, int R, int C>
|
57
|
+
[[nodiscard]] vector<T, C> mul(const vector<T, R>& lhs, const matrix<T, R, C>& rhs)
|
58
|
+
{
|
59
|
+
vector<T, C> result;
|
60
|
+
for (int c = 0; c < C; ++c)
|
61
|
+
result[c] = dot(lhs, rhs.get_col(c));
|
62
|
+
return result;
|
63
|
+
}
|
64
|
+
|
65
|
+
/// Transform a point by a 4x4 matrix. The point is treated as a column vector with a 1 in the 4th component.
|
66
|
+
template<typename T>
|
67
|
+
[[nodiscard]] vector<T, 3> transform_point(const matrix<T, 4, 4>& m, const vector<T, 3>& v)
|
68
|
+
{
|
69
|
+
return mul(m, vector<T, 4>(v, T(1))).xyz();
|
70
|
+
}
|
71
|
+
|
72
|
+
/// Transform a vector by a 3x3 matrix.
|
73
|
+
template<typename T>
|
74
|
+
[[nodiscard]] vector<T, 3> transform_vector(const matrix<T, 3, 3>& m, const vector<T, 3>& v)
|
75
|
+
{
|
76
|
+
return mul(m, v);
|
77
|
+
}
|
78
|
+
|
79
|
+
/// Transform a vector by a 4x4 matrix. The vector is treated as a column vector with a 0 in the 4th component.
|
80
|
+
template<typename T>
|
81
|
+
[[nodiscard]] vector<T, 3> transform_vector(const matrix<T, 4, 4>& m, const vector<T, 3>& v)
|
82
|
+
{
|
83
|
+
return mul(m, vector<T, 4>(v, T(0))).xyz();
|
84
|
+
}
|
85
|
+
|
86
|
+
// ----------------------------------------------------------------------------
|
87
|
+
// Functions
|
88
|
+
// ----------------------------------------------------------------------------
|
89
|
+
|
90
|
+
/// Transpose a matrix.
|
91
|
+
template<typename T, int R, int C>
|
92
|
+
matrix<T, C, R> transpose(const matrix<T, R, C>& m)
|
93
|
+
{
|
94
|
+
matrix<T, C, R> result;
|
95
|
+
for (int r = 0; r < R; ++r)
|
96
|
+
for (int c = 0; c < C; ++c)
|
97
|
+
result[c][r] = m[r][c];
|
98
|
+
return result;
|
99
|
+
}
|
100
|
+
|
101
|
+
/// Apply a translation to a 4x4 matrix.
|
102
|
+
template<typename T>
|
103
|
+
matrix<T, 4, 4> translate(const matrix<T, 4, 4>& m, const vector<T, 3>& v)
|
104
|
+
{
|
105
|
+
matrix<T, 4, 4> result(m);
|
106
|
+
result.set_col(3, m.get_col(0) * v.x + m.get_col(1) * v.y + m.get_col(2) * v.z + m.get_col(3));
|
107
|
+
return result;
|
108
|
+
}
|
109
|
+
|
110
|
+
/// Apply a rotation around an axis to a 4x4 matrix.
|
111
|
+
template<typename T>
|
112
|
+
matrix<T, 4, 4> rotate(const matrix<T, 4, 4>& m, T angle, const vector<T, 3>& axis_)
|
113
|
+
{
|
114
|
+
T a = angle;
|
115
|
+
T c = cos(a);
|
116
|
+
T s = sin(a);
|
117
|
+
|
118
|
+
vector<T, 3> axis(normalize(axis_));
|
119
|
+
vector<T, 3> temp((T(1) - c) * axis);
|
120
|
+
|
121
|
+
matrix<T, 4, 4> rotate;
|
122
|
+
rotate[0][0] = c + temp[0] * axis[0];
|
123
|
+
rotate[0][1] = temp[1] * axis[0] - s * axis[2];
|
124
|
+
rotate[0][2] = temp[2] * axis[0] + s * axis[1];
|
125
|
+
|
126
|
+
rotate[1][0] = temp[0] * axis[1] + s * axis[2];
|
127
|
+
rotate[1][1] = c + temp[1] * axis[1];
|
128
|
+
rotate[1][2] = temp[2] * axis[1] - s * axis[0];
|
129
|
+
|
130
|
+
rotate[2][0] = temp[0] * axis[2] - s * axis[1];
|
131
|
+
rotate[2][1] = temp[1] * axis[2] + s * axis[0];
|
132
|
+
rotate[2][2] = c + temp[2] * axis[2];
|
133
|
+
|
134
|
+
matrix<T, 4, 4> result;
|
135
|
+
result.set_col(0, m.get_col(0) * rotate[0][0] + m.get_col(1) * rotate[1][0] + m.get_col(2) * rotate[2][0]);
|
136
|
+
result.set_col(1, m.get_col(0) * rotate[0][1] + m.get_col(1) * rotate[1][1] + m.get_col(2) * rotate[2][1]);
|
137
|
+
result.set_col(2, m.get_col(0) * rotate[0][2] + m.get_col(1) * rotate[1][2] + m.get_col(2) * rotate[2][2]);
|
138
|
+
result.set_col(3, m.get_col(3));
|
139
|
+
|
140
|
+
return result;
|
141
|
+
}
|
142
|
+
|
143
|
+
/// Apply a scale to a 4x4 matrix.
