nucleardatapy 0.2.1__py3-none-any.whl → 1.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nucleardatapy/__init__.py +3 -1
- nucleardatapy/astro/setup_gw.py +18 -18
- nucleardatapy/astro/setup_mr.py +123 -33
- nucleardatapy/astro/setup_mup.py +10 -10
- nucleardatapy/corr/setup_EsymDen.py +0 -5
- nucleardatapy/corr/setup_EsymLsym.py +50 -17
- nucleardatapy/corr/setup_KsatQsat.py +170 -69
- nucleardatapy/create_folder.py +2 -2
- nucleardatapy/crust/setup_crust.py +364 -126
- nucleardatapy/data/astro/HESS/J1731-347.dat +4 -0
- nucleardatapy/data/astro/NICER/J0030+0451.dat +6 -6
- nucleardatapy/data/astro/NICER/J0437-4715.dat +4 -3
- nucleardatapy/data/astro/NICER/J0614-3329.dat +4 -0
- nucleardatapy/data/astro/NICER/J0740+6620.dat +5 -4
- nucleardatapy/data/hnuclei/1991-2L-Yamamoto.csv +6 -0
- nucleardatapy/data/hnuclei/2013-2L-Ahn.csv +1 -1
- nucleardatapy/data/hnuclei/2019-2L-Ekawa.csv +7 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-E2A-NM.dat +8 -8
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-414-E2A.dat +21 -0
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-414-TD.dat +22 -0
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-450-E2A.dat +20 -0
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-450-TD.dat +22 -0
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-500-E2A.dat +23 -0
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-500-TD.dat +22 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-414-E2A.dat +15 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-414-TD.dat +21 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-450-E2A.dat +15 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-450-TD.dat +21 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-500-E2A.dat +20 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-500-TD.dat +20 -0
- nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLO450.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLO500.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLOgo394.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLOgo450.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-NM-NNLOsat.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLO450.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLO500.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLOgo394.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLOgo450.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-SM-NNLOsat.dat +28 -0
- nucleardatapy/data/matter/nep/NEPESkyrme.dat +2 -3
- nucleardatapy/data/matter/nep/NEPGSkyrme.dat +7 -0
- nucleardatapy/data/matter/nep/NEPSkyrme.dat +4 -2
- nucleardatapy/data/matter/nep/NEPxEFT.dat +8 -0
- nucleardatapy/data/matter/nep/best67DDSkyrme.dat +28 -0
- nucleardatapy/data/matter/nep/best90DDSkyrme.dat +46 -0
- nucleardatapy/data/matter/nep/best95DDSkyrme.dat +54 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-NM.dat +996 -996
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-SM.dat +991 -991
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-SM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-SM.dat +102 -0
- nucleardatapy/env.py +1 -1
- nucleardatapy/eos/__init__.py +4 -3
- nucleardatapy/eos/setupCC.py +429 -0
- nucleardatapy/eos/setup_am.py +39 -14
- nucleardatapy/eos/setup_am_Beq.py +40 -15
- nucleardatapy/eos/setup_am_Leq.py +40 -15
- nucleardatapy/fig/__init__.py +24 -15
- nucleardatapy/fig/astro_setupGW_fig.py +9 -7
- nucleardatapy/fig/astro_setupMR_fig.py +26 -18
- nucleardatapy/fig/astro_setupMasses_fig.py +8 -6
- nucleardatapy/fig/astro_setupMtov_fig.py +10 -6
- nucleardatapy/fig/astro_setupMup_fig.py +9 -7
- nucleardatapy/fig/corr_setupEsymDen_fig.py +22 -9
- nucleardatapy/fig/corr_setupEsymLsym_fig.py +25 -8
