numba-cuda 0.22.0__cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (487) hide show
  1. _numba_cuda_redirector.pth +4 -0
  2. _numba_cuda_redirector.py +89 -0
  3. numba_cuda/VERSION +1 -0
  4. numba_cuda/__init__.py +6 -0
  5. numba_cuda/_version.py +11 -0
  6. numba_cuda/numba/cuda/__init__.py +70 -0
  7. numba_cuda/numba/cuda/_internal/cuda_bf16.py +16394 -0
  8. numba_cuda/numba/cuda/_internal/cuda_fp16.py +8112 -0
  9. numba_cuda/numba/cuda/api.py +580 -0
  10. numba_cuda/numba/cuda/api_util.py +76 -0
  11. numba_cuda/numba/cuda/args.py +72 -0
  12. numba_cuda/numba/cuda/bf16.py +397 -0
  13. numba_cuda/numba/cuda/cache_hints.py +287 -0
  14. numba_cuda/numba/cuda/cext/__init__.py +2 -0
  15. numba_cuda/numba/cuda/cext/_devicearray.cpp +159 -0
  16. numba_cuda/numba/cuda/cext/_devicearray.cpython-313-aarch64-linux-gnu.so +0 -0
  17. numba_cuda/numba/cuda/cext/_devicearray.h +29 -0
  18. numba_cuda/numba/cuda/cext/_dispatcher.cpp +1098 -0
  19. numba_cuda/numba/cuda/cext/_dispatcher.cpython-313-aarch64-linux-gnu.so +0 -0
  20. numba_cuda/numba/cuda/cext/_hashtable.cpp +532 -0
  21. numba_cuda/numba/cuda/cext/_hashtable.h +135 -0
  22. numba_cuda/numba/cuda/cext/_helperlib.c +71 -0
  23. numba_cuda/numba/cuda/cext/_helperlib.cpython-313-aarch64-linux-gnu.so +0 -0
  24. numba_cuda/numba/cuda/cext/_helpermod.c +82 -0
  25. numba_cuda/numba/cuda/cext/_pymodule.h +38 -0
  26. numba_cuda/numba/cuda/cext/_typeconv.cpp +206 -0
  27. numba_cuda/numba/cuda/cext/_typeconv.cpython-313-aarch64-linux-gnu.so +0 -0
  28. numba_cuda/numba/cuda/cext/_typeof.cpp +1159 -0
  29. numba_cuda/numba/cuda/cext/_typeof.h +19 -0
  30. numba_cuda/numba/cuda/cext/capsulethunk.h +111 -0
  31. numba_cuda/numba/cuda/cext/mviewbuf.c +385 -0
  32. numba_cuda/numba/cuda/cext/mviewbuf.cpython-313-aarch64-linux-gnu.so +0 -0
  33. numba_cuda/numba/cuda/cext/typeconv.cpp +212 -0
  34. numba_cuda/numba/cuda/cext/typeconv.hpp +101 -0
  35. numba_cuda/numba/cuda/cg.py +67 -0
  36. numba_cuda/numba/cuda/cgutils.py +1294 -0
  37. numba_cuda/numba/cuda/cloudpickle/__init__.py +21 -0
  38. numba_cuda/numba/cuda/cloudpickle/cloudpickle.py +1598 -0
  39. numba_cuda/numba/cuda/cloudpickle/cloudpickle_fast.py +17 -0
  40. numba_cuda/numba/cuda/codegen.py +541 -0
  41. numba_cuda/numba/cuda/compiler.py +1396 -0
  42. numba_cuda/numba/cuda/core/analysis.py +758 -0
  43. numba_cuda/numba/cuda/core/annotations/__init__.py +0 -0
  44. numba_cuda/numba/cuda/core/annotations/pretty_annotate.py +288 -0
  45. numba_cuda/numba/cuda/core/annotations/type_annotations.py +305 -0
  46. numba_cuda/numba/cuda/core/base.py +1332 -0
  47. numba_cuda/numba/cuda/core/boxing.py +1411 -0
  48. numba_cuda/numba/cuda/core/bytecode.py +728 -0
  49. numba_cuda/numba/cuda/core/byteflow.py +2346 -0
  50. numba_cuda/numba/cuda/core/caching.py +744 -0
  51. numba_cuda/numba/cuda/core/callconv.py +392 -0
  52. numba_cuda/numba/cuda/core/codegen.py +171 -0
  53. numba_cuda/numba/cuda/core/compiler.py +199 -0
  54. numba_cuda/numba/cuda/core/compiler_lock.py +85 -0
  55. numba_cuda/numba/cuda/core/compiler_machinery.py +497 -0
  56. numba_cuda/numba/cuda/core/config.py +650 -0
  57. numba_cuda/numba/cuda/core/consts.py +124 -0
  58. numba_cuda/numba/cuda/core/controlflow.py +989 -0
  59. numba_cuda/numba/cuda/core/entrypoints.py +57 -0
  60. numba_cuda/numba/cuda/core/environment.py +66 -0
  61. numba_cuda/numba/cuda/core/errors.py +917 -0
  62. numba_cuda/numba/cuda/core/event.py +511 -0
  63. numba_cuda/numba/cuda/core/funcdesc.py +330 -0
  64. numba_cuda/numba/cuda/core/generators.py +387 -0
  65. numba_cuda/numba/cuda/core/imputils.py +509 -0
  66. numba_cuda/numba/cuda/core/inline_closurecall.py +1787 -0
  67. numba_cuda/numba/cuda/core/interpreter.py +3617 -0
  68. numba_cuda/numba/cuda/core/ir.py +1812 -0
  69. numba_cuda/numba/cuda/core/ir_utils.py +2638 -0
  70. numba_cuda/numba/cuda/core/optional.py +129 -0
  71. numba_cuda/numba/cuda/core/options.py +262 -0
  72. numba_cuda/numba/cuda/core/postproc.py +249 -0
  73. numba_cuda/numba/cuda/core/pythonapi.py +1859 -0
  74. numba_cuda/numba/cuda/core/registry.py +46 -0
  75. numba_cuda/numba/cuda/core/removerefctpass.py +123 -0
  76. numba_cuda/numba/cuda/core/rewrites/__init__.py +26 -0
  77. numba_cuda/numba/cuda/core/rewrites/ir_print.py +91 -0
  78. numba_cuda/numba/cuda/core/rewrites/registry.py +104 -0
  79. numba_cuda/numba/cuda/core/rewrites/static_binop.py +41 -0
  80. numba_cuda/numba/cuda/core/rewrites/static_getitem.py +189 -0
  81. numba_cuda/numba/cuda/core/rewrites/static_raise.py +100 -0
  82. numba_cuda/numba/cuda/core/sigutils.py +68 -0
  83. numba_cuda/numba/cuda/core/ssa.py +498 -0
  84. numba_cuda/numba/cuda/core/targetconfig.py +330 -0
  85. numba_cuda/numba/cuda/core/tracing.py +231 -0
  86. numba_cuda/numba/cuda/core/transforms.py +956 -0
  87. numba_cuda/numba/cuda/core/typed_passes.py +867 -0
  88. numba_cuda/numba/cuda/core/typeinfer.py +1950 -0
  89. numba_cuda/numba/cuda/core/unsafe/__init__.py +0 -0
  90. numba_cuda/numba/cuda/core/unsafe/bytes.py +67 -0
  91. numba_cuda/numba/cuda/core/unsafe/eh.py +67 -0
  92. numba_cuda/numba/cuda/core/unsafe/refcount.py +98 -0
  93. numba_cuda/numba/cuda/core/untyped_passes.py +1979 -0
  94. numba_cuda/numba/cuda/cpython/builtins.py +1153 -0
  95. numba_cuda/numba/cuda/cpython/charseq.py +1218 -0
  96. numba_cuda/numba/cuda/cpython/cmathimpl.py +560 -0
  97. numba_cuda/numba/cuda/cpython/enumimpl.py +103 -0
  98. numba_cuda/numba/cuda/cpython/iterators.py +167 -0
  99. numba_cuda/numba/cuda/cpython/listobj.py +1326 -0
  100. numba_cuda/numba/cuda/cpython/mathimpl.py +499 -0
  101. numba_cuda/numba/cuda/cpython/numbers.py +1475 -0
  102. numba_cuda/numba/cuda/cpython/rangeobj.py +289 -0
  103. numba_cuda/numba/cuda/cpython/slicing.py +322 -0
  104. numba_cuda/numba/cuda/cpython/tupleobj.py +456 -0
  105. numba_cuda/numba/cuda/cpython/unicode.py +2865 -0
  106. numba_cuda/numba/cuda/cpython/unicode_support.py +1597 -0
  107. numba_cuda/numba/cuda/cpython/unsafe/__init__.py +0 -0
  108. numba_cuda/numba/cuda/cpython/unsafe/numbers.py +64 -0