|
144
|
+
template<typename T>
|
145
|
+
matrix<T, 4, 4> scale(const matrix<T, 4, 4>& m, const vector<T, 3>& v)
|
146
|
+
{
|
147
|
+
matrix<T, 4, 4> result;
|
148
|
+
result.set_col(0, m.get_col(0) * v[0]);
|
149
|
+
result.set_col(1, m.get_col(1) * v[1]);
|
150
|
+
result.set_col(2, m.get_col(2) * v[2]);
|
151
|
+
result.set_col(3, m.get_col(3));
|
152
|
+
return result;
|
153
|
+
}
|
154
|
+
|
155
|
+
/// Compute determinant of a 2x2 matrix.
|
156
|
+
template<typename T>
|
157
|
+
[[nodiscard]] inline T determinant(const matrix<T, 2, 2>& m)
|
158
|
+
{
|
159
|
+
return m[0][0] * m[1][1] - m[1][0] * m[0][1];
|
160
|
+
}
|
161
|
+
|
162
|
+
/// Compute determinant of a 3x3 matrix.
|
163
|
+
template<typename T>
|
164
|
+
[[nodiscard]] inline T determinant(const matrix<T, 3, 3>& m)
|
165
|
+
{
|
166
|
+
T a = m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
|
167
|
+
T b = m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
|
168
|
+
T c = m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
|
169
|
+
return a - b + c;
|
170
|
+
}
|
171
|
+
|
172
|
+
/// Compute determinant of a 4x4 matrix.
|
173
|
+
template<typename T>
|
174
|
+
[[nodiscard]] inline T determinant(const matrix<T, 4, 4>& m)
|
175
|
+
{
|
176
|
+
T sub_factor_00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
|
177
|
+
T sub_factor_01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
|
178
|
+
T sub_factor_02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
|
179
|
+
T sub_factor_03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
|
180
|
+
T sub_factor_04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
|
181
|
+
T sub_factor_05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
|
182
|
+
|
183
|
+
vector<T, 4> detCof(
|
184
|
+
+(m[1][1] * sub_factor_00 - m[1][2] * sub_factor_01 + m[1][3] * sub_factor_02), //
|
185
|
+
-(m[1][0] * sub_factor_00 - m[1][2] * sub_factor_03 + m[1][3] * sub_factor_04), //
|
186
|
+
+(m[1][0] * sub_factor_01 - m[1][1] * sub_factor_03 + m[1][3] * sub_factor_05), //
|
187
|
+
-(m[1][0] * sub_factor_02 - m[1][1] * sub_factor_04 + m[1][2] * sub_factor_05) //
|
188
|
+
);
|
189
|
+
|
190
|
+
return m[0][0] * detCof[0] + m[0][1] * detCof[1] + m[0][2] * detCof[2] + m[0][3] * detCof[3];
|
191
|
+
}
|
192
|
+
|
193
|
+
/// Compute inverse of a 2x2 matrix.
|
194
|
+
template<typename T>
|
195
|
+
[[nodiscard]] inline matrix<T, 2, 2> inverse(const matrix<T, 2, 2>& m)
|
196
|
+
{
|
197
|
+
T one_over_det = T(1) / determinant(m);
|
198
|
+
return matrix<T, 2, 2>{
|
199
|
+
+m[1][1] * one_over_det,
|
200
|
+
-m[0][1] * one_over_det, // row 0
|
201
|
+
-m[1][0] * one_over_det,
|
202
|
+
+m[0][0] * one_over_det // row 1
|
203
|
+
};
|
204
|
+
}
|
205
|
+
|
206
|
+
/// Compute inverse of a 3x3 matrix.
|
207
|
+
template<typename T>
|
208
|
+
[[nodiscard]] inline matrix<T, 3, 3> inverse(const matrix<T, 3, 3>& m)
|
209
|
+
{
|
210
|
+
T one_over_det = T(1) / determinant(m);
|
211
|
+
|
212
|
+
matrix<T, 3, 3> result;
|
213
|
+
result[0][0] = +(m[1][1] * m[2][2] - m[1][2] * m[2][1]) * one_over_det;
|
214
|
+
result[0][1] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]) * one_over_det;
|
215
|
+
result[0][2] = +(m[0][1] * m[1][2] - m[0][2] * m[1][1]) * one_over_det;
|
216
|
+
result[1][0] = -(m[1][0] * m[2][2] - m[1][2] * m[2][0]) * one_over_det;
|
217
|
+
result[1][1] = +(m[0][0] * m[2][2] - m[0][2] * m[2][0]) * one_over_det;
|
218
|
+
result[1][2] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]) * one_over_det;
|
219
|
+
result[2][0] = +(m[1][0] * m[2][1] - m[1][1] * m[2][0]) * one_over_det;
|
220
|
+
result[2][1] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]) * one_over_det;
|
221
|
+
result[2][2] = +(m[0][0] * m[1][1] - m[0][1] * m[1][0]) * one_over_det;
|
222
|
+
return result;
|
223
|
+
}
|
224
|
+
|
225
|
+
/// Compute inverse of a 4x4 matrix.
