nucleardatapy 0.2.1__py3-none-any.whl → 1.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (172) hide show
  1. nucleardatapy/__init__.py +3 -1
  2. nucleardatapy/astro/setup_gw.py +18 -18
  3. nucleardatapy/astro/setup_mr.py +123 -33
  4. nucleardatapy/astro/setup_mup.py +10 -10
  5. nucleardatapy/corr/setup_EsymDen.py +0 -5
  6. nucleardatapy/corr/setup_EsymLsym.py +50 -17
  7. nucleardatapy/corr/setup_KsatQsat.py +170 -69
  8. nucleardatapy/create_folder.py +2 -2
  9. nucleardatapy/crust/setup_crust.py +364 -126
  10. nucleardatapy/data/astro/HESS/J1731-347.dat +4 -0
  11. nucleardatapy/data/astro/NICER/J0030+0451.dat +6 -6
  12. nucleardatapy/data/astro/NICER/J0437-4715.dat +4 -3
  13. nucleardatapy/data/astro/NICER/J0614-3329.dat +4 -0
  14. nucleardatapy/data/astro/NICER/J0740+6620.dat +5 -4
  15. nucleardatapy/data/hnuclei/1991-2L-Yamamoto.csv +6 -0
  16. nucleardatapy/data/hnuclei/2013-2L-Ahn.csv +1 -1
  17. nucleardatapy/data/hnuclei/2019-2L-Ekawa.csv +7 -0
  18. nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-E2A-NM.dat +8 -8
  19. nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-414-E2A.dat +21 -0
  20. nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-414-TD.dat +22 -0
  21. nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-450-E2A.dat +20 -0
  22. nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-450-TD.dat +22 -0
  23. nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-500-E2A.dat +23 -0
  24. nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-500-TD.dat +22 -0
  25. nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-414-E2A.dat +15 -0
  26. nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-414-TD.dat +21 -0
  27. nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-450-E2A.dat +15 -0
  28. nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-450-TD.dat +21 -0
  29. nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-500-E2A.dat +20 -0
  30. nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-500-TD.dat +20 -0
  31. nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLO450.dat +28 -0
  32. nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLO500.dat +28 -0
  33. nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLOgo394.dat +28 -0
  34. nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLOgo450.dat +28 -0
  35. nucleardatapy/data/matter/micro/2024-ABI-NM-NNLOsat.dat +28 -0
  36. nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLO450.dat +28 -0
  37. nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLO500.dat +28 -0
  38. nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLOgo394.dat +28 -0
  39. nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLOgo450.dat +28 -0
  40. nucleardatapy/data/matter/micro/2024-ABI-SM-NNLOsat.dat +28 -0
  41. nucleardatapy/data/matter/nep/NEPESkyrme.dat +2 -3
  42. nucleardatapy/data/matter/nep/NEPGSkyrme.dat +7 -0
  43. nucleardatapy/data/matter/nep/NEPSkyrme.dat +4 -2
  44. nucleardatapy/data/matter/nep/NEPxEFT.dat +8 -0
  45. nucleardatapy/data/matter/nep/best67DDSkyrme.dat +28 -0
  46. nucleardatapy/data/matter/nep/best90DDSkyrme.dat +46 -0
  47. nucleardatapy/data/matter/nep/best95DDSkyrme.dat +54 -0
  48. nucleardatapy/data/matter/pheno/ESkyrme/BSk31-NM.dat +996 -996
  49. nucleardatapy/data/matter/pheno/ESkyrme/BSk31-SM.dat +991 -991
  50. nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-NM.dat +1002 -0
  51. nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-SM.dat +1002 -0
  52. nucleardatapy/data/matter/pheno/Skyrme/BSkG1-NM.dat +102 -0
  53. nucleardatapy/data/matter/pheno/Skyrme/BSkG1-SM.dat +102 -0
  54. nucleardatapy/data/matter/pheno/Skyrme/BSkG2-NM.dat +102 -0
  55. nucleardatapy/data/matter/pheno/Skyrme/BSkG2-SM.dat +102 -0
  56. nucleardatapy/env.py +1 -1
  57. nucleardatapy/eos/__init__.py +4 -3
  58. nucleardatapy/eos/setupCC.py +429 -0
  59. nucleardatapy/eos/setup_am.py +39 -14
  60. nucleardatapy/eos/setup_am_Beq.py +40 -15