- nucleardatapy/fig/corr_setupKsatQsat_fig.py +23 -17
- nucleardatapy/fig/crust_setupCrust_fig.py +11 -9
- nucleardatapy/fig/eos_setupAMBeq_fig.py +641 -156
- nucleardatapy/fig/eos_setupAMLeq_fig.py +53 -50
- nucleardatapy/fig/eos_setupAM_asy_lep_fig.py +373 -0
- nucleardatapy/fig/eos_setupAM_asy_nuc_fig.py +346 -0
- nucleardatapy/fig/eos_setupAM_asy_tot_fig.py +352 -0
- nucleardatapy/fig/eos_setupAM_fig.py +519 -0
- nucleardatapy/fig/eos_setupCC_fig.py +270 -0
- nucleardatapy/fig/hnuc_setupChart_fig.py +19 -16
- nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +15 -5
- nucleardatapy/fig/matter_all_fig.py +971 -0
- nucleardatapy/fig/matter_setupCheck_fig.py +106 -0
- nucleardatapy/fig/matter_setupFFGLep_fig.py +74 -0
- nucleardatapy/fig/matter_setupFFGNuc_fig.py +286 -115
- nucleardatapy/fig/matter_setupHIC_fig.py +107 -67
- nucleardatapy/fig/matter_setupMicroEsym_fig.py +259 -73
- nucleardatapy/fig/matter_setupMicro_LP_fig.py +185 -82
- nucleardatapy/fig/matter_setupMicro_band_fig.py +126 -53
- nucleardatapy/fig/matter_setupMicro_effmass_fig.py +253 -77
- nucleardatapy/fig/matter_setupMicro_err_NM_fig.py +45 -20
- nucleardatapy/fig/matter_setupMicro_fig.py +317 -77
- nucleardatapy/fig/matter_setupMicro_gap_fig.py +237 -100
- nucleardatapy/fig/matter_setupNEPStats_fig.py +106 -0
- nucleardatapy/fig/matter_setupPhenoEsym_fig.py +204 -65
- nucleardatapy/fig/matter_setupPheno_fig.py +395 -93
- nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +93 -73
- nucleardatapy/fig/nuc_setupBEExp_fig.py +97 -87
- nucleardatapy/fig/nuc_setupBETheo_fig.py +114 -81
- nucleardatapy/fig/nuc_setupISGMRExp_fig.py +12 -15
- nucleardatapy/fig/nuc_setupRchExp_fig.py +14 -22
- nucleardatapy/fig/nuc_setupRchTheo_fig.py +37 -40
- nucleardatapy/fig/nuc_setupRnpExp_fig.py +86 -106
- nucleardatapy/fig/nuc_setupRnpTheo_fig.py +105 -94
- nucleardatapy/hello.py +6 -0
- nucleardatapy/hnuc/setup_re1L_exp.py +6 -6
- nucleardatapy/hnuc/setup_re1Xi_exp.py +5 -5
- nucleardatapy/hnuc/setup_re2L_exp.py +36 -13
- nucleardatapy/matter/__init__.py +14 -14
- nucleardatapy/matter/setup_check.py +6 -6
- nucleardatapy/matter/setup_ffg.py +66 -39
- nucleardatapy/matter/setup_hic.py +91 -74
- nucleardatapy/matter/setup_micro.py +2033 -1007
- nucleardatapy/matter/setup_micro_band.py +6 -6
- nucleardatapy/matter/setup_micro_esym.py +56 -54
- nucleardatapy/matter/setup_micro_gap.py +24 -17
- nucleardatapy/matter/setup_micro_lp.py +2 -2
- nucleardatapy/matter/setup_nep.py +175 -92
- nucleardatapy/matter/{setup_nep_model_dist.py → setup_nep_stat_model.py} +13 -8
- nucleardatapy/matter/{setup_nep_dist.py → setup_nep_stat_models.py} +12 -8
- nucleardatapy/matter/setup_pheno.py +129 -49
- nucleardatapy/matter/setup_pheno_esym.py +22 -19
- nucleardatapy/nuc/setup_be_exp.py +306 -292
- nucleardatapy/nuc/setup_be_theo.py +288 -105
- nucleardatapy/nuc/setup_isgmr_exp.py +4 -4
- nucleardatapy/nuc/setup_rnp_exp.py +1 -0
- nucleardatapy/nuc/setup_rnp_theo.py +2 -1
- {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/METADATA +48 -16
- {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/RECORD +157 -124
- {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/WHEEL +1 -1
- tests/test_corr_setupKsatQsat.py +3 -1
- tests/test_matter_setupMicro.py +37 -10
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-SM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-SM.dat +0 -1002
- nucleardatapy/fig/eos_setupAM_e_asy_lep_fig.py +0 -125
- nucleardatapy/fig/eos_setupAM_e_asy_nuc_fig.py +0 -115
- nucleardatapy/fig/eos_setupAM_e_asy_tot_fig.py +0 -117
- nucleardatapy/fig/eos_setupAM_e_fig.py +0 -173
- nucleardatapy/fig/matter_ENM_fig.py +0 -128
- nucleardatapy/fig/matter_ESM_fig.py +0 -140