|
226
|
+
template<typename T>
|
227
|
+
[[nodiscard]] inline matrix<T, 4, 4> inverse(const matrix<T, 4, 4>& m)
|
228
|
+
{
|
229
|
+
T c00 = m[2][2] * m[3][3] - m[2][3] * m[3][2];
|
230
|
+
T c02 = m[2][1] * m[3][3] - m[2][3] * m[3][1];
|
231
|
+
T c03 = m[2][1] * m[3][2] - m[2][2] * m[3][1];
|
232
|
+
|
233
|
+
T c04 = m[1][2] * m[3][3] - m[1][3] * m[3][2];
|
234
|
+
T c06 = m[1][1] * m[3][3] - m[1][3] * m[3][1];
|
235
|
+
T c07 = m[1][1] * m[3][2] - m[1][2] * m[3][1];
|
236
|
+
|
237
|
+
T c08 = m[1][2] * m[2][3] - m[1][3] * m[2][2];
|
238
|
+
T c10 = m[1][1] * m[2][3] - m[1][3] * m[2][1];
|
239
|
+
T c11 = m[1][1] * m[2][2] - m[1][2] * m[2][1];
|
240
|
+
|
241
|
+
T c12 = m[0][2] * m[3][3] - m[0][3] * m[3][2];
|
242
|
+
T c14 = m[0][1] * m[3][3] - m[0][3] * m[3][1];
|
243
|
+
T c15 = m[0][1] * m[3][2] - m[0][2] * m[3][1];
|
244
|
+
|
245
|
+
T c16 = m[0][2] * m[2][3] - m[0][3] * m[2][2];
|
246
|
+
T c18 = m[0][1] * m[2][3] - m[0][3] * m[2][1];
|
247
|
+
T c19 = m[0][1] * m[2][2] - m[0][2] * m[2][1];
|
248
|
+
|
249
|
+
T c20 = m[0][2] * m[1][3] - m[0][3] * m[1][2];
|
250
|
+
T c22 = m[0][1] * m[1][3] - m[0][3] * m[1][1];
|
251
|
+
T c23 = m[0][1] * m[1][2] - m[0][2] * m[1][1];
|
252
|
+
|
253
|
+
vector<T, 4> fac0(c00, c00, c02, c03);
|
254
|
+
vector<T, 4> fac1(c04, c04, c06, c07);
|
255
|
+
vector<T, 4> fac2(c08, c08, c10, c11);
|
256
|
+
vector<T, 4> fac3(c12, c12, c14, c15);
|
257
|
+
vector<T, 4> fac4(c16, c16, c18, c19);
|
258
|
+
vector<T, 4> fac5(c20, c20, c22, c23);
|
259
|
+
|
260
|
+
vector<T, 4> vec0(m[0][1], m[0][0], m[0][0], m[0][0]);
|
261
|
+
vector<T, 4> vec1(m[1][1], m[1][0], m[1][0], m[1][0]);
|
262
|
+
vector<T, 4> vec2(m[2][1], m[2][0], m[2][0], m[2][0]);
|
263
|
+
vector<T, 4> vec3(m[3][1], m[3][0], m[3][0], m[3][0]);
|
264
|
+
|
265
|
+
vector<T, 4> inv0(vec1 * fac0 - vec2 * fac1 + vec3 * fac2);
|
266
|
+
vector<T, 4> inv1(vec0 * fac0 - vec2 * fac3 + vec3 * fac4);
|
267
|
+
vector<T, 4> inv2(vec0 * fac1 - vec1 * fac3 + vec3 * fac5);
|
268
|
+
vector<T, 4> inv3(vec0 * fac2 - vec1 * fac4 + vec2 * fac5);
|
269
|
+
|
270
|
+
vector<T, 4> sign_a(+1, -1, +1, -1);
|
271
|
+
vector<T, 4> sign_b(-1, +1, -1, +1);
|
272
|
+
matrix<T, 4, 4> inverse = matrix_from_columns(inv0 * sign_a, inv1 * sign_b, inv2 * sign_a, inv3 * sign_b);
|
273
|
+
|
274
|
+
vector<T, 4> row0(inverse[0][0], inverse[0][1], inverse[0][2], inverse[0][3]);
|
275
|
+
|
276
|
+
vector<T, 4> dot0(m.get_col(0) * row0);
|
277
|
+
T dot1 = (dot0.x + dot0.y) + (dot0.z + dot0.w);
|
278
|
+
|
279
|
+
T one_over_det = T(1) / dot1;
|
280
|
+
|
281
|
+
return inverse * one_over_det;
|
282
|
+
}
|
283
|
+
|
284
|
+
/// Compute the (X * Y * Z) euler angles of a 4x4 matrix.