  61. nucleardatapy/eos/setup_am_Leq.py +40 -15
  62. nucleardatapy/fig/__init__.py +24 -15
  63. nucleardatapy/fig/astro_setupGW_fig.py +9 -7
  64. nucleardatapy/fig/astro_setupMR_fig.py +26 -18
  65. nucleardatapy/fig/astro_setupMasses_fig.py +8 -6
  66. nucleardatapy/fig/astro_setupMtov_fig.py +10 -6
  67. nucleardatapy/fig/astro_setupMup_fig.py +9 -7
  68. nucleardatapy/fig/corr_setupEsymDen_fig.py +22 -9
  69. nucleardatapy/fig/corr_setupEsymLsym_fig.py +25 -8
  70. nucleardatapy/fig/corr_setupKsatQsat_fig.py +23 -17
  71. nucleardatapy/fig/crust_setupCrust_fig.py +11 -9
  72. nucleardatapy/fig/eos_setupAMBeq_fig.py +641 -156
  73. nucleardatapy/fig/eos_setupAMLeq_fig.py +53 -50
  74. nucleardatapy/fig/eos_setupAM_asy_lep_fig.py +373 -0
  75. nucleardatapy/fig/eos_setupAM_asy_nuc_fig.py +346 -0
  76. nucleardatapy/fig/eos_setupAM_asy_tot_fig.py +352 -0
  77. nucleardatapy/fig/eos_setupAM_fig.py +519 -0
  78. nucleardatapy/fig/eos_setupCC_fig.py +270 -0
  79. nucleardatapy/fig/hnuc_setupChart_fig.py +19 -16
  80. nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +15 -5
  81. nucleardatapy/fig/matter_all_fig.py +971 -0
  82. nucleardatapy/fig/matter_setupCheck_fig.py +106 -0
  83. nucleardatapy/fig/matter_setupFFGLep_fig.py +74 -0
  84. nucleardatapy/fig/matter_setupFFGNuc_fig.py +286 -115
  85. nucleardatapy/fig/matter_setupHIC_fig.py +107 -67
  86. nucleardatapy/fig/matter_setupMicroEsym_fig.py +259 -73
  87. nucleardatapy/fig/matter_setupMicro_LP_fig.py +185 -82
  88. nucleardatapy/fig/matter_setupMicro_band_fig.py +126 -53
  89. nucleardatapy/fig/matter_setupMicro_effmass_fig.py +253 -77
  90. nucleardatapy/fig/matter_setupMicro_err_NM_fig.py +45 -20
  91. nucleardatapy/fig/matter_setupMicro_fig.py +317 -77
  92. nucleardatapy/fig/matter_setupMicro_gap_fig.py +237 -100
  93. nucleardatapy/fig/matter_setupNEPStats_fig.py +106 -0
  94. nucleardatapy/fig/matter_setupPhenoEsym_fig.py +204 -65
  95. nucleardatapy/fig/matter_setupPheno_fig.py +395 -93
  96. nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +93 -73
  97. nucleardatapy/fig/nuc_setupBEExp_fig.py +97 -87
  98. nucleardatapy/fig/nuc_setupBETheo_fig.py +114 -81
  99. nucleardatapy/fig/nuc_setupISGMRExp_fig.py +12 -15
  100. nucleardatapy/fig/nuc_setupRchExp_fig.py +14 -22
  101. nucleardatapy/fig/nuc_setupRchTheo_fig.py +37 -40
  102. nucleardatapy/fig/nuc_setupRnpExp_fig.py +86 -106
  103. nucleardatapy/fig/nuc_setupRnpTheo_fig.py +105 -94
  104. nucleardatapy/hello.py +6 -0
  105. nucleardatapy/hnuc/setup_re1L_exp.py +6 -6
  106. nucleardatapy/hnuc/setup_re1Xi_exp.py +5 -5
  107. nucleardatapy/hnuc/setup_re2L_exp.py +36 -13
  108. nucleardatapy/matter/__init__.py +14 -14
  109. nucleardatapy/matter/setup_check.py +6 -6
  110. nucleardatapy/matter/setup_ffg.py +66 -39
  111. nucleardatapy/matter/setup_hic.py +91 -74
  112. nucleardatapy/matter/setup_micro.py +2033 -1007
  113. nucleardatapy/matter/setup_micro_band.py +6 -6
  114. nucleardatapy/matter/setup_micro_esym.py +56 -54
  115. nucleardatapy/matter/setup_micro_gap.py +24 -17
  116. nucleardatapy/matter/setup_micro_lp.py +2 -2
  117. nucleardatapy/matter/setup_nep.py +175 -92
  118. nucleardatapy/matter/{setup_nep_model_dist.py → setup_nep_stat_model.py} +13 -8
  119. nucleardatapy/matter/{setup_nep_dist.py → setup_nep_stat_models.py} +12 -8
  120. nucleardatapy/matter/setup_pheno.py +129 -49
  121. nucleardatapy/matter/setup_pheno_esym.py +22 -19
  122. nucleardatapy/nuc/setup_be_exp.py +306 -292
  123. nucleardatapy/nuc/setup_be_theo.py +288 -105
  124. nucleardatapy/nuc/setup_isgmr_exp.py +4 -4
  125. nucleardatapy/nuc/setup_rnp_exp.py +1 -0
  126. nucleardatapy/nuc/setup_rnp_theo.py +2 -1
  127. {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/METADATA +48 -16
  128. {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/RECORD +157 -124
  129. {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/WHEEL +1 -1