- nucleardatapy/fig/matter_Esym_fig.py +0 -134
- nucleardatapy/fig/matter_cs2_fig.py +0 -83
- nucleardatapy/fig/matter_preNM_fig.py +0 -146
- nucleardatapy/fig/matter_preSM_fig.py +0 -144
- nucleardatapy/fig/matter_setupNEPModelDist_fig.py +0 -68
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-NM-AV18.dat → 2006-EBHF-NM-AV18.dat} +0 -0
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-SM-AV18.dat → 2006-EBHF-SM-AV18.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK14.dat → 2022-GMRS-BSK14.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK16.dat → 2022-GMRS-BSK16.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL59.dat → 2022-GMRS-DHSL59.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL69.dat → 2022-GMRS-DHSL69.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-F0.dat → 2022-GMRS-F0.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H1.dat → 2022-GMRS-H1.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H2.dat → 2022-GMRS-H2.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H3.dat → 2022-GMRS-H3.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H4.dat → 2022-GMRS-H4.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H5.dat → 2022-GMRS-H5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H7.dat → 2022-GMRS-H7.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-LNS5.dat → 2022-GMRS-LNS5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-RATP.dat → 2022-GMRS-RATP.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SGII.dat → 2022-GMRS-SGII.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SLY5.dat → 2022-GMRS-SLY5.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2013-QMC-NM.dat → 2013-MBPT-NM.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-208Pb.dat → rnp/ddrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-48Ca.dat → rnp/ddrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-208Pb.dat → rnp/nlrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-48Ca.dat → rnp/nlrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-208Pb.dat → rnp/skyrmernp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-48Ca.dat → rnp/skyrmernp-48Ca.dat} +0 -0
- {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/licenses/LICENSE +0 -0
- {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/top_level.txt +0 -0
|
@@ -1,101 +1,141 @@
|
|
|
1
1
|
import numpy as np
|
|
2
2
|
import matplotlib.pyplot as plt
|
|
3
|
-
|
|
3
|
+
|
|
4
|
+
# plt.rcParams.update({'font.size': 16})
|
|
4
5
|
# Set clean font settings
|
|
5
6
|
# Set 'DejaVu Sans' as the font
|
|
6
7
|
plt.rcParams["font.family"] = "Times New Roman"
|
|
7
|
-
plt.rcParams[
|
|
8
|
-
plt.rcParams[
|
|
9
|
-
plt.rcParams[
|
|
8
|
+
plt.rcParams["font.family"] = "serif"
|
|
9
|
+
plt.rcParams["mathtext.fontset"] = "stixsans"
|
|
10
|
+
plt.rcParams["font.serif"] = ["Times New Roman"] + plt.rcParams["font.serif"]
|
|
10
11
|
|
|
11
12
|
import nucleardatapy as nuda
|
|
12
13
|
|
|
13
|
-
|
|
14
|
+
|
|
15
|
+
def matter_setupHIC_fig(pname, inferences):
|
|
14
16
|
"""
|
|
15
|
-
Plot
|
|
16
|
-
|
|
17
|
-
|
|
17
|
+
Plot the inferences from HIC.
|
|
18
|
+
|
|
19
|
+
The plot is 2x2 with:
|
|
20
|
+
|
|
21
|
+
[0,0]: pressure in SM versus den. [0,1]: E/A in SM versus den.
|
|
22
|
+
|
|
23
|
+
[1,0]: pressure in NM versus den. [1,1]: Esym versus den.
|
|
18
24
|
|
|
19
25
|
:param pname: name of the figure (*.png)
|
|
20
26
|
:type pname: str.
|
|
21
|
-
:param
|
|
22
|
-
:type
|
|
23
|
-
:param version: version of table to run on.
|
|
24
|
-
:type version: str.
|
|
25
|
-
:param theo_tables: object instantiated on the reference band.
|
|
26
|
-
:type theo_tables: object.
|
|
27
|
+
:param inferences: inferences for HIC.
|
|
28
|
+
:type inferences: array of str.