  109. numba_cuda/numba/cuda/cpython/unsafe/tuple.py +92 -0
  110. numba_cuda/numba/cuda/cuda_paths.py +691 -0
  111. numba_cuda/numba/cuda/cudadecl.py +543 -0
  112. numba_cuda/numba/cuda/cudadrv/__init__.py +14 -0
  113. numba_cuda/numba/cuda/cudadrv/devicearray.py +954 -0
  114. numba_cuda/numba/cuda/cudadrv/devices.py +249 -0
  115. numba_cuda/numba/cuda/cudadrv/driver.py +3238 -0
  116. numba_cuda/numba/cuda/cudadrv/drvapi.py +435 -0
  117. numba_cuda/numba/cuda/cudadrv/dummyarray.py +562 -0
  118. numba_cuda/numba/cuda/cudadrv/enums.py +613 -0
  119. numba_cuda/numba/cuda/cudadrv/error.py +48 -0
  120. numba_cuda/numba/cuda/cudadrv/libs.py +220 -0
  121. numba_cuda/numba/cuda/cudadrv/linkable_code.py +184 -0
  122. numba_cuda/numba/cuda/cudadrv/mappings.py +14 -0
  123. numba_cuda/numba/cuda/cudadrv/ndarray.py +26 -0
  124. numba_cuda/numba/cuda/cudadrv/nvrtc.py +193 -0
  125. numba_cuda/numba/cuda/cudadrv/nvvm.py +756 -0
  126. numba_cuda/numba/cuda/cudadrv/rtapi.py +13 -0
  127. numba_cuda/numba/cuda/cudadrv/runtime.py +34 -0
  128. numba_cuda/numba/cuda/cudaimpl.py +983 -0
  129. numba_cuda/numba/cuda/cudamath.py +149 -0
  130. numba_cuda/numba/cuda/datamodel/__init__.py +7 -0
  131. numba_cuda/numba/cuda/datamodel/cuda_manager.py +66 -0
  132. numba_cuda/numba/cuda/datamodel/cuda_models.py +1446 -0
  133. numba_cuda/numba/cuda/datamodel/cuda_packer.py +224 -0
  134. numba_cuda/numba/cuda/datamodel/cuda_registry.py +22 -0
  135. numba_cuda/numba/cuda/datamodel/cuda_testing.py +153 -0
  136. numba_cuda/numba/cuda/datamodel/manager.py +11 -0
  137. numba_cuda/numba/cuda/datamodel/models.py +9 -0
  138. numba_cuda/numba/cuda/datamodel/packer.py +9 -0
  139. numba_cuda/numba/cuda/datamodel/registry.py +11 -0
  140. numba_cuda/numba/cuda/datamodel/testing.py +11 -0
  141. numba_cuda/numba/cuda/debuginfo.py +997 -0
  142. numba_cuda/numba/cuda/decorators.py +294 -0
  143. numba_cuda/numba/cuda/descriptor.py +35 -0
  144. numba_cuda/numba/cuda/device_init.py +155 -0
  145. numba_cuda/numba/cuda/deviceufunc.py +1021 -0
  146. numba_cuda/numba/cuda/dispatcher.py +2463 -0
  147. numba_cuda/numba/cuda/errors.py +72 -0
  148. numba_cuda/numba/cuda/extending.py +697 -0
  149. numba_cuda/numba/cuda/flags.py +178 -0
  150. numba_cuda/numba/cuda/fp16.py +357 -0
  151. numba_cuda/numba/cuda/include/12/cuda_bf16.h +5118 -0
  152. numba_cuda/numba/cuda/include/12/cuda_bf16.hpp +3865 -0
  153. numba_cuda/numba/cuda/include/12/cuda_fp16.h +5363 -0
  154. numba_cuda/numba/cuda/include/12/cuda_fp16.hpp +3483 -0
  155. numba_cuda/numba/cuda/include/13/cuda_bf16.h +5118 -0
  156. numba_cuda/numba/cuda/include/13/cuda_bf16.hpp +3865 -0
  157. numba_cuda/numba/cuda/include/13/cuda_fp16.h +5363 -0
  158. numba_cuda/numba/cuda/include/13/cuda_fp16.hpp +3483 -0
  159. numba_cuda/numba/cuda/initialize.py +24 -0
  160. numba_cuda/numba/cuda/intrinsics.py +531 -0
  161. numba_cuda/numba/cuda/itanium_mangler.py +214 -0
  162. numba_cuda/numba/cuda/kernels/__init__.py +2 -0
  163. numba_cuda/numba/cuda/kernels/reduction.py +265 -0
  164. numba_cuda/numba/cuda/kernels/transpose.py +65 -0
  165. numba_cuda/numba/cuda/libdevice.py +3386 -0
  166. numba_cuda/numba/cuda/libdevicedecl.py +20 -0
  167. numba_cuda/numba/cuda/libdevicefuncs.py +1060 -0
  168. numba_cuda/numba/cuda/libdeviceimpl.py +88 -0
  169. numba_cuda/numba/cuda/locks.py +19 -0
  170. numba_cuda/numba/cuda/lowering.py +1980 -0
  171. numba_cuda/numba/cuda/mathimpl.py +374 -0
  172. numba_cuda/numba/cuda/memory_management/__init__.py +4 -0
  173. numba_cuda/numba/cuda/memory_management/memsys.cu +99 -0
  174. numba_cuda/numba/cuda/memory_management/memsys.cuh +22 -0
  175. numba_cuda/numba/cuda/memory_management/nrt.cu +212 -0
  176. numba_cuda/numba/cuda/memory_management/nrt.cuh +48 -0
  177. numba_cuda/numba/cuda/memory_management/nrt.py +390 -0
  178. numba_cuda/numba/cuda/memory_management/nrt_context.py +438 -0
  179. numba_cuda/numba/cuda/misc/appdirs.py +594 -0
  180. numba_cuda/numba/cuda/misc/cffiimpl.py +24 -0
  181. numba_cuda/numba/cuda/misc/coverage_support.py +43 -0
  182. numba_cuda/numba/cuda/misc/dump_style.py +41 -0
  183. numba_cuda/numba/cuda/misc/findlib.py +75 -0
  184. numba_cuda/numba/cuda/misc/firstlinefinder.py +96 -0
  185. numba_cuda/numba/cuda/misc/gdb_hook.py +240 -0
  186. numba_cuda/numba/cuda/misc/literal.py +28 -0
  187. numba_cuda/numba/cuda/misc/llvm_pass_timings.py +412 -0
  188. numba_cuda/numba/cuda/misc/special.py +94 -0
  189. numba_cuda/numba/cuda/models.py +56 -0
  190. numba_cuda/numba/cuda/np/arraymath.py +5130 -0
  191. numba_cuda/numba/cuda/np/arrayobj.py +7635 -0
  192. numba_cuda/numba/cuda/np/extensions.py +11 -0
  193. numba_cuda/numba/cuda/np/linalg.py +3087 -0
  194. numba_cuda/numba/cuda/np/math/__init__.py +0 -0
  195. numba_cuda/numba/cuda/np/math/cmathimpl.py +558 -0
  196. numba_cuda/numba/cuda/np/math/mathimpl.py +487 -0
  197. numba_cuda/numba/cuda/np/math/numbers.py +1461 -0
  198. numba_cuda/numba/cuda/np/npdatetime.py +969 -0
  199. numba_cuda/numba/cuda/np/npdatetime_helpers.py +217 -0
  200. numba_cuda/numba/cuda/np/npyfuncs.py +1808 -0
  201. numba_cuda/numba/cuda/np/npyimpl.py +1027 -0
  202. numba_cuda/numba/cuda/np/numpy_support.py +798 -0
  203. numba_cuda/numba/cuda/np/polynomial/__init__.py +4 -0
  204. numba_cuda/numba/cuda/np/polynomial/polynomial_core.py +242 -0
  205. numba_cuda/numba/cuda/np/polynomial/polynomial_functions.py +380 -0
  206. numba_cuda/numba/cuda/np/ufunc/__init__.py +4 -0
  207. numba_cuda/numba/cuda/np/ufunc/decorators.py +203 -0
  208. numba_cuda/numba/cuda/np/ufunc/sigparse.py +68 -0
  209. numba_cuda/numba/cuda/np/ufunc/ufuncbuilder.py +65 -0
  210. numba_cuda/numba/cuda/np/ufunc_db.py +1282 -0
  211. numba_cuda/numba/cuda/np/unsafe/__init__.py +0 -0
  212. numba_cuda/numba/cuda/np/unsafe/ndarray.py +84 -0
  213. numba_cuda/numba/cuda/nvvmutils.py +254 -0
  214. numba_cuda/numba/cuda/printimpl.py +126 -0
  215. numba_cuda/numba/cuda/random.py +308 -0
  216. numba_cuda/numba/cuda/reshape_funcs.cu +156 -0
  217. numba_cuda/numba/cuda/serialize.py +267 -0
  218. numba_cuda/numba/cuda/simulator/__init__.py +63 -0