  130. tests/test_corr_setupKsatQsat.py +3 -1
  131. tests/test_matter_setupMicro.py +37 -10
  132. nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-NM.dat +0 -1002
  133. nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-SM.dat +0 -1002
  134. nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-NM.dat +0 -1002
  135. nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-SM.dat +0 -1002
  136. nucleardatapy/fig/eos_setupAM_e_asy_lep_fig.py +0 -125
  137. nucleardatapy/fig/eos_setupAM_e_asy_nuc_fig.py +0 -115
  138. nucleardatapy/fig/eos_setupAM_e_asy_tot_fig.py +0 -117
  139. nucleardatapy/fig/eos_setupAM_e_fig.py +0 -173
  140. nucleardatapy/fig/matter_ENM_fig.py +0 -128
  141. nucleardatapy/fig/matter_ESM_fig.py +0 -140
  142. nucleardatapy/fig/matter_Esym_fig.py +0 -134
  143. nucleardatapy/fig/matter_cs2_fig.py +0 -83
  144. nucleardatapy/fig/matter_preNM_fig.py +0 -146
  145. nucleardatapy/fig/matter_preSM_fig.py +0 -144
  146. nucleardatapy/fig/matter_setupNEPModelDist_fig.py +0 -68
  147. /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-NM-AV18.dat → 2006-EBHF-NM-AV18.dat} +0 -0
  148. /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-SM-AV18.dat → 2006-EBHF-SM-AV18.dat} +0 -0
  149. /nucleardatapy/data/crust/{2022-crustGMRS-BSK14.dat → 2022-GMRS-BSK14.dat} +0 -0
  150. /nucleardatapy/data/crust/{2022-crustGMRS-BSK16.dat → 2022-GMRS-BSK16.dat} +0 -0
  151. /nucleardatapy/data/crust/{2022-crustGMRS-DHSL59.dat → 2022-GMRS-DHSL59.dat} +0 -0
  152. /nucleardatapy/data/crust/{2022-crustGMRS-DHSL69.dat → 2022-GMRS-DHSL69.dat} +0 -0
  153. /nucleardatapy/data/crust/{2022-crustGMRS-F0.dat → 2022-GMRS-F0.dat} +0 -0
  154. /nucleardatapy/data/crust/{2022-crustGMRS-H1.dat → 2022-GMRS-H1.dat} +0 -0
  155. /nucleardatapy/data/crust/{2022-crustGMRS-H2.dat → 2022-GMRS-H2.dat} +0 -0
  156. /nucleardatapy/data/crust/{2022-crustGMRS-H3.dat → 2022-GMRS-H3.dat} +0 -0
  157. /nucleardatapy/data/crust/{2022-crustGMRS-H4.dat → 2022-GMRS-H4.dat} +0 -0
  158. /nucleardatapy/data/crust/{2022-crustGMRS-H5.dat → 2022-GMRS-H5.dat} +0 -0
  159. /nucleardatapy/data/crust/{2022-crustGMRS-H7.dat → 2022-GMRS-H7.dat} +0 -0
  160. /nucleardatapy/data/crust/{2022-crustGMRS-LNS5.dat → 2022-GMRS-LNS5.dat} +0 -0
  161. /nucleardatapy/data/crust/{2022-crustGMRS-RATP.dat → 2022-GMRS-RATP.dat} +0 -0
  162. /nucleardatapy/data/crust/{2022-crustGMRS-SGII.dat → 2022-GMRS-SGII.dat} +0 -0
  163. /nucleardatapy/data/crust/{2022-crustGMRS-SLY5.dat → 2022-GMRS-SLY5.dat} +0 -0
  164. /nucleardatapy/data/matter/micro/{2013-QMC-NM.dat → 2013-MBPT-NM.dat} +0 -0
  165. /nucleardatapy/data/{NeutronSkin/ddrhNskin-208Pb.dat → rnp/ddrhrnp-208Pb.dat} +0 -0
  166. /nucleardatapy/data/{NeutronSkin/ddrhNskin-48Ca.dat → rnp/ddrhrnp-48Ca.dat} +0 -0
  167. /nucleardatapy/data/{NeutronSkin/nlrhNskin-208Pb.dat → rnp/nlrhrnp-208Pb.dat} +0 -0
  168. /nucleardatapy/data/{NeutronSkin/nlrhNskin-48Ca.dat → rnp/nlrhrnp-48Ca.dat} +0 -0
  169. /nucleardatapy/data/{NeutronSkin/skyrmeNskin-208Pb.dat → rnp/skyrmernp-208Pb.dat} +0 -0
  170. /nucleardatapy/data/{NeutronSkin/skyrmeNskin-48Ca.dat → rnp/skyrmernp-48Ca.dat} +0 -0
  171. {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/licenses/LICENSE +0 -0
  172. {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/top_level.txt +0 -0
@@ -1,140 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
-
4
- import nucleardatapy as nuda
5
-
6
- def matter_ESM_fig( pname, micro_mbs, pheno_models, band ):
7
- """
8
- Plot nucleonic energy per particle E/A in matter.\
9
- The plot is 1x2 with:\
10
- [0,0]: E/A versus den (micro). [0,1]: E/A versus den (pheno).\
11
-
12
- :param pname: name of the figure (*.png)
13
- :type pname: str.
14
- :param micro_mbs: many-body (mb) approach considered.
15
- :type micro_mbs: str.
16
- :param pheno_models: models to run on.
17
- :type pheno_models: array of str.
18
- :param band: object instantiated on the reference band.
19
- :type band: object.