|
285
|
+
template<typename T>
|
286
|
+
void extract_euler_angle_xyz(const matrix<T, 4, 4>& m, float& angle_x, float& angle_y, float& angle_z)
|
287
|
+
{
|
288
|
+
T t1 = atan2(m[1][2], m[2][2]);
|
289
|
+
T c2 = sqrt(m[0][0] * m[0][0] + m[0][1] * m[0][1]);
|
290
|
+
T t2 = atan2(-m[0][2], c2);
|
291
|
+
T s1 = sin(t1);
|
292
|
+
T c1 = cos(t1);
|
293
|
+
T t3 = atan2(s1 * m[2][0] - c1 * m[1][0], c1 * m[1][1] - s1 * m[2][1]);
|
294
|
+
angle_x = -t1;
|
295
|
+
angle_y = -t2;
|
296
|
+
angle_z = -t3;
|
297
|
+
}
|
298
|
+
|
299
|
+
/// Decomposes a model matrix into translation, rotation and scale components.
|
300
|
+
template<typename T>
|
301
|
+
inline bool decompose(
|
302
|
+
const matrix<T, 4, 4>& model_matrix,
|
303
|
+
vector<T, 3>& scale,
|
304
|
+
quat<T>& orientation,
|
305
|
+
vector<T, 3>& translation,
|
306
|
+
vector<T, 3>& skew,
|
307
|
+
vector<T, 4>& perspective
|
308
|
+
)
|
309
|
+
{
|
310
|
+
// See https://caff.de/posts/4X4-matrix-decomposition/decomposition.pdf
|
311
|
+
|
312
|
+
const T eps = std::numeric_limits<T>::epsilon();
|
313
|
+
|
314
|
+
matrix<T, 4, 4> local_matrix(model_matrix);
|
315
|
+
|
316
|
+
// Abort if zero matrix.
|
317
|
+
if (abs(local_matrix[3][3]) < eps)
|
318
|
+
return false;
|
319
|
+
|
320
|
+
// Normalize the matrix.
|
321
|
+
for (int i = 0; i < 4; ++i)
|
322
|
+
for (int j = 0; j < 4; ++j)
|
323
|
+
local_matrix[i][j] /= local_matrix[3][3];
|
324
|
+
|
325
|
+
// perspective_matrix is used to solve for perspective, but it also provides
|
326
|
+
// an easy way to test for singularity of the upper 3x3 component.
|
327
|
+
matrix<T, 4, 4> perspective_matrix(local_matrix);
|
328
|
+
perspective_matrix[3] = vector<T, 4>(0, 0, 0, 1);
|
329
|
+
if (abs(determinant(perspective_matrix)) < eps)
|
330
|
+
return false;
|
331
|
+
|
332
|
+
// First, isolate perspective. This is the messiest.
|
333
|
+
if (abs(local_matrix[3][0]) >= eps || abs(local_matrix[3][1]) >= eps || abs(local_matrix[3][2]) >= eps) {
|
334
|
+
// right_hand_side is the right hand side of the equation.
|
335
|
+
vector<T, 4> right_hand_side = local_matrix[3];
|
336
|
+
|
337
|
+
// Solve the equation by inverting perspective_matrix and multiplying
|
338
|
+
// right_hand_side by the inverse.
|
339
|
+
// (This is the easiest way, not necessarily the best.)
|
340
|
+
matrix<T, 4, 4> inverse_perspective_matrix = inverse(perspective_matrix);
|
341
|
+
matrix<T, 4, 4> transposed_inverse_perspective_matrix = transpose(inverse_perspective_matrix);
|
342
|
+
|
343
|
+
perspective = mul(transposed_inverse_perspective_matrix, right_hand_side);
|
344
|
+
|
345
|
+
// Clear the perspective partition.
|
346
|
+
local_matrix[3] = vector<T, 4>(0, 0, 0, 1);
|
347
|
+
} else {
|
348
|
+
// No perspective.
|
349
|
+
perspective = vector<T, 4>(0, 0, 0, 1);
|
350
|
+
}
|
351
|
+
|
352
|
+
// Next take care of translation (easy).
|
353
|
+
translation = local_matrix.get_col(3).xyz();
|
354
|
+
local_matrix.set_row(3, vector<T, 4>(0, 0, 0, 1));
|
355
|
+
|
356
|
+
vector<T, 3> row[3];
|
357
|
+
|
358
|
+
// Now get scale and shear.
|
359
|
+
for (int i = 0; i < 3; ++i)
|
360
|
+
for (int j = 0; j < 3; ++j)
|
361
|
+
row[i][j] = local_matrix[j][i];
|
362
|
+
|
363
|
+
// Compute X scale factor and normalize first row.
|
364
|
+
scale.x = length(row[0]);
|
365
|
+
row[0] = normalize(row[0]);
|
366
|
+
|
367
|
+
// Compute XY shear factor and make 2nd row orthogonal to 1st.
|
368
|
+
skew.z = dot(row[0], row[1]);
|
369
|
+
row[1] = row[1] - skew.z * row[0];
|
370
|
+
|
371
|
+
// Now, compute Y scale and normalize 2nd row.