  219. numba_cuda/numba/cuda/simulator/_internal/__init__.py +4 -0
  220. numba_cuda/numba/cuda/simulator/_internal/cuda_bf16.py +2 -0
  221. numba_cuda/numba/cuda/simulator/api.py +179 -0
  222. numba_cuda/numba/cuda/simulator/bf16.py +4 -0
  223. numba_cuda/numba/cuda/simulator/compiler.py +38 -0
  224. numba_cuda/numba/cuda/simulator/cudadrv/__init__.py +11 -0
  225. numba_cuda/numba/cuda/simulator/cudadrv/devicearray.py +462 -0
  226. numba_cuda/numba/cuda/simulator/cudadrv/devices.py +122 -0
  227. numba_cuda/numba/cuda/simulator/cudadrv/driver.py +66 -0
  228. numba_cuda/numba/cuda/simulator/cudadrv/drvapi.py +7 -0
  229. numba_cuda/numba/cuda/simulator/cudadrv/dummyarray.py +7 -0
  230. numba_cuda/numba/cuda/simulator/cudadrv/error.py +10 -0
  231. numba_cuda/numba/cuda/simulator/cudadrv/libs.py +10 -0
  232. numba_cuda/numba/cuda/simulator/cudadrv/linkable_code.py +61 -0
  233. numba_cuda/numba/cuda/simulator/cudadrv/nvrtc.py +11 -0
  234. numba_cuda/numba/cuda/simulator/cudadrv/nvvm.py +32 -0
  235. numba_cuda/numba/cuda/simulator/cudadrv/runtime.py +22 -0
  236. numba_cuda/numba/cuda/simulator/dispatcher.py +11 -0
  237. numba_cuda/numba/cuda/simulator/kernel.py +320 -0
  238. numba_cuda/numba/cuda/simulator/kernelapi.py +509 -0
  239. numba_cuda/numba/cuda/simulator/memory_management/__init__.py +4 -0
  240. numba_cuda/numba/cuda/simulator/memory_management/nrt.py +21 -0
  241. numba_cuda/numba/cuda/simulator/reduction.py +19 -0
  242. numba_cuda/numba/cuda/simulator/tests/support.py +4 -0
  243. numba_cuda/numba/cuda/simulator/vector_types.py +65 -0
  244. numba_cuda/numba/cuda/simulator_init.py +18 -0
  245. numba_cuda/numba/cuda/stubs.py +624 -0
  246. numba_cuda/numba/cuda/target.py +505 -0
  247. numba_cuda/numba/cuda/testing.py +347 -0
  248. numba_cuda/numba/cuda/tests/__init__.py +62 -0
  249. numba_cuda/numba/cuda/tests/benchmarks/__init__.py +0 -0
  250. numba_cuda/numba/cuda/tests/benchmarks/test_kernel_launch.py +119 -0
  251. numba_cuda/numba/cuda/tests/cloudpickle_main_class.py +9 -0
  252. numba_cuda/numba/cuda/tests/core/serialize_usecases.py +113 -0
  253. numba_cuda/numba/cuda/tests/core/test_itanium_mangler.py +83 -0
  254. numba_cuda/numba/cuda/tests/core/test_serialize.py +371 -0
  255. numba_cuda/numba/cuda/tests/cudadrv/__init__.py +9 -0
  256. numba_cuda/numba/cuda/tests/cudadrv/test_array_attr.py +147 -0
  257. numba_cuda/numba/cuda/tests/cudadrv/test_context_stack.py +161 -0
  258. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_array_slicing.py +397 -0
  259. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_auto_context.py +24 -0
  260. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_devicerecord.py +180 -0
  261. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_driver.py +313 -0
  262. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_memory.py +191 -0
  263. numba_cuda/numba/cuda/tests/cudadrv/test_cuda_ndarray.py +621 -0
  264. numba_cuda/numba/cuda/tests/cudadrv/test_deallocations.py +247 -0
  265. numba_cuda/numba/cuda/tests/cudadrv/test_detect.py +100 -0
  266. numba_cuda/numba/cuda/tests/cudadrv/test_emm_plugins.py +200 -0
  267. numba_cuda/numba/cuda/tests/cudadrv/test_events.py +53 -0
  268. numba_cuda/numba/cuda/tests/cudadrv/test_host_alloc.py +72 -0
  269. numba_cuda/numba/cuda/tests/cudadrv/test_init.py +138 -0
  270. numba_cuda/numba/cuda/tests/cudadrv/test_inline_ptx.py +43 -0
  271. numba_cuda/numba/cuda/tests/cudadrv/test_is_fp16.py +15 -0
  272. numba_cuda/numba/cuda/tests/cudadrv/test_linkable_code.py +58 -0
  273. numba_cuda/numba/cuda/tests/cudadrv/test_linker.py +348 -0
  274. numba_cuda/numba/cuda/tests/cudadrv/test_managed_alloc.py +128 -0
  275. numba_cuda/numba/cuda/tests/cudadrv/test_module_callbacks.py +301 -0
  276. numba_cuda/numba/cuda/tests/cudadrv/test_nvjitlink.py +174 -0
  277. numba_cuda/numba/cuda/tests/cudadrv/test_nvrtc.py +28 -0
  278. numba_cuda/numba/cuda/tests/cudadrv/test_nvvm_driver.py +185 -0
  279. numba_cuda/numba/cuda/tests/cudadrv/test_pinned.py +39 -0
  280. numba_cuda/numba/cuda/tests/cudadrv/test_profiler.py +23 -0
  281. numba_cuda/numba/cuda/tests/cudadrv/test_reset_device.py +38 -0
  282. numba_cuda/numba/cuda/tests/cudadrv/test_runtime.py +48 -0
  283. numba_cuda/numba/cuda/tests/cudadrv/test_select_device.py +44 -0
  284. numba_cuda/numba/cuda/tests/cudadrv/test_streams.py +127 -0
  285. numba_cuda/numba/cuda/tests/cudapy/__init__.py +9 -0
  286. numba_cuda/numba/cuda/tests/cudapy/cache_usecases.py +231 -0
  287. numba_cuda/numba/cuda/tests/cudapy/cache_with_cpu_usecases.py +50 -0
  288. numba_cuda/numba/cuda/tests/cudapy/cg_cache_usecases.py +36 -0
  289. numba_cuda/numba/cuda/tests/cudapy/complex_usecases.py +116 -0
  290. numba_cuda/numba/cuda/tests/cudapy/enum_usecases.py +59 -0
  291. numba_cuda/numba/cuda/tests/cudapy/extensions_usecases.py +62 -0
  292. numba_cuda/numba/cuda/tests/cudapy/jitlink.ptx +28 -0
  293. numba_cuda/numba/cuda/tests/cudapy/overload_usecases.py +33 -0
  294. numba_cuda/numba/cuda/tests/cudapy/recursion_usecases.py +104 -0
  295. numba_cuda/numba/cuda/tests/cudapy/test_alignment.py +47 -0
  296. numba_cuda/numba/cuda/tests/cudapy/test_analysis.py +1122 -0
  297. numba_cuda/numba/cuda/tests/cudapy/test_array.py +344 -0
  298. numba_cuda/numba/cuda/tests/cudapy/test_array_alignment.py +268 -0
  299. numba_cuda/numba/cuda/tests/cudapy/test_array_args.py +203 -0
  300. numba_cuda/numba/cuda/tests/cudapy/test_array_methods.py +63 -0
  301. numba_cuda/numba/cuda/tests/cudapy/test_array_reductions.py +360 -0
  302. numba_cuda/numba/cuda/tests/cudapy/test_atomics.py +1815 -0
  303. numba_cuda/numba/cuda/tests/cudapy/test_bfloat16.py +599 -0
  304. numba_cuda/numba/cuda/tests/cudapy/test_bfloat16_bindings.py +377 -0
  305. numba_cuda/numba/cuda/tests/cudapy/test_blackscholes.py +160 -0
  306. numba_cuda/numba/cuda/tests/cudapy/test_boolean.py +27 -0
  307. numba_cuda/numba/cuda/tests/cudapy/test_byteflow.py +98 -0
  308. numba_cuda/numba/cuda/tests/cudapy/test_cache_hints.py +210 -0
  309. numba_cuda/numba/cuda/tests/cudapy/test_caching.py +683 -0