20
-
21
- """
22
- #
23
- print(f'Plot name: {pname}')
24
- #
25
- fig, axs = plt.subplots(1,2)
26
- fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
27
- #
28
- axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
29
- axs[0].set_ylabel(r'$e_\text{SM}(n_\text{nuc})$')
30
- axs[0].set_xlim([0, 0.34])
31
- axs[0].set_ylim([-22, 5])
32
- #
33
- axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
34
- #axs[1].set_ylabel(r'$e_{sym}(n)$')
35
- axs[1].set_xlim([0, 0.34])
36
- axs[1].set_ylim([-22, 5])
37
- axs[1].tick_params('y', labelleft=False)
38
- #
39
- mb_check = []
40
- #
41
- for kmb,mb in enumerate(micro_mbs):
42
- #
43
- models, models_lower = nuda.matter.micro_models_mb( mb )
44
- #
45
- for model in models:
46
- #
47
- micro = nuda.matter.setupMicro( model = model )
48
- if nuda.env.verb: micro.print_outputs( )
49
- #
50
- check = nuda.matter.setupCheck( eos = micro, band = band )
51
- #
52
- if check.isInside:
53
- lstyle = 'solid'
54
- else:
55
- lstyle = 'dashed'
56
- #
57
- if micro.sm_e2a is not None:
58
- print('mb:',mb,'model:',model)
59
- if mb in mb_check:
60
- if micro.marker:
61
- print('with marker 1:',micro.marker)
62
- if micro.e_err:
63
- print('with error',micro.e_err)
64
- axs[0].errorbar( micro.sm_den, micro.sm_e2a, yerr=micro.sm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
65
- else:
66
- print('with no error',micro.e_err)
67
- axs[0].plot( micro.sm_den, micro.sm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, color=nuda.param.col[kmb] )
68
- else:
69
- print('with no marker',micro.marker)
70
- if micro.e_err:
71
- print('with error',micro.e_err)
72
- axs[0].errorbar( micro.sm_den, micro.sm_e2a, yerr=micro.sm_e2a_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
73
- else:
74
- print('with no error',micro.e_err)
75
- axs[0].plot( micro.sm_den, micro.sm_e2a, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
76
- else:
77
- mb_check.append(mb)
78
- if micro.marker:
79
- print('with marker 2:',micro.marker)
80
- if micro.e_err:
81
- print('with error',micro.e_err)
82
- axs[0].errorbar( micro.sm_den, micro.sm_e2a, yerr=micro.sm_e2a_err, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
83
- else:
84
- print('with no error',micro.e_err)
85
- axs[0].plot( micro.sm_den, micro.sm_e2a, marker=micro.marker, markevery=micro.every, linestyle=lstyle, label=mb, color=nuda.param.col[kmb] )
86
- else:
87
- print('with no marker',micro.marker)
88
- if micro.e_err:
89
- print('with error',micro.e_err)
90
- axs[0].errorbar( micro.sm_den, micro.sm_e2a, yerr=micro.sm_e2a_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
91
- else:
92
- print('with no error',micro.e_err)
93
- axs[0].plot( micro.sm_den, micro.sm_e2a, marker=micro.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
94
- # end of model
95
- # end of mb
96
- axs[0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
97
- axs[0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
98
- axs[0].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
99
- axs[0].text(0.03,2,'microscopic models',fontsize='10')
100
- #
101
- model_check = []
102
- #
103
- for kmodel,model in enumerate(pheno_models):
104
- #
105
- params, params_lower = nuda.matter.pheno_params( model = model )
106
- #
107
- for param in params:
108
- #
109
- pheno = nuda.matter.setupPheno( model = model, param = param )
110
- if nuda.env.verb: pheno.print_outputs( )
111
- #
112
- check = nuda.matter.setupCheck( eos = pheno, band = band )
113
- #
114
- if check.isInside:
115
- lstyle = 'solid'
116
- else:
117
- lstyle = 'dashed'
118
- #
119
- if pheno.sm_e2a is not None:
120
- print('model:',model,' param:',param)
121
- if model in model_check:
122
- axs[1].plot( pheno.sm_den, pheno.sm_e2a, linestyle=lstyle, color=nuda.param.col[kmodel] )
123
- else:
124
- model_check.append(model)
125
- axs[1].plot( pheno.sm_den, pheno.sm_e2a, linestyle=lstyle, color=nuda.param.col[kmodel], label=model )
126
- # end of param
127
- # end of model
128
- axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
129
- axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
130
- axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
131
- axs[1].text(0.03,2,'phenomenological models',fontsize='10')
132
- #
133
- #axs[1].legend(loc='upper left',fontsize='8', ncol=2)
134
- #axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
135
- fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=4,frameon=False)
136
- #
137
- if pname is not None:
138
- plt.savefig(pname, dpi=200)
139
- plt.close()
140
- #
@@ -1,134 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
-
4
- import nucleardatapy as nuda
5
-
6
- def matter_Esym_fig( pname, micro_mbs, pheno_models, band ):
7
- """
8
- Plot nucleonic energy per particle E/A in matter.\
9
- The plot is 2x2 with:\
10
- [0,0]: E/A versus den. [0,1]: E/A versus kfn.\
11
- [1,0]: E/E_NRFFG versus den. [1,1]: E/E_NRFFG versus kfn.\
12
-
13
- :param pname: name of the figure (*.png)
14
- :type pname: str.
15
- :param mb: many-body (mb) approach considered.
16
- :type mb: str.
17
- :param models: models to run on.
18
- :type models: array of str.