|
|
27
29
|
|
|
28
30
|
"""
|
|
29
31
|
#
|
|
30
|
-
print(f
|
|
32
|
+
print(f"Plot name: {pname}")
|
|
31
33
|
#
|
|
32
|
-
fig, axs = plt.subplots(2,2)
|
|
33
|
-
fig.tight_layout()
|
|
34
|
-
fig.subplots_adjust(left=0.10, bottom=0.12, right=
|
|
34
|
+
fig, axs = plt.subplots(2, 2)
|
|
35
|
+
fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
36
|
+
fig.subplots_adjust( left=0.10, bottom=0.12, right=0.95, top=0.98, wspace=0.25, hspace=0.05 )
|
|
35
37
|
#
|
|
36
|
-
#axs[0,0].set_xlabel(r'$n$ (fm$^{-3}$)',fontsize='12')
|
|
37
|
-
#axs[0,1].set_xlabel(r'$n$ (fm$^{-3}$)',fontsize='12')
|
|
38
|
-
axs[1,0].set_xlabel(r
|
|
39
|
-
axs[1,1].set_xlabel(r
|
|
38
|
+
# axs[0,0].set_xlabel(r'$n$ (fm$^{-3}$)',fontsize='12')
|
|
39
|
+
# axs[0,1].set_xlabel(r'$n$ (fm$^{-3}$)',fontsize='12')
|
|
40
|
+
axs[1, 0].set_xlabel(r"$n_\text{nuc}$ (fm$^{-3}$)", fontsize="12")
|
|
41
|
+
axs[1, 1].set_xlabel(r"$n_\text{nuc}$ (fm$^{-3}$)", fontsize="12")
|
|
40
42
|
#
|
|
41
|
-
axs[0,0].set_ylabel(r
|
|
42
|
-
axs[0,1].set_ylabel(r
|
|
43
|
-
axs[1,0].set_ylabel(r
|
|
44
|
-
axs[1,1].set_ylabel(r
|
|
43
|
+
axs[0, 0].set_ylabel(r"$p_\mathrm{SM}(n_\text{nuc})$ (MeV fm$^{-3}$)", fontsize="12")
|
|
44
|
+
axs[0, 1].set_ylabel(r"$e_\mathrm{SM}(n_\text{nuc})$ (MeV)", fontsize="12")
|
|
45
|
+
axs[1, 0].set_ylabel(r"$p_\mathrm{NM}(n_\text{nuc})$ (MeV fm$^{-3}$)", fontsize="12")
|
|
46
|
+
axs[1, 1].set_ylabel(r"$e_\text{sym}(n_\text{nuc})$ (MeV)", fontsize="12")
|
|
45
47
|
#
|
|
46
|
-
axs[0,0].set_xlim([0.16, 0.8])
|
|
47
|
-
axs[0,0].set_ylim([0.5, 400])
|
|
48
|
-
axs[0,1].set_xlim([0.0, 0.44])
|
|
49
|
-
axs[0,1].set_ylim([-18, 20])
|
|
50
|
-
axs[1,0].set_xlim([0.16, 0.8])
|
|
51
|
-
axs[1,0].set_ylim([0.5, 400])
|
|
52
|
-
axs[1,1].set_xlim([0.0, 0.44])
|
|
53
|
-
axs[1,1].set_ylim([0.0, 80])
|
|
48
|
+
axs[0, 0].set_xlim([0.16, 0.8])
|
|
49
|
+
axs[0, 0].set_ylim([0.5, 400])
|
|
50
|
+
axs[0, 1].set_xlim([0.0, 0.44])
|
|
51
|
+
axs[0, 1].set_ylim([-18, 20])
|
|
52
|
+
axs[1, 0].set_xlim([0.16, 0.8])
|
|
53
|
+
axs[1, 0].set_ylim([0.5, 400])
|
|
54
|
+
axs[1, 1].set_xlim([0.0, 0.44])
|
|
55
|
+
axs[1, 1].set_ylim([0.0, 80])
|
|
54
56
|
#
|
|
55
|
-
axs[0,0].set_yscale(
|
|
56
|
-
axs[1,0].set_yscale(
|
|
57
|
+
axs[0, 0].set_yscale("log")
|
|
58
|
+
axs[1, 0].set_yscale("log")
|
|
57
59
|
#
|
|
58
|
-
axs[0,0].tick_params(
|
|
59
|
-
axs[0,1].tick_params(
|
|
60
|
+
axs[0, 0].tick_params("x", labelbottom=False)
|
|
61
|
+
axs[0, 1].tick_params("x", labelbottom=False)
|
|
60
62
|
#
|
|
61
|
-
for
|
|
63
|
+
for inference in inferences:
|
|
62
64
|
#
|
|
63
|
-
print(
|
|
64
|
-
hic = nuda.matter.setupHIC(
|
|
65
|
+
print("inference:", inference)
|
|
66
|
+
hic = nuda.matter.setupHIC( inference = inference )
|
|
65
67
|
#
|
|
66
68
|
if hic.sm_pre is not None:
|
|
67
|
-
axs[0,0].fill_between(
|
|
69
|
+
axs[0, 0].fill_between(
|
|
70
|
+
hic.den_pre,
|
|
71
|
+
y1=hic.sm_pre_lo,
|
|
72
|
+
y2=hic.sm_pre_up,
|
|
73
|
+
label=hic.label,
|
|
74
|
+
alpha=hic.alpha * 0.8,
|
|
75
|
+
color=hic.color,
|
|
76
|
+
)
|
|
68
77
|
#
|
|
69
|
-
if hic.