|
372
|
+
scale.y = length(row[1]);
|
373
|
+
row[1] = normalize(row[1]);
|
374
|
+
skew.z /= scale.y;
|
375
|
+
|
376
|
+
// Compute XZ and YZ shears, orthogonalize 3rd row.
|
377
|
+
skew.y = dot(row[0], row[2]);
|
378
|
+
row[2] = row[2] - skew.y * row[0];
|
379
|
+
skew.x = dot(row[1], row[2]);
|
380
|
+
row[2] = row[2] - skew.x * row[1];
|
381
|
+
|
382
|
+
// Next, get Z scale and normalize 3rd row.
|
383
|
+
scale.z = length(row[2]);
|
384
|
+
row[2] = normalize(row[2]);
|
385
|
+
skew.y /= scale.z;
|
386
|
+
skew.x /= scale.z;
|
387
|
+
|
388
|
+
// At this point, the matrix (in rows[]) is orthonormal.
|
389
|
+
// Check for a coordinate system flip. If the determinant
|
390
|
+
// is -1, then negate the matrix and the scaling factors.
|
391
|
+
if (dot(row[0], cross(row[1], row[2])) < T(0)) {
|
392
|
+
scale *= T(-1);
|
393
|
+
for (int i = 0; i < 3; i++)
|
394
|
+
row[i] *= T(-1);
|
395
|
+
}
|
396
|
+
|
397
|
+
// Now, get the rotations out, as described in the gem.
|
398
|
+
int i, j, k = 0;
|
399
|
+
T root, trace = row[0].x + row[1].y + row[2].z;
|
400
|
+
if (trace > T(0)) {
|
401
|
+
root = sqrt(trace + T(1));
|
402
|
+
orientation.w = T(0.5) * root;
|
403
|
+
root = T(0.5) / root;
|
404
|
+
orientation.x = root * (row[1].z - row[2].y);
|
405
|
+
orientation.y = root * (row[2].x - row[0].z);
|
406
|
+
orientation.z = root * (row[0].y - row[1].x);
|
407
|
+
} // end if > 0
|
408
|
+
else {
|
409
|
+
static int next[3] = {1, 2, 0};
|
410
|
+
i = 0;
|
411
|
+
if (row[1].y > row[0].x)
|
412
|
+
i = 1;
|
413
|
+
if (row[2].z > row[i][i])
|
414
|
+
i = 2;
|
415
|
+
j = next[i];
|
416
|
+
k = next[j];
|
417
|
+
|
418
|
+
root = sqrt(row[i][i] - row[j][j] - row[k][k] + T(1));
|
419
|
+
|
420
|
+
orientation[i] = T(0.5) * root;
|
421
|
+
root = T(0.5) / root;
|
422
|
+
orientation[j] = root * (row[i][j] + row[j][i]);
|
423
|
+
orientation[k] = root * (row[i][k] + row[k][i]);
|
424
|
+
orientation.w = root * (row[j][k] - row[k][j]);
|
425
|
+
} // end if <= 0
|
426
|
+
|
427
|
+
return true;
|
428
|
+
}
|
429
|
+
|
430
|
+
// ----------------------------------------------------------------------------
|
431
|
+
// Construction
|
432
|
+
// ----------------------------------------------------------------------------
|
433
|
+
|
434
|
+
/// Creates a matrix from coefficients in row-major order.
|
435
|
+
template<typename T, int R, int C>
|
436
|
+
[[nodiscard]] inline matrix<T, R, C> matrix_from_coefficients(const T* coeffs)
|
437
|
+
{
|
438
|
+
matrix<T, R, C> m;
|
439
|
+
std::memcpy(&m, coeffs, sizeof(T) * R * C);
|
440
|
+
return m;
|
441
|
+
}
|
442
|
+
|
443
|
+
/// Creates a matrix from column vectors.
|
444
|
+
template<typename T, int R>
|
445
|
+
[[nodiscard]] inline matrix<T, R, 1> matrix_from_columns(const vector<T, R>& col0)
|
446
|
+
{
|
447
|
+
matrix<T, R, 1> m;
|
448
|
+
m.set_col(0, col0);
|
449
|
+
return m;
|
450
|
+
}
|
451
|
+
|
452
|
+
/// Creates a matrix from column vectors.
|
453
|
+
template<typename T, int R>
|
454
|
+
[[nodiscard]] inline matrix<T, R, 2> matrix_from_columns(const vector<T, R>& col0, const vector<T, R>& col1)
|
455
|
+
{
|
456
|
+
matrix<T, R, 2> m;
|
457
|
+
m.set_col(0, col0);
|
458
|
+
m.set_col(1, col1);
|
459
|
+
return m;
|
460
|
+
}
|
461
|
+
|
462
|
+
/// Creates a matrix from column vectors.