  310. numba_cuda/numba/cuda/tests/cudapy/test_casting.py +265 -0
  311. numba_cuda/numba/cuda/tests/cudapy/test_cffi.py +42 -0
  312. numba_cuda/numba/cuda/tests/cudapy/test_compiler.py +718 -0
  313. numba_cuda/numba/cuda/tests/cudapy/test_complex.py +370 -0
  314. numba_cuda/numba/cuda/tests/cudapy/test_complex_kernel.py +23 -0
  315. numba_cuda/numba/cuda/tests/cudapy/test_const_string.py +142 -0
  316. numba_cuda/numba/cuda/tests/cudapy/test_constmem.py +178 -0
  317. numba_cuda/numba/cuda/tests/cudapy/test_cooperative_groups.py +193 -0
  318. numba_cuda/numba/cuda/tests/cudapy/test_copy_propagate.py +131 -0
  319. numba_cuda/numba/cuda/tests/cudapy/test_cuda_array_interface.py +438 -0
  320. numba_cuda/numba/cuda/tests/cudapy/test_cuda_jit_no_types.py +94 -0
  321. numba_cuda/numba/cuda/tests/cudapy/test_datetime.py +101 -0
  322. numba_cuda/numba/cuda/tests/cudapy/test_debug.py +105 -0
  323. numba_cuda/numba/cuda/tests/cudapy/test_debuginfo.py +978 -0
  324. numba_cuda/numba/cuda/tests/cudapy/test_debuginfo_types.py +476 -0
  325. numba_cuda/numba/cuda/tests/cudapy/test_device_func.py +500 -0
  326. numba_cuda/numba/cuda/tests/cudapy/test_dispatcher.py +820 -0
  327. numba_cuda/numba/cuda/tests/cudapy/test_enums.py +152 -0
  328. numba_cuda/numba/cuda/tests/cudapy/test_errors.py +111 -0
  329. numba_cuda/numba/cuda/tests/cudapy/test_exception.py +170 -0
  330. numba_cuda/numba/cuda/tests/cudapy/test_extending.py +1088 -0
  331. numba_cuda/numba/cuda/tests/cudapy/test_extending_types.py +71 -0
  332. numba_cuda/numba/cuda/tests/cudapy/test_fastmath.py +265 -0
  333. numba_cuda/numba/cuda/tests/cudapy/test_flow_control.py +1433 -0
  334. numba_cuda/numba/cuda/tests/cudapy/test_forall.py +57 -0
  335. numba_cuda/numba/cuda/tests/cudapy/test_freevar.py +34 -0
  336. numba_cuda/numba/cuda/tests/cudapy/test_frexp_ldexp.py +69 -0
  337. numba_cuda/numba/cuda/tests/cudapy/test_globals.py +62 -0
  338. numba_cuda/numba/cuda/tests/cudapy/test_gufunc.py +474 -0
  339. numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scalar.py +167 -0
  340. numba_cuda/numba/cuda/tests/cudapy/test_gufunc_scheduling.py +92 -0
  341. numba_cuda/numba/cuda/tests/cudapy/test_idiv.py +39 -0
  342. numba_cuda/numba/cuda/tests/cudapy/test_inline.py +170 -0
  343. numba_cuda/numba/cuda/tests/cudapy/test_inspect.py +255 -0
  344. numba_cuda/numba/cuda/tests/cudapy/test_intrinsics.py +1219 -0
  345. numba_cuda/numba/cuda/tests/cudapy/test_ipc.py +263 -0
  346. numba_cuda/numba/cuda/tests/cudapy/test_ir.py +598 -0
  347. numba_cuda/numba/cuda/tests/cudapy/test_ir_utils.py +276 -0
  348. numba_cuda/numba/cuda/tests/cudapy/test_iterators.py +101 -0
  349. numba_cuda/numba/cuda/tests/cudapy/test_lang.py +68 -0
  350. numba_cuda/numba/cuda/tests/cudapy/test_laplace.py +123 -0
  351. numba_cuda/numba/cuda/tests/cudapy/test_libdevice.py +194 -0
  352. numba_cuda/numba/cuda/tests/cudapy/test_lineinfo.py +220 -0
  353. numba_cuda/numba/cuda/tests/cudapy/test_localmem.py +173 -0
  354. numba_cuda/numba/cuda/tests/cudapy/test_make_function_to_jit_function.py +364 -0
  355. numba_cuda/numba/cuda/tests/cudapy/test_mandel.py +47 -0
  356. numba_cuda/numba/cuda/tests/cudapy/test_math.py +842 -0
  357. numba_cuda/numba/cuda/tests/cudapy/test_matmul.py +76 -0
  358. numba_cuda/numba/cuda/tests/cudapy/test_minmax.py +78 -0
  359. numba_cuda/numba/cuda/tests/cudapy/test_montecarlo.py +25 -0
  360. numba_cuda/numba/cuda/tests/cudapy/test_multigpu.py +145 -0
  361. numba_cuda/numba/cuda/tests/cudapy/test_multiprocessing.py +39 -0
  362. numba_cuda/numba/cuda/tests/cudapy/test_multithreads.py +82 -0
  363. numba_cuda/numba/cuda/tests/cudapy/test_nondet.py +53 -0
  364. numba_cuda/numba/cuda/tests/cudapy/test_operator.py +504 -0
  365. numba_cuda/numba/cuda/tests/cudapy/test_optimization.py +93 -0
  366. numba_cuda/numba/cuda/tests/cudapy/test_overload.py +402 -0
  367. numba_cuda/numba/cuda/tests/cudapy/test_powi.py +128 -0
  368. numba_cuda/numba/cuda/tests/cudapy/test_print.py +193 -0
  369. numba_cuda/numba/cuda/tests/cudapy/test_py2_div_issue.py +37 -0
  370. numba_cuda/numba/cuda/tests/cudapy/test_random.py +117 -0
  371. numba_cuda/numba/cuda/tests/cudapy/test_record_dtype.py +614 -0
  372. numba_cuda/numba/cuda/tests/cudapy/test_recursion.py +130 -0
  373. numba_cuda/numba/cuda/tests/cudapy/test_reduction.py +94 -0
  374. numba_cuda/numba/cuda/tests/cudapy/test_retrieve_autoconverted_arrays.py +83 -0
  375. numba_cuda/numba/cuda/tests/cudapy/test_serialize.py +86 -0
  376. numba_cuda/numba/cuda/tests/cudapy/test_slicing.py +40 -0
  377. numba_cuda/numba/cuda/tests/cudapy/test_sm.py +457 -0
  378. numba_cuda/numba/cuda/tests/cudapy/test_sm_creation.py +233 -0
  379. numba_cuda/numba/cuda/tests/cudapy/test_ssa.py +454 -0
  380. numba_cuda/numba/cuda/tests/cudapy/test_stream_api.py +56 -0
  381. numba_cuda/numba/cuda/tests/cudapy/test_sync.py +277 -0
  382. numba_cuda/numba/cuda/tests/cudapy/test_tracing.py +200 -0
  383. numba_cuda/numba/cuda/tests/cudapy/test_transpose.py +90 -0
  384. numba_cuda/numba/cuda/tests/cudapy/test_typeconv.py +333 -0
  385. numba_cuda/numba/cuda/tests/cudapy/test_typeinfer.py +538 -0
  386. numba_cuda/numba/cuda/tests/cudapy/test_ufuncs.py +585 -0
  387. numba_cuda/numba/cuda/tests/cudapy/test_userexc.py +42 -0
  388. numba_cuda/numba/cuda/tests/cudapy/test_vector_type.py +485 -0
  389. numba_cuda/numba/cuda/tests/cudapy/test_vectorize.py +312 -0
  390. numba_cuda/numba/cuda/tests/cudapy/test_vectorize_complex.py +23 -0
  391. numba_cuda/numba/cuda/tests/cudapy/test_vectorize_decor.py +183 -0
  392. numba_cuda/numba/cuda/tests/cudapy/test_vectorize_device.py +40 -0
  393. numba_cuda/numba/cuda/tests/cudapy/test_vectorize_scalar_arg.py +40 -0
  394. numba_cuda/numba/cuda/tests/cudapy/test_warning.py +206 -0
  395. numba_cuda/numba/cuda/tests/cudapy/test_warp_ops.py +446 -0
  396. numba_cuda/numba/cuda/tests/cudasim/__init__.py +9 -0
  397. numba_cuda/numba/cuda/tests/cudasim/support.py +9 -0
  398. numba_cuda/numba/cuda/tests/cudasim/test_cudasim_issues.py +111 -0
  399. numba_cuda/numba/cuda/tests/data/__init__.py +2 -0
  400. numba_cuda/numba/cuda/tests/data/cta_barrier.cu +28 -0