|
|
70
|
-
axs[0,1].fill_between(
|
|
78
|
+
if hic.sm_e2a_int_lo is not None:
|
|
79
|
+
axs[0, 1].fill_between(
|
|
80
|
+
hic.den_e2a,
|
|
81
|
+
y1=hic.sm_e2a_int_lo,
|
|
82
|
+
y2=hic.sm_e2a_int_up,
|
|
83
|
+
label=hic.label,
|
|
84
|
+
alpha=hic.alpha,
|
|
85
|
+
color="magenta",
|
|
86
|
+
)
|
|
71
87
|
#
|
|
72
88
|
if hic.nm_pre is not None:
|
|
73
|
-
axs[1,0].fill_between(
|
|
74
|
-
|
|
89
|
+
axs[1, 0].fill_between(
|
|
90
|
+
hic.den_pre,
|
|
91
|
+
y1=hic.nm_pre_lo,
|
|
92
|
+
y2=hic.nm_pre_up,
|
|
93
|
+
label=hic.label_so,
|
|
94
|
+
alpha=0.2,
|
|
95
|
+
color="b",
|
|
96
|
+
)
|
|
97
|
+
axs[1, 0].fill_between(
|
|
98
|
+
hic.den_pre,
|
|
99
|
+
y1=hic.nm_pre_st_lo,
|
|
100
|
+
y2=hic.nm_pre_st_up,
|
|
101
|
+
label=hic.label_st,
|
|
102
|
+
alpha=0.2,
|
|
103
|
+
color="g",
|
|
104
|
+
)
|
|
75
105
|
#
|
|
76
|
-
if hic.
|
|
77
|
-
axs[1,1].errorbar(
|
|
78
|
-
|
|
106
|
+
if hic.esym is not None and hic.den_err:
|
|
107
|
+
axs[1, 1].errorbar(
|
|
108
|
+
hic.den_esym,
|
|
109
|
+
hic.esym,
|
|
110
|
+
xerr=hic.den_esym_err,
|
|
111
|
+
yerr=hic.esym_err,
|
|
112
|
+
fmt="o",
|
|
113
|
+
label=hic.label,
|
|
114
|
+
color=hic.color,
|
|
115
|
+
capsize=2,
|
|
116
|
+
capthick=1,
|
|
117
|
+
elinewidth=1,
|
|
118
|
+
markersize=3,
|
|
119
|
+
)
|
|
79
120
|
#
|
|
80
|
-
if hic.
|
|
81
|
-
axs[1,1].fill_between(
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
label=hic.label, color = hic.color, capsize=2, capthick=1, elinewidth=1 , markersize =3)
|
|
121
|
+
if hic.esym is not None and not hic.den_err:
|
|
122
|
+
axs[1, 1].fill_between(
|
|
123
|
+
hic.den_esym,
|
|
124
|
+
y1=hic.esym_lo,
|
|
125
|
+
y2=hic.esym_up,
|
|
126
|
+
label=hic.label,
|
|
127
|
+
alpha=hic.alpha * 0.7,
|
|
128
|
+
color=hic.color,
|
|
129
|
+
)
|
|
90
130
|
#
|
|
91
131
|
#
|
|
92
|
-
#axs.text(0.15,12,r'$K_{sym}$='+str(int(Ksym))+' MeV',fontsize='12')
|
|
93
|
-
axs[0,0].legend(loc=
|
|
94
|
-
axs[0,1].legend(loc=
|
|
95
|
-
axs[1,0].legend(loc=
|
|
96
|
-
axs[1,1].legend(loc=
|
|
132
|
+
# axs.text(0.15,12,r'$K_{sym}$='+str(int(Ksym))+' MeV',fontsize='12')
|
|
133
|
+
axs[0, 0].legend(loc="lower right", fontsize="8")
|
|
134
|
+
axs[0, 1].legend(loc="upper left", fontsize="8")
|
|
135
|
+
axs[1, 0].legend(loc="lower right", fontsize="8")
|
|
136
|
+
axs[1, 1].legend(loc="lower right", fontsize="8")
|
|
97
137
|
#
|
|
98
138
|
if pname is not None:
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
#
|
|
139
|
+
plt.savefig(pname, dpi=300)
|
|
140
|
+
plt.close()
|
|
141
|
+
#
|
|
@@ -3,114 +3,300 @@ import matplotlib.pyplot as plt
|
|
|
3
3
|
|
|
4
4
|
import nucleardatapy as nuda
|
|
5
5
|
|
|
6
|
-
|
|
6
|
+
|
|
7
|
+
def matter_setupMicroEsym_fig(pname, mbs, band):
|
|
7
8
|
"""
|
|
8
|
-
Plot
|
|
9
|
-
|
|
10
|
-
|
|
9
|
+
Plot the symmetry energy esym for microscopic models.