|
463
|
+
template<typename T, int R>
|
464
|
+
[[nodiscard]] inline matrix<T, R, 3>
|
465
|
+
matrix_from_columns(const vector<T, R>& col0, const vector<T, R>& col1, const vector<T, R>& col2)
|
466
|
+
{
|
467
|
+
matrix<T, R, 3> m;
|
468
|
+
m.set_col(0, col0);
|
469
|
+
m.set_col(1, col1);
|
470
|
+
m.set_col(2, col2);
|
471
|
+
return m;
|
472
|
+
}
|
473
|
+
|
474
|
+
/// Creates a matrix from column vectors.
|
475
|
+
template<typename T, int R>
|
476
|
+
[[nodiscard]] inline matrix<T, R, 4> matrix_from_columns(
|
477
|
+
const vector<T, R>& col0,
|
478
|
+
const vector<T, R>& col1,
|
479
|
+
const vector<T, R>& col2,
|
480
|
+
const vector<T, R>& col3
|
481
|
+
)
|
482
|
+
{
|
483
|
+
matrix<T, R, 4> m;
|
484
|
+
m.set_col(0, col0);
|
485
|
+
m.set_col(1, col1);
|
486
|
+
m.set_col(2, col2);
|
487
|
+
m.set_col(3, col3);
|
488
|
+
return m;
|
489
|
+
}
|
490
|
+
|
491
|
+
/// Creates a square matrix from a diagonal vector.
|
492
|
+
template<typename T, int N>
|
493
|
+
[[nodiscard]] inline matrix<T, N, N> matrix_from_diagonal(const vector<T, N>& diag)
|
494
|
+
{
|
495
|
+
matrix<T, N, N> m = matrix<T, N, N>::zeros();
|
496
|
+
for (int i = 0; i < N; i++)
|
497
|
+
m[i][i] = diag[i];
|
498
|
+
return m;
|
499
|
+
}
|
500
|
+
|
501
|
+
/// Creates a right-handed perspective projection matrix. Depth is mapped to [0, 1].
|
502
|
+
template<floating_point T>
|
503
|
+
[[nodiscard]] inline matrix<T, 4, 4> perspective(T fovy, T aspect, T z_near, T z_far)
|
504
|
+
{
|
505
|
+
SGL_ASSERT(abs(aspect - std::numeric_limits<T>::epsilon()) > T(0));
|
506
|
+
|
507
|
+
T tan_half_fovy = tan(fovy / T(2));
|
508
|
+
|
509
|
+
matrix<T, 4, 4> m = matrix<T, 4, 4>::zeros();
|
510
|
+
m[0][0] = T(1) / (aspect * tan_half_fovy);
|
511
|
+
m[1][1] = T(1) / (tan_half_fovy);
|
512
|
+
m[2][2] = z_far / (z_near - z_far);
|
513
|
+
m[3][2] = -T(1);
|
514
|
+
m[2][3] = -(z_far * z_near) / (z_far - z_near);
|
515
|
+
return m;
|
516
|
+
}
|
517
|
+
|
518
|
+
/// Creates a right-handed orthographic projection matrix. Depth is mapped to [0, 1].
|
519
|
+
template<floating_point T>
|
520
|
+
[[nodiscard]] inline matrix<T, 4, 4> ortho(T left, T right, T bottom, T top, T z_near, T z_far)
|
521
|
+
{
|
522
|
+
matrix<T, 4, 4> m = matrix<T, 4, 4>::identity();
|
523
|
+
m[0][0] = T(2) / (right - left);
|
524
|
+
m[1][1] = T(2) / (top - bottom);
|
525
|
+
m[2][2] = -T(1) / (z_far - z_near);
|
526
|
+
m[0][3] = -(right + left) / (right - left);
|
527
|
+
m[1][3] = -(top + bottom) / (top - bottom);
|
528
|
+
m[2][3] = -z_near / (z_far - z_near);
|
529
|
+
return m;
|
530
|
+
}
|
531
|
+
|
532
|
+
/// Creates a translation matrix.
|
533
|
+
template<floating_point T>
|
534
|
+
[[nodiscard]] inline matrix<T, 4, 4> matrix_from_translation(const vector<T, 3>& v)
|
535
|
+
{
|
536
|
+
return translate(matrix<T, 4, 4>::identity(), v);
|
537
|
+
}
|
538
|
+
|
539
|
+
/// Creates a rotation matrix from an angle and an axis.
|
540
|
+
template<floating_point T>
|
541
|
+
[[nodiscard]] inline matrix<T, 4, 4> matrix_from_rotation(T angle, const vector<T, 3>& axis)
|
542
|
+
{
|
543
|
+
return rotate(matrix<T, 4, 4>::identity(), angle, axis);
|
544
|
+
}
|
545
|
+
|
546
|
+
/// Creates a rotation matrix around the X-axis.
|
547
|
+
template<floating_point T>
|
548
|
+
[[nodiscard]] inline matrix<T, 4, 4> matrix_from_rotation_x(T angle)
|
549
|
+
{
|
550
|
+
T c = cos(angle);
|
551
|
+
T s = sin(angle);
|
552
|
+
|
553
|
+
// clang-format off
|
554
|
+
return matrix<T, 4, 4>{
|
555
|
+
T(1), T(0), T(0), T(0), // row 0
|
556
|
+
T(0), c, -s, T(0), // row 1
|
557
|
+
T(0), s, c, T(0), // row 2
|
558
|
+
T(0), T(0), T(0), T(1) // row 3
|
559
|
+
};
|
560
|
+
// clang-format on
|
561
|
+
}
|
562
|
+
|
563
|
+
/// Creates a rotation matrix around the Y-axis.