  401. numba_cuda/numba/cuda/tests/data/cuda_include.cu +10 -0
  402. numba_cuda/numba/cuda/tests/data/error.cu +12 -0
  403. numba_cuda/numba/cuda/tests/data/include/add.cuh +8 -0
  404. numba_cuda/numba/cuda/tests/data/jitlink.cu +28 -0
  405. numba_cuda/numba/cuda/tests/data/jitlink.ptx +49 -0
  406. numba_cuda/numba/cuda/tests/data/warn.cu +12 -0
  407. numba_cuda/numba/cuda/tests/doc_examples/__init__.py +9 -0
  408. numba_cuda/numba/cuda/tests/doc_examples/ffi/__init__.py +2 -0
  409. numba_cuda/numba/cuda/tests/doc_examples/ffi/functions.cu +54 -0
  410. numba_cuda/numba/cuda/tests/doc_examples/ffi/include/mul.cuh +8 -0
  411. numba_cuda/numba/cuda/tests/doc_examples/ffi/saxpy.cu +14 -0
  412. numba_cuda/numba/cuda/tests/doc_examples/test_cg.py +86 -0
  413. numba_cuda/numba/cuda/tests/doc_examples/test_cpointer.py +68 -0
  414. numba_cuda/numba/cuda/tests/doc_examples/test_cpu_gpu_compat.py +81 -0
  415. numba_cuda/numba/cuda/tests/doc_examples/test_ffi.py +141 -0
  416. numba_cuda/numba/cuda/tests/doc_examples/test_laplace.py +160 -0
  417. numba_cuda/numba/cuda/tests/doc_examples/test_matmul.py +180 -0
  418. numba_cuda/numba/cuda/tests/doc_examples/test_montecarlo.py +119 -0
  419. numba_cuda/numba/cuda/tests/doc_examples/test_random.py +66 -0
  420. numba_cuda/numba/cuda/tests/doc_examples/test_reduction.py +80 -0
  421. numba_cuda/numba/cuda/tests/doc_examples/test_sessionize.py +206 -0
  422. numba_cuda/numba/cuda/tests/doc_examples/test_ufunc.py +53 -0
  423. numba_cuda/numba/cuda/tests/doc_examples/test_vecadd.py +76 -0
  424. numba_cuda/numba/cuda/tests/nocuda/__init__.py +9 -0
  425. numba_cuda/numba/cuda/tests/nocuda/test_dummyarray.py +452 -0
  426. numba_cuda/numba/cuda/tests/nocuda/test_function_resolution.py +48 -0
  427. numba_cuda/numba/cuda/tests/nocuda/test_import.py +63 -0
  428. numba_cuda/numba/cuda/tests/nocuda/test_library_lookup.py +252 -0
  429. numba_cuda/numba/cuda/tests/nocuda/test_nvvm.py +59 -0
  430. numba_cuda/numba/cuda/tests/nrt/__init__.py +9 -0
  431. numba_cuda/numba/cuda/tests/nrt/test_nrt.py +387 -0
  432. numba_cuda/numba/cuda/tests/nrt/test_nrt_refct.py +124 -0
  433. numba_cuda/numba/cuda/tests/support.py +900 -0
  434. numba_cuda/numba/cuda/typeconv/__init__.py +4 -0
  435. numba_cuda/numba/cuda/typeconv/castgraph.py +137 -0
  436. numba_cuda/numba/cuda/typeconv/rules.py +63 -0
  437. numba_cuda/numba/cuda/typeconv/typeconv.py +121 -0
  438. numba_cuda/numba/cuda/types/__init__.py +233 -0
  439. numba_cuda/numba/cuda/types/__init__.pyi +167 -0
  440. numba_cuda/numba/cuda/types/abstract.py +9 -0
  441. numba_cuda/numba/cuda/types/common.py +9 -0
  442. numba_cuda/numba/cuda/types/containers.py +9 -0
  443. numba_cuda/numba/cuda/types/cuda_abstract.py +533 -0
  444. numba_cuda/numba/cuda/types/cuda_common.py +110 -0
  445. numba_cuda/numba/cuda/types/cuda_containers.py +971 -0
  446. numba_cuda/numba/cuda/types/cuda_function_type.py +230 -0
  447. numba_cuda/numba/cuda/types/cuda_functions.py +798 -0
  448. numba_cuda/numba/cuda/types/cuda_iterators.py +120 -0
  449. numba_cuda/numba/cuda/types/cuda_misc.py +569 -0
  450. numba_cuda/numba/cuda/types/cuda_npytypes.py +690 -0
  451. numba_cuda/numba/cuda/types/cuda_scalars.py +280 -0
  452. numba_cuda/numba/cuda/types/ext_types.py +101 -0
  453. numba_cuda/numba/cuda/types/function_type.py +11 -0
  454. numba_cuda/numba/cuda/types/functions.py +9 -0
  455. numba_cuda/numba/cuda/types/iterators.py +9 -0
  456. numba_cuda/numba/cuda/types/misc.py +9 -0
  457. numba_cuda/numba/cuda/types/npytypes.py +9 -0
  458. numba_cuda/numba/cuda/types/scalars.py +9 -0
  459. numba_cuda/numba/cuda/typing/__init__.py +19 -0
  460. numba_cuda/numba/cuda/typing/arraydecl.py +939 -0
  461. numba_cuda/numba/cuda/typing/asnumbatype.py +130 -0
  462. numba_cuda/numba/cuda/typing/bufproto.py +70 -0
  463. numba_cuda/numba/cuda/typing/builtins.py +1209 -0
  464. numba_cuda/numba/cuda/typing/cffi_utils.py +219 -0
  465. numba_cuda/numba/cuda/typing/cmathdecl.py +47 -0
  466. numba_cuda/numba/cuda/typing/collections.py +138 -0
  467. numba_cuda/numba/cuda/typing/context.py +782 -0
  468. numba_cuda/numba/cuda/typing/ctypes_utils.py +125 -0
  469. numba_cuda/numba/cuda/typing/dictdecl.py +63 -0
  470. numba_cuda/numba/cuda/typing/enumdecl.py +74 -0
  471. numba_cuda/numba/cuda/typing/listdecl.py +147 -0
  472. numba_cuda/numba/cuda/typing/mathdecl.py +158 -0
  473. numba_cuda/numba/cuda/typing/npdatetime.py +322 -0
  474. numba_cuda/numba/cuda/typing/npydecl.py +749 -0
  475. numba_cuda/numba/cuda/typing/setdecl.py +115 -0
  476. numba_cuda/numba/cuda/typing/templates.py +1446 -0
  477. numba_cuda/numba/cuda/typing/typeof.py +301 -0
  478. numba_cuda/numba/cuda/ufuncs.py +746 -0
  479. numba_cuda/numba/cuda/utils.py +724 -0
  480. numba_cuda/numba/cuda/vector_types.py +214 -0
  481. numba_cuda/numba/cuda/vectorizers.py +260 -0
  482. numba_cuda-0.22.0.dist-info/METADATA +109 -0
  483. numba_cuda-0.22.0.dist-info/RECORD +487 -0
  484. numba_cuda-0.22.0.dist-info/WHEEL +6 -0
  485. numba_cuda-0.22.0.dist-info/licenses/LICENSE +26 -0
  486. numba_cuda-0.22.0.dist-info/licenses/LICENSE.numba +24 -0
  487. numba_cuda-0.22.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,749 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: BSD-2-Clause
3
+
4
+ import numpy as np
5
+ import operator
6
+
7
+ from numba.cuda.typing.templates import AbstractTemplate, Registry, signature
8
+ from numba.cuda import types
9
+ from numba.cuda import utils
10
+ from numba.cuda.core.errors import TypingError, NumbaTypeError
11
+ from numba.cuda.np.numpy_support import (
12
+ ufunc_find_matching_loop,
13
+ supported_ufunc_loop,
14
+ from_dtype,
15
+ as_dtype,
16
+ resolve_output_type,
17
+ _ufunc_loop_sig,
18
+ )
19
+
20
+ registry = Registry()
21
+ infer = registry.register
22
+ infer_global = registry.register_global
23
+ infer_getattr = registry.register_attr
24
+
25
+
26
+ class Numpy_rules_ufunc(AbstractTemplate):
27
+ @classmethod
28
+ def _handle_inputs(cls, ufunc, args, kws):
29
+ """
30
+ Process argument types to a given *ufunc*.