|
|
10
|
+
|
|
11
|
+
The plot is 2x2 with:
|
|
12
|
+
|
|
13
|
+
[0,0]: esym function of the density. [0,1]: esym function of the Fermi momentum.
|
|
14
|
+
|
|
15
|
+
[0,0]: esym/esym,FFG function of the density. [0,1]: esym/esym,FFG function of the Fermi momentum.
|
|
11
16
|
|
|
12
17
|
:param pname: name of the figure (*.png)
|
|
13
18
|
:type pname: str.
|
|
14
|
-
:param
|
|
15
|
-
:type
|
|
16
|
-
:param
|
|
17
|
-
:type
|
|
18
|
-
:param theo_tables: object instantiated on the reference band.
|
|
19
|
-
:type theo_tables: object.
|
|
20
|
-
|
|
19
|
+
:param mbs: list of many-body approaches.
|
|
20
|
+
:type mbs: array of str.
|
|
21
|
+
:param band: object instantiated on the reference band.
|
|
22
|
+
:type band: object.
|
|
21
23
|
"""
|
|
22
24
|
#
|
|
23
|
-
print(f
|
|
25
|
+
print(f"Plot name: {pname}")
|
|
24
26
|
#
|
|
25
|
-
fig, axs = plt.subplots(2,2)
|
|
26
|
-
fig.tight_layout()
|
|
27
|
-
fig.subplots_adjust(left=0.12, bottom=0.12, right=
|
|
27
|
+
fig, axs = plt.subplots(2, 2)
|
|
28
|
+
fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
29
|
+
fig.subplots_adjust( left=0.12, bottom=0.12, right=0.95, top=0.9, wspace=0.05, hspace=0.05 )
|
|
28
30
|
#
|
|
29
|
-
axs[0,0].set_ylabel(r
|
|
30
|
-
axs[0,0].set_xlim([0, 0.
|
|
31
|
-
axs[0,0].set_ylim([0, 50])
|
|
31
|
+
axs[0, 0].set_ylabel(r"$E_\mathrm{sym}$ (MeV)", fontsize="14")
|
|
32
|
+
axs[0, 0].set_xlim([0, 0.33])
|
|
33
|
+
axs[0, 0].set_ylim([0, 50])
|
|
34
|
+
axs[0, 0].tick_params("x", labelbottom=False)
|
|
32
35
|
#
|
|
33
|
-
axs[0,1].set_xlim([0.5, 2.0])
|
|
34
|
-
axs[0,1].set_ylim([0, 50])
|
|
36
|
+
axs[0, 1].set_xlim([0.5, 2.0])
|
|
37
|
+
axs[0, 1].set_ylim([0, 50])
|
|
38
|
+
axs[0, 1].tick_params("x", labelbottom=False)
|
|
39
|
+
axs[0, 1].tick_params("y", labelleft=False)
|
|
35
40
|
#
|
|
36
|
-
axs[1,0].set_ylabel(r
|
|
37
|
-
axs[1,0].set_xlabel(r
|
|
38
|
-
axs[1,0].set_xlim([0,
|
|
39
|
-
axs[1,0].set_ylim([1,
|
|
41
|
+
axs[1, 0].set_ylabel(r"$E_\mathrm{sym}/E_\mathrm{sym, FFG, NR}$", fontsize="14")
|
|
42
|
+
axs[1, 0].set_xlabel(r"$n_\mathrm{nuc}$ (fm$^{-3}$)", fontsize="14")
|
|
43
|
+
axs[1, 0].set_xlim([0, 0.33])
|
|
44
|
+
axs[1, 0].set_ylim([1.8, 2.9])
|
|
40
45
|
#
|
|
41
|
-
axs[1,1].set_xlabel(r
|
|
42
|
-
axs[1,1].set_xlim([0.5, 2.0])
|
|
43
|
-
axs[1,1].set_ylim([1,
|
|
46
|
+
axs[1, 1].set_xlabel(r"$k_F$ (fm$^{-1}$)", fontsize="14")
|
|
47
|
+
axs[1, 1].set_xlim([0.5, 2.0])
|
|
48
|
+
axs[1, 1].set_ylim([1.8, 2.9])
|
|
49
|
+
axs[1, 1].tick_params("y", labelleft=False)
|
|
44
50
|
#
|
|
45
51
|
mb_check = []
|
|
46
52
|
#
|
|
47
|
-
for kmb,mb in enumerate(mbs):
|
|
53
|
+
for kmb, mb in enumerate(mbs):
|
|
48
54
|
#
|
|
49
|
-
models, models_lower = nuda.matter.