19
- :param band: object instantiated on the reference band.
20
- :type band: object.
21
- :param matter: can be 'SM' or 'NM'.
22
- :type matter: str.
23
-
24
- """
25
- #
26
- print(f'Plot name: {pname}')
27
- #
28
- matter = 'Esym'
29
- #
30
- fig, axs = plt.subplots(1,2)
31
- #fig.tight_layout() # Or equivalently, "plt.tight_layout()"
32
- fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
33
- #
34
- axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
35
- axs[0].set_ylabel(r'$e_\text{sym}(n_\text{nuc})$')
36
- axs[0].set_xlim([0, 0.34])
37
- axs[0].set_ylim([0, 60])
38
- #
39
- axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
40
- #axs[1].set_ylabel(r'$e_{sym}(n)$')
41
- axs[1].set_xlim([0, 0.34])
42
- axs[1].set_ylim([0, 60])
43
- axs[1].tick_params('y', labelleft=False)
44
- #
45
- mb_check = []
46
- #
47
- for kmb,mb in enumerate(micro_mbs):
48
- #
49
- models, models_lower = nuda.matter.micro_esym_models_mb( mb )
50
- #
51
- for model in models:
52
- #
53
- micro = nuda.matter.setupMicroEsym( model = model )
54
- if nuda.env.verb: micro.print_outputs( )
55
- #
56
- check = nuda.matter.setupCheck( eos = micro, band = band )
57
- #
58
- if check.isInside:
59
- lstyle = 'solid'
60
- else:
61
- lstyle = 'dashed'
62
- #
63
- if micro.esym is not None:
64
- print('mb:',mb,'model:',model)
65
- if mb in mb_check:
66
- if micro.marker:
67
- if micro.err:
68
- axs[0].errorbar( micro.den, micro.esym, yerr=micro.esym_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
69
- else:
70
- axs[0].plot( micro.den, micro.esym, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
71
- else:
72
- if micro.err:
73
- axs[0].errorbar( micro.den, micro.esym, yerr=micro.esym_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
74
- else:
75
- axs[0].plot( micro.den, micro.esym, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
76
- else:
77
- mb_check.append(mb)
78
- if micro.marker:
79
- if micro.err:
80
- axs[0].errorbar( micro.den, micro.esym, yerr=micro.esym_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
81
- else:
82
- axs[0].plot( micro.den, micro.esym, marker=micro.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
83
- else:
84
- if micro.err:
85
- axs[0].errorbar( micro.den, micro.esym, yerr=micro.esym_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
86
- else:
87
- axs[0].plot( micro.den, micro.esym, marker=micro.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
88
- # end of model
89
- # end of mb
90
- axs[0].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
91
- axs[0].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
92
- axs[0].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
93
- axs[0].text(0.05,5,'microscopic models',fontsize='10')
94
- #
95
- model_check = []
96
- #
97
- for kmodel,model in enumerate(pheno_models):
98
- #
99
- params, params_lower = nuda.matter.pheno_params( model = model )
100
- #
101
- for param in params:
102
- #
103
- pheno = nuda.matter.setupPhenoEsym( model = model, param = param )
104
- if nuda.env.verb: pheno.print_outputs( )
105
- #
106
- check = nuda.matter.setupCheck( eos = pheno, band = band )
107
- #
108
- if check.isInside:
109
- lstyle = 'solid'
110
- else:
111
- lstyle = 'dashed'
112
- #
113
- if pheno.esym is not None:
114
- print('model:',model,' param:',param)
115
- if model in model_check:
116
- axs[1].plot( pheno.den, pheno.esym, linestyle=lstyle, color=nuda.param.col[kmodel] )
117
- else:
118
- model_check.append(model)
119
- axs[1].plot( pheno.den, pheno.esym, linestyle=lstyle, color=nuda.param.col[kmodel], label=model )
120
- # end of param
121
- # end of model
122
- axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
123
- axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
124
- axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
125
- axs[1].text(0.05,5,'phenomenological models',fontsize='10')
126
- #
127
- #axs[1].legend(loc='upper left',fontsize='8', ncol=2)
128
- #axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
129
- fig.legend(loc='upper left',bbox_to_anchor=(0.2,1.0),columnspacing=2,fontsize='8',ncol=4,frameon=False)
130
- #
131
- if pname is not None:
132
- plt.savefig(pname, dpi=200)
133
- plt.close()
134
- #
@@ -1,83 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
-
4
- import nucleardatapy as nuda
5
-
6
- def matter_cs2_fig( pname, micro_models, pheno_models, band ):
7
- """
8
- Plot nuclear chart (N versus Z).\
9
- The plot is 1x1 with:\
10
- [0]: nuclear chart.
11
-
12
- :param pname: name of the figure (*.png)
13
- :type pname: str.
14
- :param table: table.
15
- :type table: str.
16
- :param version: version of table to run on.
17
- :type version: str.
18
- :param theo_tables: object instantiated on the reference band.
19
- :type theo_tables: object.