|
564
|
+
template<floating_point T>
|
565
|
+
[[nodiscard]] inline matrix<T, 4, 4> matrix_from_rotation_y(T angle)
|
566
|
+
{
|
567
|
+
T c = cos(angle);
|
568
|
+
T s = sin(angle);
|
569
|
+
|
570
|
+
// clang-format off
|
571
|
+
return matrix<T, 4, 4>{
|
572
|
+
c, T(0), s, T(0), // row 0
|
573
|
+
T(0), T(1), T(0), T(0), // row 1
|
574
|
+
-s, T(0), c, T(0), // row 2
|
575
|
+
T(0), T(0), T(0), T(1) // row 3
|
576
|
+
};
|
577
|
+
// clang-format on
|
578
|
+
}
|
579
|
+
|
580
|
+
/// Creates a rotation matrix around the Z-axis.
|
581
|
+
template<floating_point T>
|
582
|
+
[[nodiscard]] inline matrix<T, 4, 4> matrix_from_rotation_z(T angle)
|
583
|
+
{
|
584
|
+
T c = cos(angle);
|
585
|
+
T s = sin(angle);
|
586
|
+
|
587
|
+
// clang-format off
|
588
|
+
return matrix<T, 4, 4>{
|
589
|
+
c, -s, T(0), T(0), // row 0
|
590
|
+
s, c, T(0), T(0), // row 1
|
591
|
+
T(0), T(0), T(1), T(0), // row 2
|
592
|
+
T(0), T(0), T(0), T(1) // row 3
|
593
|
+
};
|
594
|
+
// clang-format on
|
595
|
+
}
|
596
|
+
|
597
|
+
/// Creates a rotation matrix (X * Y * Z).
|
598
|
+
template<floating_point T>
|
599
|
+
[[nodiscard]] inline matrix<T, 4, 4> matrix_from_rotation_xyz(T angle_x, T angle_y, T angle_z)
|
600
|
+
{
|
601
|
+
T c1 = cos(-angle_x);
|
602
|
+
T c2 = cos(-angle_y);
|
603
|
+
T c3 = cos(-angle_z);
|
604
|
+
T s1 = sin(-angle_x);
|
605
|
+
T s2 = sin(-angle_y);
|
606
|
+
T s3 = sin(-angle_z);
|
607
|
+
|
608
|
+
matrix<T, 4, 4> m;
|
609
|
+
m[0][0] = c2 * c3;
|
610
|
+
m[0][1] = c2 * s3;
|
611
|
+
m[0][2] = -s2;
|
612
|
+
m[0][3] = T(0);
|
613
|
+
|
614
|
+
m[1][0] = -c1 * s3 + s1 * s2 * c3;
|
615
|
+
m[1][1] = c1 * c3 + s1 * s2 * s3;
|
616
|
+
m[1][2] = s1 * c2;
|
617
|
+
m[1][3] = T(0);
|
618
|
+
|
619
|
+
m[2][0] = s1 * s3 + c1 * s2 * c3;
|
620
|
+
m[2][1] = -s1 * c3 + c1 * s2 * s3;
|
621
|
+
m[2][2] = c1 * c2;
|
622
|
+
m[2][3] = T(0);
|
623
|
+
|
624
|
+
m[3][0] = T(0);
|
625
|
+
m[3][1] = T(0);
|
626
|
+
m[3][2] = T(0);
|
627
|
+
m[3][3] = T(1);
|
628
|
+
|
629
|
+
return m;
|
630
|
+
}
|
631
|
+
|
632
|
+
template<floating_point T>
|
633
|
+
[[nodiscard]] inline matrix<T, 4, 4> matrix_from_rotation_xyz(const vector<T, 3>& angles)
|
634
|
+
{
|
635
|
+
return matrix_from_rotation_xyz(angles.x, angles.y, angles.z);
|
636
|
+
}
|
637
|
+
|
638
|
+
/// Creates a scaling matrix.
|
639
|
+
template<floating_point T>
|
640
|
+
[[nodiscard]] inline matrix<T, 4, 4> matrix_from_scaling(const vector<T, 3>& v)
|
641
|
+
{
|
642
|
+
return scale(matrix<T, 4, 4>::identity(), v);
|
643
|
+
}
|
644
|
+
|
645
|
+
/**
|
646
|
+
* Build a look-at matrix.
|
647
|
+
* If right handed, forward direction is mapped onto -Z axis.
|
648
|
+
* If left handed, forward direction is mapped onto +Z axis.
|
649
|
+
* \param eye Eye position
|
650
|
+
* \param center Center position
|
651
|
+
* \param up Up vector
|
652
|
+
* \param handedness Coordinate system handedness.