31
+ Returns a (base types, explicit outputs, ndims, layout) tuple where:
32
+ - `base types` is a tuple of scalar types for each input
33
+ - `explicit outputs` is a tuple of explicit output types (arrays)
34
+ - `ndims` is the number of dimensions of the loop and also of
35
+ any outputs, explicit or implicit
36
+ - `layout` is the layout for any implicit output to be allocated
37
+ """
38
+ nin = ufunc.nin
39
+ nout = ufunc.nout
40
+ nargs = ufunc.nargs
41
+
42
+ # preconditions
43
+ assert nargs == nin + nout
44
+
45
+ if len(args) < nin:
46
+ msg = "ufunc '{0}': not enough arguments ({1} found, {2} required)"
47
+ raise TypingError(msg=msg.format(ufunc.__name__, len(args), nin))
48
+
49
+ if len(args) > nargs:
50
+ msg = "ufunc '{0}': too many arguments ({1} found, {2} maximum)"
51
+ raise TypingError(msg=msg.format(ufunc.__name__, len(args), nargs))
52
+
53
+ args = [
54
+ a.as_array if isinstance(a, types.ArrayCompatible) else a
55
+ for a in args
56
+ ]
57
+ arg_ndims = [
58
+ a.ndim if isinstance(a, types.ArrayCompatible) else 0 for a in args
59
+ ]
60
+ ndims = max(arg_ndims)
61
+
62
+ # explicit outputs must be arrays (no explicit scalar return values supported)
63
+ explicit_outputs = args[nin:]
64
+
65
+ if not all(
66
+ isinstance(output, types.ArrayCompatible)
67
+ for output in explicit_outputs
68
+ ):
69
+ msg = "ufunc '{0}' called with an explicit output that is not an array"
70
+ raise TypingError(msg=msg.format(ufunc.__name__))
71
+
72
+ if not all(output.mutable for output in explicit_outputs):
73
+ msg = "ufunc '{0}' called with an explicit output that is read-only"
74
+ raise TypingError(msg=msg.format(ufunc.__name__))
75
+
76
+ # find the kernel to use, based only in the input types (as does NumPy)
77
+ base_types = [
78
+ x.dtype if isinstance(x, types.ArrayCompatible) else x for x in args
79
+ ]
80
+
81
+ # Figure out the output array layout, if needed.
82
+ layout = None
83
+ if ndims > 0 and (len(explicit_outputs) < ufunc.nout):
84
+ layout = "C"
85
+ layouts = [
86
+ x.layout if isinstance(x, types.ArrayCompatible) else ""
87
+ for x in args
88
+ ]
89
+
90
+ # Prefer C contig if any array is C contig.
91
+ # Next, prefer F contig.
92
+ # Defaults to C contig if not layouts are C/F.
93
+ if "C" not in layouts and "F" in layouts:
94
+ layout = "F"
95
+
96
+ return base_types, explicit_outputs, ndims, layout
97
+
98
+ @property
99
+ def ufunc(self):
100
+ return self.key
101
+
102
+ def generic(self, args, kws):
103
+ # First, strip optional types, ufunc loops are typed on concrete types
104
+ args = [x.type if isinstance(x, types.Optional) else x for x in args]
105
+
106
+ ufunc = self.ufunc
107
+ base_types, explicit_outputs, ndims, layout = self._handle_inputs(
108
+ ufunc, args, kws
109
+ )
110
+ ufunc_loop = ufunc_find_matching_loop(ufunc, base_types)
111
+ if ufunc_loop is None:
112
+ raise TypingError(
113
+ "can't resolve ufunc {0} for types {1}".format(
114
+ ufunc.__name__, args
115
+ )
116
+ )
117
+
118
+ # check if all the types involved in the ufunc loop are supported in this mode
119
+ if not supported_ufunc_loop(ufunc, ufunc_loop):
120
+ msg = "ufunc '{0}' using the loop '{1}' not supported in this mode"
121
+ raise TypingError(
122
+ msg=msg.format(ufunc.__name__, ufunc_loop.ufunc_sig)
123
+ )
124
+
125
+ # if there is any explicit output type, check that it is valid
126
+ explicit_outputs_np = [as_dtype(tp.dtype) for tp in explicit_outputs]
127
+
128
+ # Numpy will happily use unsafe conversions (although it will actually warn)
129
+ if not all(
130
+ np.can_cast(fromty, toty, "unsafe")
131
+ for (fromty, toty) in zip(
132
+ ufunc_loop.numpy_outputs, explicit_outputs_np
133
+ )
134
+ ):
135
+ msg = "ufunc '{0}' can't cast result to explicit result type"
136
+ raise TypingError(msg=msg.format(ufunc.__name__))
137
+
138
+ # A valid loop was found that is compatible. The result of type inference should
139
+ # be based on the explicit output types, and when not available with the type given
140
+ # by the selected NumPy loop
141
+ out = list(explicit_outputs)
142
+ implicit_output_count = ufunc.nout - len(explicit_outputs)
143
+ if implicit_output_count > 0:
144
+ # XXX this is sometimes wrong for datetime64 and timedelta64,
145
+ # as ufunc_find_matching_loop() doesn't do any type inference
146
+ ret_tys = ufunc_loop.outputs[-implicit_output_count:]
147
+ if ndims > 0:
148
+ assert layout is not None
149
+ # If either of the types involved in the ufunc operation have a
150
+ # __array_ufunc__ method then invoke the first such one to
151
+ # determine the output type of the ufunc.
152
+ array_ufunc_type = None
153
+ for a in args:
154
+ if hasattr(a, "__array_ufunc__"):
155
+ array_ufunc_type = a
156
+ break
157
+ output_type = types.Array
158
+ if array_ufunc_type is not None:
159
+ output_type = array_ufunc_type.__array_ufunc__(
160
+ ufunc, "__call__", *args, **kws
161
+ )
162
+ if output_type is NotImplemented:
163
+ msg = (
164
+ f"unsupported use of ufunc {ufunc} on "
165
+ f"{array_ufunc_type}"
166
+ )
167
+ # raise TypeError here because
168
+ # NumpyRulesArrayOperator.generic is capturing
169
+ # TypingError
170
+ raise NumbaTypeError(msg)
171
+ elif not issubclass(output_type, types.Array):
172
+ msg = (
173
+ f"ufunc {ufunc} on {array_ufunc_type}"
174
+ f"cannot return non-array {output_type}"
175
+ )
176
+ # raise TypeError here because
177
+ # NumpyRulesArrayOperator.generic is capturing
178
+ # TypingError
179
+ raise NumbaTypeError(msg)
180
+
181
+ ret_tys = [
182
+ output_type(dtype=ret_ty, ndim=ndims, layout=layout)
183
+ for ret_ty in ret_tys
184
+ ]
185
+ ret_tys = [
186
+ resolve_output_type(self.context, args, ret_ty)
187
+ for ret_ty in ret_tys
188
+ ]
189
+ out.extend(ret_tys)
190
+
191
+ return _ufunc_loop_sig(out, args)
192
+
193
+
194
+ class NumpyRulesArrayOperator(Numpy_rules_ufunc):
195
+ _op_map = {
196
+ operator.add: "add",
197
+ operator.sub: "subtract",
198
+ operator.mul: "multiply",
199
+ operator.truediv: "true_divide",
200
+ operator.floordiv: "floor_divide",
201
+ operator.mod: "remainder",
202
+ operator.pow: "power",
203
+ operator.lshift: "left_shift",
204
+ operator.rshift: "right_shift",
205
+ operator.and_: "bitwise_and",
206
+ operator.or_: "bitwise_or",
207
+ operator.xor: "bitwise_xor",
208
+ operator.eq: "equal",
209
+ operator.gt: "greater",
210
+ operator.ge: "greater_equal",
211
+ operator.lt: "less",
212
+ operator.le: "less_equal",
213
+ operator.ne: "not_equal",
214
+ }
215
+
216
+ @property
217
+ def ufunc(self):
218
+ return getattr(np, self._op_map[self.key])
219
+
220
+ @classmethod
221
+ def install_operations(cls):
222
+ for op, ufunc_name in cls._op_map.items():
223
+ infer_global(op)(
224
+ type(
225
+ "NumpyRulesArrayOperator_" + ufunc_name,
226
+ (cls,),
227
+ dict(key=op),
228
+ )
229
+ )
230
+
231
+ def generic(self, args, kws):
232
+ """Overloads and calls base class generic() method, returning
233
+ None if a TypingError occurred.
234
+
235
+ Returning None for operators is important since operators are
236
+ heavily overloaded, and by suppressing type errors, we allow
237
+ type inference to check other possibilities before giving up
238
+ (particularly user-defined operators).
239
+ """
240
+ try:
241
+ sig = super(NumpyRulesArrayOperator, self).generic(args, kws)
242
+ except TypingError:
243
+ return None
244
+ if sig is None:
245
+ return None
246
+ args = sig.args
247
+ # Only accept at least one array argument, otherwise the operator
248
+ # doesn't involve Numpy's ufunc machinery.