20
-
21
- """
22
- #
23
- print(f'Plot name: {pname}')
24
- #
25
- fig, axs = plt.subplots(1,2)
26
- fig.tight_layout() # Or equivalently, "plt.tight_layout()"
27
- fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.98, wspace=0.3, hspace=0.3 )
28
- #
29
- axs[0].set_xlabel(r'n (fm$^{-3}$)')
30
- axs[0].set_ylabel(r'$c_{s,NM}^2(n)$')
31
- axs[0].set_xlim([0, 0.3])
32
- axs[0].set_ylim([0, 0.5])
33
- #
34
- axs[1].set_xlabel(r'n (fm$^{-3}$)')
35
- axs[1].set_ylabel(r'$c_{s,NM}^2(n)$')
36
- axs[1].set_xlim([0, 0.3])
37
- axs[1].set_ylim([0, 0.5])
38
- #
39
- for model in micro_models:
40
- #
41
- mic = nuda.matter.setupMicro( model = model )
42
- if mic.nm_cs2 is not None:
43
- print('model:',model)
44
- if mic.marker:
45
- if mic.err:
46
- axs[0].errorbar( mic.nm_den, mic.nm_cs2, yerr=mic.nm_cs2_err, marker=mic.marker, linestyle=None, label=mic.label, errorevery=mic.every )
47
- else:
48
- axs[0].plot( mic.nm_den, mic.nm_cs2, marker=mic.marker, linestyle=None, label=mic.label, markevery=mic.every )
49
- else:
50
- if mic.err:
51
- axs[0].errorbar( mic.nm_den, mic.nm_cs2, yerr=mic.nm_cs2_err, marker=mic.marker, linestyle=mic.linestyle, label=mic.label, errorevery=mic.every )
52
- else:
53
- axs[0].plot( mic.nm_den, mic.nm_cs2, marker=mic.marker, linestyle=mic.linestyle, label=mic.label, markevery=mic.every )
54
- if nuda.env.verb: mic.print_outputs( )
55
- #axs[0].fill_between( band.den, y1=(band.pre-band.pre_std), y2=(band.pre+band.pre_std), color=band.color, alpha=band.alpha, visible=True )
56
- #axs[0].plot( band.den, (band.pre-band.pre_std), color='k', linestyle='dashed' )
57
- #axs[0].plot( band.den, (band.pre+band.pre_std), color='k', linestyle='dashed' )
58
- axs[0].text(0.01,0.4,'microscopic models',fontsize='10')
59
- axs[0].legend(loc='upper left',fontsize='8', ncol=3)
60
- #
61
- for model in pheno_models:
62
- #
63
- params, params_lower = nuda.matter.pheno_params( model = model )
64
- #
65
- for param in params:
66
- #
67
- pheno = nuda.matter.setupPheno( model = model, param = param )
68
- if pheno.nm_pre is not None:
69
- print('model:',model,' param:',param)
70
- #pheno.label=None
71
- axs[1].plot( pheno.nm_den, pheno.nm_cs2, label=pheno.label )
72
- if nuda.env.verb: pheno.print_outputs( )
73
- #axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
74
- #axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
75
- #axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
76
- axs[1].text(0.01,0.4,'phenomenological models',fontsize='10')
77
- #axs[1].legend(loc='upper left',fontsize='8', ncol=2)
78
- #axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
79
- #
80
- if pname is not None:
81
- plt.savefig(pname, dpi=200)
82
- plt.close()
83
- #
@@ -1,146 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
-
4
- import nucleardatapy as nuda
5
-
6
- def matter_preNM_fig( pname, micro_mbs, pheno_models, band ):
7
- """
8
- Plot nucleonic pressure in NM.\
9
- The plot is 1x2 with:\
10
- [0,0]: E/A versus den (micro). [0,1]: E/A versus den (pheno).\
11
-
12
- :param pname: name of the figure (*.png)
13
- :type pname: str.
14
- :param micro_mbs: many-body (mb) approach considered.
15
- :type micro_mbs: str.
16
- :param pheno_models: models to run on.
17
- :type pheno_models: array of str.
18
- :param band: object instantiated on the reference band.
19
- :type band: object.