|
653
|
+
*/
|
654
|
+
template<floating_point T>
|
655
|
+
[[nodiscard]] inline matrix<T, 4, 4> matrix_from_look_at(
|
656
|
+
const vector<T, 3>& eye,
|
657
|
+
const vector<T, 3>& center,
|
658
|
+
const vector<T, 3>& up,
|
659
|
+
Handedness handedness = Handedness::right_handed
|
660
|
+
)
|
661
|
+
{
|
662
|
+
vector<T, 3> f(handedness == Handedness::right_handed ? normalize(eye - center) : normalize(center - eye));
|
663
|
+
vector<T, 3> r(normalize(cross(up, f)));
|
664
|
+
vector<T, 3> u(cross(f, r));
|
665
|
+
|
666
|
+
matrix<T, 4, 4> result = matrix<T, 4, 4>::identity();
|
667
|
+
result[0][0] = r.x;
|
668
|
+
result[0][1] = r.y;
|
669
|
+
result[0][2] = r.z;
|
670
|
+
result[1][0] = u.x;
|
671
|
+
result[1][1] = u.y;
|
672
|
+
result[1][2] = u.z;
|
673
|
+
result[2][0] = f.x;
|
674
|
+
result[2][1] = f.y;
|
675
|
+
result[2][2] = f.z;
|
676
|
+
result[0][3] = -dot(r, eye);
|
677
|
+
result[1][3] = -dot(u, eye);
|
678
|
+
result[2][3] = -dot(f, eye);
|
679
|
+
|
680
|
+
return result;
|
681
|
+
}
|
682
|
+
|
683
|
+
template<floating_point T>
|
684
|
+
[[nodiscard]] inline matrix<T, 3, 3> matrix_from_quat(const quat<T>& q)
|
685
|
+
{
|
686
|
+
matrix<T, 3, 3> m;
|
687
|
+
T qxx(q.x * q.x);
|
688
|
+
T qyy(q.y * q.y);
|
689
|
+
T qzz(q.z * q.z);
|
690
|
+
T qxz(q.x * q.z);
|
691
|
+
T qxy(q.x * q.y);
|
692
|
+
T qyz(q.y * q.z);
|
693
|
+
T qwx(q.w * q.x);
|
694
|
+
T qwy(q.w * q.y);
|
695
|
+
T qwz(q.w * q.z);
|
696
|
+
|
697
|
+
m[0][0] = T(1) - T(2) * (qyy + qzz);
|
698
|
+
m[0][1] = T(2) * (qxy - qwz);
|
699
|
+
m[0][2] = T(2) * (qxz + qwy);
|
700
|
+
|
701
|
+
m[1][0] = T(2) * (qxy + qwz);
|
702
|
+
m[1][1] = T(1) - T(2) * (qxx + qzz);
|
703
|
+
m[1][2] = T(2) * (qyz - qwx);
|
704
|
+
|
705
|
+
m[2][0] = T(2) * (qxz - qwy);
|
706
|
+
m[2][1] = T(2) * (qyz + qwx);
|
707
|
+
m[2][2] = T(1) - T(2) * (qxx + qyy);
|
708
|
+
|
709
|
+
return m;
|
710
|
+
}
|
711
|
+
|
712
|
+
template<typename T, int R, int C>
|
713
|
+
[[nodiscard]] std::string to_string(const matrix<T, R, C>& m)
|
714
|
+
{
|
715
|
+
return ::fmt::format("{}", m);
|
716
|
+
}
|
717
|
+
|
718
|
+
template<int R, int C, typename T>
|
719
|
+
bool lex_lt(const matrix<T, R, C>& lhs, const matrix<T, R, C>& rhs)
|
720
|
+
{
|
721
|
+
for (int r = 0; r < R; ++r) {
|
722
|
+
for (int c = 0; c < C; ++c) {
|
723
|
+
if (lhs[r][c] != rhs[r][c])
|
724
|
+
return lhs[r][c] < rhs[r][c];
|
725
|
+
}
|
726
|
+
}
|
727
|
+
return false;
|
728
|
+
}
|
729
|
+
} // namespace sgl::math
|
730
|
+
|
731
|
+
template<typename T, int R, int C>
|
732
|
+
struct fmt::formatter<sgl::math::matrix<T, R, C>> : formatter<typename sgl::math::matrix<T, R, C>::row_type> {
|
733
|
+
using row_type = typename sgl::math::matrix<T, R, C>::row_type;
|
734
|
+
|
735
|
+
template<typename FormatContext>
|
736
|
+
auto format(const sgl::math::matrix<T, R, C>& matrix, FormatContext& ctx) const
|
737
|
+
{
|
738
|
+
auto out = ctx.out();
|
739
|
+
for (int r = 0; r < R; ++r) {
|
740
|
+
out = ::fmt::format_to(out, "{}", (r == 0) ? "{" : ", ");
|
741
|
+
out = formatter<row_type>::format(matrix.get_row(r), ctx);
|
742
|
+
}
|
743
|
+
out = fmt::format_to(out, "}}");
|
744
|
+
return out;
|
745
|
+
}
|
746
|
+
};
|