249
+ if not any(isinstance(arg, types.ArrayCompatible) for arg in args):
250
+ return None
251
+ return sig
252
+
253
+
254
+ _binop_map = NumpyRulesArrayOperator._op_map
255
+
256
+
257
+ class NumpyRulesInplaceArrayOperator(NumpyRulesArrayOperator):
258
+ _op_map = {
259
+ operator.iadd: "add",
260
+ operator.isub: "subtract",
261
+ operator.imul: "multiply",
262
+ operator.itruediv: "true_divide",
263
+ operator.ifloordiv: "floor_divide",
264
+ operator.imod: "remainder",
265
+ operator.ipow: "power",
266
+ operator.ilshift: "left_shift",
267
+ operator.irshift: "right_shift",
268
+ operator.iand: "bitwise_and",
269
+ operator.ior: "bitwise_or",
270
+ operator.ixor: "bitwise_xor",
271
+ }
272
+
273
+ def generic(self, args, kws):
274
+ # Type the inplace operator as if an explicit output was passed,
275
+ # to handle type resolution correctly.
276
+ # (for example int8[:] += int16[:] should use an int8[:] output,
277
+ # not int16[:])
278
+ lhs, rhs = args
279
+ if not isinstance(lhs, types.ArrayCompatible):
280
+ return
281
+ args = args + (lhs,)
282
+ sig = super(NumpyRulesInplaceArrayOperator, self).generic(args, kws)
283
+ # Strip off the fake explicit output
284
+ assert len(sig.args) == 3
285
+ real_sig = signature(sig.return_type, *sig.args[:2])
286
+ return real_sig
287
+
288
+
289
+ class NumpyRulesUnaryArrayOperator(NumpyRulesArrayOperator):
290
+ _op_map = {
291
+ operator.pos: "positive",
292
+ operator.neg: "negative",
293
+ operator.invert: "invert",
294
+ }
295
+
296
+ def generic(self, args, kws):
297
+ assert not kws
298
+ if len(args) == 1 and isinstance(args[0], types.ArrayCompatible):
299
+ return super(NumpyRulesUnaryArrayOperator, self).generic(args, kws)
300
+
301
+
302
+ # list of unary ufuncs to register
303
+
304
+ math_operations = [
305
+ "add",
306
+ "subtract",
307
+ "multiply",
308
+ "logaddexp",
309
+ "logaddexp2",
310
+ "true_divide",
311
+ "floor_divide",
312
+ "negative",
313
+ "positive",
314
+ "power",
315
+ "float_power",
316
+ "remainder",
317
+ "fmod",
318
+ "absolute",
319
+ "rint",
320
+ "sign",
321
+ "conjugate",
322
+ "exp",
323
+ "exp2",
324
+ "log",
325
+ "log2",
326
+ "log10",
327
+ "expm1",
328
+ "log1p",
329
+ "sqrt",
330
+ "square",
331
+ "cbrt",
332
+ "reciprocal",
333
+ "divide",
334
+ "mod",
335
+ "divmod",
336
+ "abs",
337
+ "fabs",
338
+ "gcd",
339
+ "lcm",
340
+ ]
341
+
342
+ trigonometric_functions = [
343
+ "sin",
344
+ "cos",
345
+ "tan",
346
+ "arcsin",
347
+ "arccos",
348
+ "arctan",
349
+ "arctan2",
350
+ "hypot",
351
+ "sinh",
352
+ "cosh",
353
+ "tanh",
354
+ "arcsinh",
355
+ "arccosh",
356
+ "arctanh",
357
+ "deg2rad",
358
+ "rad2deg",
359
+ "degrees",
360
+ "radians",
361
+ ]
362
+
363
+ bit_twiddling_functions = [
364
+ "bitwise_and",
365
+ "bitwise_or",
366
+ "bitwise_xor",
367
+ "invert",
368
+ "left_shift",
369
+ "right_shift",
370
+ "bitwise_not",
371
+ ]
372
+
373
+ comparison_functions = [
374
+ "greater",
375
+ "greater_equal",
376
+ "less",
377
+ "less_equal",
378
+ "not_equal",
379
+ "equal",
380
+ "logical_and",
381
+ "logical_or",
382
+ "logical_xor",
383
+ "logical_not",
384
+ "maximum",
385
+ "minimum",
386
+ "fmax",
387
+ "fmin",
388
+ ]
389
+
390
+ floating_functions = [
391
+ "isfinite",
392
+ "isinf",
393
+ "isnan",
394
+ "signbit",
395
+ "copysign",
396
+ "nextafter",
397
+ "modf",
398
+ "ldexp",
399
+ "frexp",
400
+ "floor",
401
+ "ceil",
402
+ "trunc",
403
+ "spacing",
404
+ ]
405
+
406
+ logic_functions = ["isnat"]
407
+
408
+
409
+ # This is a set of the ufuncs that are not yet supported by Lowering. In order
410
+ # to trigger no-python mode we must not register them until their Lowering is
411
+ # implemented.
412
+ #
413
+ # It also works as a nice TODO list for ufunc support :)
414
+ _unsupported = set(
415
+ [
416
+ "frexp",
417
+ "modf",
418
+ ]
419
+ )
420
+
421
+
422
+ def register_numpy_ufunc(name, register_global=infer_global):
423
+ func = getattr(np, name)
424
+
425
+ class typing_class(Numpy_rules_ufunc):
426
+ key = func
427
+
428
+ typing_class.__name__ = "resolve_{0}".format(name)
429
+
430
+ # A list of ufuncs that are in fact aliases of other ufuncs. They need to
431
+ # insert the resolve method, but not register the ufunc itself
432
+ aliases = ("abs", "bitwise_not", "divide", "abs")
433
+
434
+ if name not in aliases:
435
+ register_global(func, types.Function(typing_class))
436
+
437
+
438
+ all_ufuncs = sum(
439
+ [
440
+ math_operations,
441
+ trigonometric_functions,
442
+ bit_twiddling_functions,
443
+ comparison_functions,
444
+ floating_functions,
445
+ logic_functions,
446
+ ],
447
+ [],
448
+ )
449
+
450
+ supported_ufuncs = [x for x in all_ufuncs if x not in _unsupported]
451
+
452
+ for func in supported_ufuncs:
453
+ register_numpy_ufunc(func)
454
+
455
+ all_ufuncs = [getattr(np, name) for name in all_ufuncs]
456
+ supported_ufuncs = [getattr(np, name) for name in supported_ufuncs]
457
+
458
+ NumpyRulesUnaryArrayOperator.install_operations()
459
+ NumpyRulesArrayOperator.install_operations()
460
+ NumpyRulesInplaceArrayOperator.install_operations()
461
+
462
+ supported_array_operators = (
463
+ set(NumpyRulesUnaryArrayOperator._op_map.keys())
464
+ .union(NumpyRulesArrayOperator._op_map.keys())
465
+ .union(NumpyRulesInplaceArrayOperator._op_map.keys())
466
+ )
467
+
468
+ del _unsupported
469
+
470
+
471
+ # -----------------------------------------------------------------------------
472
+ # Install global helpers for array methods.
473
+
474
+
475
+ class Numpy_method_redirection(AbstractTemplate):
476
+ """
477
+ A template redirecting a Numpy global function (e.g. np.sum) to an
478
+ array method of the same name (e.g. ndarray.sum).