20
-
21
- """
22
- #
23
- print(f'Plot name: {pname}')
24
- #
25
- p_den = 0.32
26
- p_cen = 23.0
27
- p_std = 14.5
28
- p_micro_cen = 15.0
29
- p_micro_std = 6.5
30
- p_pheno_cen = 23.0
31
- p_pheno_std = 14.5
32
- #
33
- fig, axs = plt.subplots(1,2)
34
- #fig.tight_layout() # Or equivalently, "plt.tight_layout()"
35
- fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
36
- #
37
- axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
38
- axs[0].set_ylabel(r'$p_\text{NM}(n_\text{nuc})$')
39
- axs[0].set_xlim([0, 0.35])
40
- axs[0].set_ylim([-2, 45])
41
- #
42
- axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
43
- #axs[1].set_ylabel(r'$e_{sym}(n)$')
44
- axs[1].set_xlim([0, 0.35])
45
- axs[1].set_ylim([-2, 45])
46
- axs[1].tick_params('y', labelleft=False)
47
- #
48
- mb_check = []
49
- #
50
- for kmb,mb in enumerate(micro_mbs):
51
- #
52
- models, models_lower = nuda.matter.micro_models_mb( mb )
53
- #
54
- for model in models:
55
- #
56
- micro = nuda.matter.setupMicro( model = model )
57
- if nuda.env.verb: micro.print_outputs( )
58
- #
59
- check = nuda.matter.setupCheck( eos = micro, band = band )
60
- #
61
- if check.isInside:
62
- lstyle = 'solid'
63
- else:
64
- lstyle = 'dashed'
65
- #continue
66
- #
67
- print('model:',model)
68
- print('err:',micro.p_err)
69
- print('den:',micro.nm_den)
70
- print('pre:',micro.nm_pre)
71
- print('pre_err:',micro.nm_pre_err)
72
- if micro.nm_pre is not None:
73
- print('mb:',mb,'model:',model)
74
- if mb in mb_check:
75
- if micro.marker:
76
- if micro.p_err:
77
- axs[0].errorbar( micro.nm_den, micro.nm_pre, yerr=micro.nm_pre_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
78
- else:
79
- axs[0].plot( micro.nm_den, micro.nm_pre, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
80
- else:
81
- if micro.p_err:
82
- axs[0].errorbar( micro.nm_den, micro.nm_pre, yerr=micro.nm_pre_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
83
- else:
84
- axs[0].plot( micro.nm_den, micro.nm_pre, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
85
- else:
86
- mb_check.append(mb)
87
- if micro.marker:
88
- if micro.p_err:
89
- axs[0].errorbar( micro.nm_den, micro.nm_pre, yerr=micro.nm_pre_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
90
- else:
91
- axs[0].plot( micro.nm_den, micro.nm_pre, marker=micro.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
92
- else:
93
- if micro.p_err:
94
- axs[0].errorbar( micro.nm_den, micro.nm_pre, yerr=micro.nm_pre_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
95
- else:
96
- axs[0].plot( enm.nm_den, enm.nm_pre, marker=enm.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
97
- # end of model
98
- # end of mb
99
- axs[0].errorbar( p_den, p_cen, yerr=p_std, color='k' )
100
- axs[0].errorbar( p_den+0.005, p_micro_cen, yerr=p_micro_std, color='r' )
101
- axs[0].text(0.02,40,'microscopic models',fontsize='10')
102
- #
103
- model_check = []
104
- #
105
- for kmodel,model in enumerate(pheno_models):
106
- #
107
- params, params_lower = nuda.matter.pheno_params( model = model )
108
- #
109
- for param in params:
110
- #
111
- pheno = nuda.matter.setupPheno( model = model, param = param )
112
- if nuda.env.verb: pheno.print_outputs( )
113
- #
114
- check = nuda.matter.setupCheck( eos = pheno, band = band )
115
- #
116
- if check.isInside:
117
- lstyle = 'solid'
118
- else:
119
- lstyle = 'dashed'
120
- #continue
121
- #
122
- if pheno.nm_pre is not None:
123
- print('model:',model,' param:',param)
124
- if model in model_check:
125
- axs[1].plot( pheno.nm_den, pheno.nm_pre, linestyle=lstyle, color=nuda.param.col[kmodel] )
126
- else:
127
- model_check.append(model)
128
- axs[1].plot( pheno.nm_den, pheno.nm_pre, linestyle=lstyle, color=nuda.param.col[kmodel], label=model )
129
- # end of param
130
- # end of model
131
- axs[1].errorbar( p_den, p_cen, yerr=p_std, color='k' )
132
- axs[1].errorbar( p_den+0.005, p_pheno_cen, yerr=p_pheno_std, color='r' )
133
- #axs[1].fill_between( band.den, y1=(band.e2a-band.e2a_std), y2=(band.e2a+band.e2a_std), color=band.color, alpha=band.alpha, visible=True )
134
- #axs[1].plot( band.den, (band.e2a-band.e2a_std), color='k', linestyle='dashed' )
135
- #axs[1].plot( band.den, (band.e2a+band.e2a_std), color='k', linestyle='dashed' )
136
- axs[1].text(0.02,40,'phenomenological models',fontsize='10')
137
- #
138
- #axs[1].legend(loc='upper left',fontsize='8', ncol=2)
139
- #axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
140
- fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
141
- #
142
- #plt.tight_layout()
143
- if pname is not None:
144
- plt.savefig(pname, dpi=200)
145
- plt.close()
146
- #
@@ -1,144 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
-
4
- import nucleardatapy as nuda
5
-
6
- def matter_preSM_fig( pname, micro_mbs, pheno_models, band ):
7
- """
8
- Plot nucleonic pressure in SM.\
9
- The plot is 1x2 with:\
10
- [0,0]: E/A versus den (micro). [0,1]: E/A versus den (pheno).\
11
-
12
- :param pname: name of the figure (*.png)
13
- :type pname: str.
14
- :param micro_mbs: many-body (mb) approach considered.
15
- :type micro_mbs: str.
16
- :param pheno_models: models to run on.
17
- :type pheno_models: array of str.
18
- :param band: object instantiated on the reference band.
19
- :type band: object.
20
- :param matter: variable `matter`employed to define the band.
21
- :type matter: str.