|
|
55
|
+
models, models_lower = nuda.matter.micro_esym_models_mb(mb)
|
|
50
56
|
#
|
|
51
57
|
for model in models:
|
|
52
58
|
#
|
|
53
|
-
print(
|
|
59
|
+
print("in Sample: model", model)
|
|
54
60
|
#
|
|
55
|
-
micro = nuda.matter.setupMicroEsym(
|
|
56
|
-
if nuda.env.verb:
|
|
61
|
+
micro = nuda.matter.setupMicroEsym(model=model)
|
|
62
|
+
if nuda.env.verb:
|
|
63
|
+
micro.print_outputs()
|
|
57
64
|
#
|
|
58
|
-
micro = nuda.matter.setupMicroEsym(
|
|
59
|
-
if nuda.env.verb_output:
|
|
65
|
+
micro = nuda.matter.setupMicroEsym(model=model)
|
|
66
|
+
if nuda.env.verb_output:
|
|
67
|
+
micro.print_outputs()
|
|
60
68
|
#
|
|
61
|
-
check = nuda.matter.setupCheck(
|
|
69
|
+
check = nuda.matter.setupCheck(eos=micro, band=band)
|
|
62
70
|
#
|
|
63
71
|
if check.isInside:
|
|
64
|
-
lstyle =
|
|
72
|
+
lstyle = "solid"
|
|
65
73
|
else:
|
|
66
|
-
lstyle =
|
|
74
|
+
lstyle = "dashed"
|
|
67
75
|
#
|
|
68
76
|
if micro.esym is not None:
|
|
69
|
-
#if '2024-BHF' in model and (kmb % 4 != 0.0): continue
|
|
77
|
+
# if '2024-BHF' in model and (kmb % 4 != 0.0): continue
|
|
70
78
|
if mb in mb_check:
|
|
71
79
|
if micro.esym_err is None:
|
|
72
|
-
axs[0,0].plot(
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
80
|
+
axs[0, 0].plot(
|
|
81
|
+
micro.den,
|
|
82
|
+
micro.esym,
|
|
83
|
+
marker=micro.marker,
|
|
84
|
+
markevery=micro.every,
|
|
85
|
+
linestyle=lstyle,
|
|
86
|
+
color=nuda.param.col[kmb],
|
|
87
|
+
)
|
|
88
|
+
axs[0, 1].plot(
|
|
89
|
+
micro.kf,
|
|
90
|
+
micro.esym,
|
|
91
|
+
marker=micro.marker,
|
|
92
|
+
markevery=micro.every,
|
|
93
|
+
linestyle=lstyle,
|
|
94
|
+
color=nuda.param.col[kmb],
|
|
95
|
+
)
|
|
96
|
+
axs[1, 0].plot(
|
|
97
|
+
micro.den,
|
|
98
|
+
micro.esym / nuda.esymffg_nr(micro.kf),
|
|
99
|
+
marker=micro.marker,
|
|
100
|
+
markevery=micro.every,
|
|
101
|
+
linestyle=lstyle,
|
|
102
|
+
color=nuda.param.col[kmb],
|
|
103
|
+
)
|
|
104
|
+
axs[1, 1].plot(
|
|
105
|
+
micro.kf,
|
|
106
|
+
micro.esym / nuda.esymffg_nr(micro.kf),
|
|
107
|
+
marker=micro.marker,
|
|
108
|
+
markevery=micro.every,
|
|
109
|
+
linestyle=lstyle,
|
|
110
|
+
color=nuda.param.col[kmb],
|
|
111
|
+
)
|
|
76
112
|
else:
|
|
77
|
-
axs[0,0].errorbar(
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
113
|
+
axs[0, 0].errorbar(
|
|
114
|
+
micro.den,
|
|
115
|
+
micro.esym,
|
|
116
|
+
yerr=micro.esym_err,
|
|
117
|
+
marker=micro.marker,
|
|
118
|
+
markevery=micro.every,
|
|
119
|
+
linestyle=lstyle,
|
|
120
|
+
errorevery=micro.every,
|
|
121
|
+
color=nuda.param.col[kmb],
|
|
122
|
+
)
|
|
123
|
+
axs[0, 1].errorbar(
|
|
124
|
+
micro.kf,
|
|
125
|
+
micro.esym,
|
|
126
|
+
yerr=micro.esym_err,
|
|
127
|
+
marker=micro.marker,
|
|
128
|
+
markevery=micro.every,
|
|
129
|
+
linestyle=lstyle,
|
|
130
|
+
errorevery=micro.every,
|
|
131
|
+
color=nuda.param.col[kmb],
|
|
132
|
+
)
|
|
133
|
+
axs[1, 0].errorbar(
|
|
134