479
+ """
480
+
481
+ # Arguments like *axis* can specialize on literals but also support
482
+ # non-literals
483
+ prefer_literal = True
484
+
485
+ def generic(self, args, kws):
486
+ pysig = None
487
+ if kws:
488
+ if self.method_name == "sum":
489
+ if "axis" in kws and "dtype" not in kws:
490
+
491
+ def sum_stub(arr, axis):
492
+ pass
493
+
494
+ pysig = utils.pysignature(sum_stub)
495
+ elif "dtype" in kws and "axis" not in kws:
496
+
497
+ def sum_stub(arr, dtype):
498
+ pass
499
+
500
+ pysig = utils.pysignature(sum_stub)
501
+ elif "dtype" in kws and "axis" in kws:
502
+
503
+ def sum_stub(arr, axis, dtype):
504
+ pass
505
+
506
+ pysig = utils.pysignature(sum_stub)
507
+ else:
508
+ fmt = "numba doesn't support kwarg for {}"
509
+ raise TypingError(fmt.format(self.method_name))
510
+
511
+ arr = args[0]
512
+ # This will return a BoundFunction
513
+ meth_ty = self.context.resolve_getattr(arr, self.method_name)
514
+ # Resolve arguments on the bound function
515
+ meth_sig = self.context.resolve_function_type(meth_ty, args[1:], kws)
516
+ if meth_sig is not None:
517
+ return meth_sig.as_function().replace(pysig=pysig)
518
+
519
+
520
+ # Function to glue attributes onto the numpy-esque object
521
+ def _numpy_redirect(fname):
522
+ numpy_function = getattr(np, fname)
523
+ cls = type(
524
+ "Numpy_redirect_{0}".format(fname),
525
+ (Numpy_method_redirection,),
526
+ dict(key=numpy_function, method_name=fname),
527
+ )
528
+ infer_global(numpy_function, types.Function(cls))
529
+
530
+
531
+ for func in ["sum", "argsort", "nonzero", "ravel"]:
532
+ _numpy_redirect(func)
533
+
534
+
535
+ # -----------------------------------------------------------------------------
536
+ # Numpy scalar constructors
537
+
538
+ # Register np.int8, etc. as converters to the equivalent Numba types
539
+ np_types = set(getattr(np, str(nb_type)) for nb_type in types.number_domain)
540
+ np_types.add(np.bool_)
541
+ # Those may or may not be aliases (depending on the Numpy build / version)
542
+ np_types.add(np.intc)
543
+ np_types.add(np.intp)
544
+ np_types.add(np.uintc)
545
+ np_types.add(np.uintp)
546
+
547
+
548
+ def register_number_classes(register_global):
549
+ for np_type in np_types:
550
+ nb_type = getattr(types, np_type.__name__)
551
+
552
+ register_global(np_type, types.NumberClass(nb_type))
553
+
554
+
555
+ register_number_classes(infer_global)
556
+
557
+ # -----------------------------------------------------------------------------
558
+ # Numpy array constructors
559
+
560
+
561
+ def parse_shape(shape):
562
+ """
563
+ Given a shape, return the number of dimensions.
564
+ """
565
+ ndim = None
566
+ if isinstance(shape, types.Integer):
567
+ ndim = 1
568
+ elif isinstance(shape, (types.Tuple, types.UniTuple)):
569
+ int_tys = (types.Integer, types.IntEnumMember)
570
+ if all(isinstance(s, int_tys) for s in shape):
571
+ ndim = len(shape)
572
+ return ndim
573
+
574
+
575
+ def parse_dtype(dtype):
576
+ """
577
+ Return the dtype of a type, if it is either a DtypeSpec (used for most
578
+ dtypes) or a TypeRef (used for record types).
579
+ """
580
+ if isinstance(dtype, types.DTypeSpec):
581
+ return dtype.dtype
582
+ elif isinstance(dtype, types.TypeRef):
583
+ return dtype.instance_type
584
+ elif isinstance(dtype, types.StringLiteral):
585
+ dtstr = dtype.literal_value
586
+ try:
587
+ dt = np.dtype(dtstr)
588
+ except TypeError:
589
+ msg = f"Invalid NumPy dtype specified: '{dtstr}'"
590
+ raise TypingError(msg)
591
+ return from_dtype(dt)
592
+
593
+
594
+ def _parse_nested_sequence(context, typ):
595
+ """
596
+ Parse a (possibly 0d) nested sequence type.
597
+ A (ndim, dtype) tuple is returned. Note the sequence may still be
598
+ heterogeneous, as long as it converts to the given dtype.
599
+ """
600
+ if isinstance(typ, (types.Buffer,)):
601
+ raise TypingError("%s not allowed in a homogeneous sequence" % typ)
602
+ elif isinstance(typ, (types.Sequence,)):
603
+ n, dtype = _parse_nested_sequence(context, typ.dtype)
604
+ return n + 1, dtype
605
+ elif isinstance(typ, (types.BaseTuple,)):
606
+ if typ.count == 0:
607
+ # Mimic Numpy's behaviour
608
+ return 1, types.float64
609
+ n, dtype = _parse_nested_sequence(context, typ[0])
610
+ dtypes = [dtype]
611
+ for i in range(1, typ.count):
612
+ _n, dtype = _parse_nested_sequence(context, typ[i])
613
+ if _n != n:
614
+ raise TypingError(
615
+ "type %s does not have a regular shape" % (typ,)
616
+ )
617
+ dtypes.append(dtype)
618
+ dtype = context.unify_types(*dtypes)
619
+ if dtype is None:
620
+ raise TypingError("cannot convert %s to a homogeneous type" % typ)
621
+ return n + 1, dtype
622
+ else:
623
+ # Scalar type => check it's valid as a Numpy array dtype
624
+ as_dtype(typ)
625
+ return 0, typ
626
+
627
+
628
+ def _homogeneous_dims(context, func_name, arrays):
629
+ ndim = arrays[0].ndim
630
+ for a in arrays:
631
+ if a.ndim != ndim:
632
+ msg = (
633
+ f"{func_name}(): all the input arrays must have same number "
634
+ "of dimensions"
635
+ )
636
+ raise NumbaTypeError(msg)
637
+ return ndim
638
+
639
+
640
+ def _sequence_of_arrays(
641
+ context, func_name, arrays, dim_chooser=_homogeneous_dims
642
+ ):
643
+ if (
644
+ not isinstance(arrays, types.BaseTuple)
645
+ or not len(arrays)
646
+ or not all(isinstance(a, types.Array) for a in arrays)
647
+ ):
648
+ raise TypingError(
649
+ "%s(): expecting a non-empty tuple of arrays, "
650
+ "got %s" % (func_name, arrays)
651
+ )
652
+
653
+ ndim = dim_chooser(context, func_name, arrays)
654
+
655
+ dtype = context.unify_types(*(a.dtype for a in arrays))
656
+ if dtype is None:
657
+ raise TypingError(
658
+ "%s(): input arrays must have compatible dtypes" % func_name
659
+ )
660
+
661
+ return dtype, ndim
662
+
663
+
664
+ def _choose_concatenation_layout(arrays):
665
+ # Only create a F array if all input arrays have F layout.
666
+ # This is a simplified version of Numpy's behaviour,
667
+ # while Numpy's actually processes the input strides to
668
+ # decide on optimal output strides
669
+ # (see PyArray_CreateMultiSortedStridePerm()).
670
+ return "F" if all(a.layout == "F" for a in arrays) else "C"
671
+
672
+
673
+ # -----------------------------------------------------------------------------
674
+ # Linear algebra
675
+
676
+
677
+ def _check_linalg_matrix(a, func_name):
678
+ if not isinstance(a, types.Array):
679
+ return
680
+ if not a.ndim == 2:
681
+ raise TypingError(
682
+ "np.linalg.%s() only supported on 2-D arrays" % func_name
683
+ )
684
+ if not isinstance(a.dtype, (types.Float, types.Complex)):
685
+ raise TypingError(
686
+ "np.linalg.%s() only supported on "
687
+ "float and complex arrays" % func_name
688
+ )
689
+
690
+
691
+ # -----------------------------------------------------------------------------
692
+ # Miscellaneous functions
693
+
694
+
695
+ @infer_global(np.ndenumerate)
696
+ class NdEnumerate(AbstractTemplate):
697
+ def generic(self, args, kws):
698
+ assert not kws
699
+ (arr,) = args
700
+
701
+ if isinstance(arr, types.Array):
702
+ enumerate_type = types.NumpyNdEnumerateType(arr)
703
+ return signature(enumerate_type, *args)
704
+
705
+
706
+ @infer_global(np.nditer)
707
+ class NdIter(AbstractTemplate):
708
+ def generic(self, args, kws):
709
+ assert not kws
710
+ if len(args) != 1:
711
+ return
712
+ (arrays,) = args
713
+
714
+ if isinstance(arrays, types.BaseTuple):
715
+ if not arrays:
716
+ return
717
+ arrays = list(arrays)
718
+ else:
719
+ arrays = [arrays]
720
+ nditerty = types.NumpyNdIterType(arrays)
721
+ return signature(nditerty, *args)
722
+
723
+
724
+ @infer_global(np.ndindex)
725
+ class NdIndex(AbstractTemplate):
726
+ def generic(self, args, kws):
727
+ assert not kws
728
+
729
+ # Either ndindex(shape) or ndindex(*shape)
730
+ if len(args) == 1 and isinstance(args[0], types.BaseTuple):
731
+ tup = args[0]
732
+ if tup.count > 0 and not isinstance(tup, types.UniTuple):
733
+ # Heterogeneous tuple
734
+ return
735
+ shape = list(tup)
736
+ else:
737
+ shape = args
738
+
739
+ if all(isinstance(x, types.Integer) for x in shape):
740
+ iterator_type = types.NumpyNdIndexType(len(shape))
741
+ return signature(iterator_type, *args)
742
+
743
+
744
+ @infer_global(operator.eq)
745
+ class DtypeEq(AbstractTemplate):
746
+ def generic(self, args, kws):
747
+ [lhs, rhs] = args
748
+ if isinstance(lhs, types.DType) and isinstance(rhs, types.DType):
749
+ return signature(types.boolean, lhs, rhs)