22
-
23
- """
24
- #
25
- print(f'Plot name: {pname}')
26
- #
27
- p_den = 0.32
28
- p_cen = 11.5
29
- p_std = 5.5
30
- p_micro_cen = 9.0
31
- p_micro_std = 3.0
32
- p_pheno_cen = 14.5
33
- p_pheno_std = 2.5
34
- #
35
- fig, axs = plt.subplots(1,2)
36
- #fig.tight_layout() # Or equivalently, "plt.tight_layout()"
37
- fig.subplots_adjust(left=0.10, bottom=0.12, right=None, top=0.9, wspace=0.05, hspace=0.3 )
38
- #
39
- axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
40
- axs[0].set_ylabel(r'$p_\text{SM}(n_\text{nuc})$')
41
- axs[0].set_xlim([0, 0.35])
42
- axs[0].set_ylim([-2, 45])
43
- #
44
- axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)')
45
- #axs[1].set_ylabel(r'$e_{sym}(n)$')
46
- axs[1].set_xlim([0, 0.35])
47
- axs[1].set_ylim([-2, 45])
48
- axs[1].tick_params('y', labelleft=False)
49
- #
50
- mb_check = []
51
- #
52
- for kmb,mb in enumerate(micro_mbs):
53
- #
54
- models, models_lower = nuda.matter.micro_models_mb( mb )
55
- #
56
- for model in models:
57
- #
58
- micro = nuda.matter.setupMicro( model = model )
59
- if nuda.env.verb: micro.print_outputs( )
60
- #
61
- check = nuda.matter.setupCheck( eos = micro, band = band )
62
- #
63
- if check.isInside:
64
- lstyle = 'solid'
65
- else:
66
- lstyle = 'dashed'
67
- #continue
68
- #
69
- print('model:',model)
70
- print('err:',micro.p_err)
71
- print('den:',micro.sm_den)
72
- print('pre:',micro.sm_pre)
73
- print('pre_err:',micro.sm_pre_err)
74
- if micro.sm_pre is not None:
75
- print('mb:',mb,'model:',model)
76
- if mb in mb_check:
77
- if micro.marker:
78
- if micro.p_err:
79
- axs[0].errorbar( micro.sm_den, micro.sm_pre, yerr=micro.sm_pre_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
80
- else:
81
- axs[0].plot( micro.sm_den, micro.sm_pre, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
82
- else:
83
- if micro.p_err:
84
- axs[0].errorbar( micro.sm_den, micro.sm_pre, yerr=micro.sm_pre_err, marker=micro.marker, linestyle=lstyle, errorevery=micro.every, color=nuda.param.col[kmb] )
85
- else:
86
- axs[0].plot( micro.sm_den, micro.sm_pre, marker=micro.marker, linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
87
- else:
88
- mb_check.append(mb)
89
- if micro.marker:
90
- if micro.p_err:
91
- axs[0].errorbar( esm.sm_den, micro.sm_pre, yerr=micro.sm_pre_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
92
- else:
93
- axs[0].plot( micro.sm_den, micro.sm_pre, marker=micro.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
94
- else:
95
- if micro.p_err:
96
- axs[0].errorbar( micro.sm_den, micro.sm_pre, yerr=micro.sm_pre_err, marker=micro.marker, linestyle=lstyle, label=mb, errorevery=micro.every, color=nuda.param.col[kmb] )
97
- else:
98
- axs[0].plot( micro.sm_den, esm.sm_pre, marker=esm.marker, linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
99
- # end of model
100
- # end of mb
101
- axs[0].errorbar( p_den, p_cen, yerr=p_std, color='k' )
102
- axs[0].errorbar( p_den+0.005, p_micro_cen, yerr=p_micro_std, color='r' )
103
- axs[0].text(0.02,40,'microscopic models',fontsize='10')
104
- #
105
- model_check = []
106
- #
107
- for kmodel,model in enumerate(pheno_models):
108
- #
109
- params, params_lower = nuda.matter.pheno_params( model = model )
110
- #
111
- for param in params:
112
- #
113
- pheno = nuda.matter.setupPheno( model = model, param = param )
114
- if nuda.env.verb: pheno.print_outputs( )
115
- #
116
- check = nuda.matter.setupCheck( eos = pheno, band = band )
117
- #
118
- if check.isInside:
119
- lstyle = 'solid'
120
- else:
121
- lstyle = 'dashed'
122
- #continue
123
- #
124
- if pheno.sm_pre is not None:
125
- print('model:',model,' param:',param)
126
- if model in model_check:
127
- axs[1].plot( pheno.sm_den, pheno.sm_pre, linestyle=lstyle, color=nuda.param.col[kmodel] )
128
- else:
129
- model_check.append(model)
130
- axs[1].plot( pheno.sm_den, pheno.sm_pre, linestyle=lstyle, color=nuda.param.col[kmodel], label=model )
131
- # end of param
132
- # end of model
133
- axs[1].errorbar( p_den, p_cen, yerr=p_std, color='k' )
134
- axs[1].errorbar( p_den+0.005, p_pheno_cen, yerr=p_pheno_std, color='r' )
135
- axs[1].text(0.02,40,'phenomenological models',fontsize='10')
136
- #
137
- #axs[1].legend(loc='upper left',fontsize='8', ncol=2)
138
- #axs[0,1].legend(loc='upper left',fontsize='xx-small', ncol=2)
139
- fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
140
- #
141
- if pname is not None:
142
- plt.savefig(pname, dpi=200)
143
- plt.close()
144
- #