|
+
micro.den,
|
|
135
|
+
micro.esym / nuda.esymffg_nr(micro.kf),
|
|
136
|
+
yerr=micro.esym_err / nuda.esymffg_nr(micro.kf),
|
|
137
|
+
marker=micro.marker,
|
|
138
|
+
markevery=micro.every,
|
|
139
|
+
linestyle=lstyle,
|
|
140
|
+
errorevery=micro.every,
|
|
141
|
+
color=nuda.param.col[kmb],
|
|
142
|
+
)
|
|
143
|
+
axs[1, 1].errorbar(
|
|
144
|
+
micro.kf,
|
|
145
|
+
micro.esym / nuda.esymffg_nr(micro.kf),
|
|
146
|
+
yerr=micro.esym_err / nuda.esymffg_nr(micro.kf),
|
|
147
|
+
marker=micro.marker,
|
|
148
|
+
markevery=micro.every,
|
|
149
|
+
linestyle=lstyle,
|
|
150
|
+
errorevery=micro.every,
|
|
151
|
+
color=nuda.param.col[kmb],
|
|
152
|
+
)
|
|
81
153
|
else:
|
|
82
154
|
mb_check.append(mb)
|
|
83
155
|
if micro.esym_err is None:
|
|
84
|
-
axs[0,0].plot(
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
156
|
+
axs[0, 0].plot(
|
|
157
|
+
micro.den,
|
|
158
|
+
micro.esym,
|
|
159
|
+
marker=micro.marker,
|
|
160
|
+
markevery=micro.every,
|
|
161
|
+
linestyle=lstyle,
|
|
162
|
+
color=nuda.param.col[kmb],
|
|
163
|
+
label=mb,
|
|
164
|
+
)
|
|
165
|
+
axs[0, 1].plot(
|
|
166
|
+
micro.kf,
|
|
167
|
+
micro.esym,
|
|
168
|
+
marker=micro.marker,
|
|
169
|
+
markevery=micro.every,
|
|
170
|
+
linestyle=lstyle,
|
|
171
|
+
color=nuda.param.col[kmb],
|
|
172
|
+
)
|
|
173
|
+
axs[1, 0].plot(
|
|
174
|
+
micro.den,
|
|
175
|
+
micro.esym / nuda.esymffg_nr(micro.kf),
|
|
176
|
+
marker=micro.marker,
|
|
177
|
+
markevery=micro.every,
|
|
178
|
+
linestyle=lstyle,
|
|
179
|
+
color=nuda.param.col[kmb],
|
|
180
|
+
)
|
|
181
|
+
axs[1, 1].plot(
|
|
182
|
+
micro.kf,
|
|
183
|
+
micro.esym / nuda.esymffg_nr(micro.kf),
|
|
184
|
+
marker=micro.marker,
|
|
185
|
+
markevery=micro.every,
|
|
186
|
+
linestyle=lstyle,
|
|
187
|
+
color=nuda.param.col[kmb],
|
|
188
|
+
)
|
|
88
189
|
else:
|
|
89
|
-
axs[0,0].errorbar(
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
190
|
+
axs[0, 0].errorbar(
|
|
191
|
+
micro.den,
|
|
192
|
+
micro.esym,
|
|
193
|
+
yerr=micro.esym_err,
|
|
194
|
+
marker=micro.marker,
|
|
195
|
+
markevery=micro.every,
|
|
196
|
+
linestyle=lstyle,
|
|
197
|
+
errorevery=micro.every,
|
|
198
|
+
color=nuda.param.col[kmb],
|
|
199
|
+
label=mb,
|
|
200
|
+
)
|
|
201
|
+
axs[0, 1].errorbar(
|
|
202
|
+
micro.kf,
|
|
203
|
+
micro.esym,
|
|
204
|
+
yerr=micro.esym_err,
|
|
205
|
+
marker=micro.marker,
|
|
206
|
+
markevery=micro.every,
|
|
207
|
+
linestyle=lstyle,
|
|
208
|
+
errorevery=micro.every,
|
|
209
|
+
color=nuda.param.col[kmb],
|
|
210
|
+
)
|
|
211
|
+
axs[1, 0].errorbar(
|
|
212
|
+
micro.den,
|
|
213
|
+
micro.esym / nuda.esymffg_nr(micro.kf),
|
|
214
|
+
yerr=micro.esym_err / nuda.esymffg_nr(micro.kf),
|
|
215
|
+
marker=micro.marker,
|
|
216
|
+
markevery=micro.every,
|
|
217
|
+
linestyle=lstyle,
|
|
218
|
+
errorevery=micro.every,
|
|
219
|
+
color=nuda.param.col[kmb],
|
|
220
|
+
)
|
|
221
|
+
axs[1, 1].errorbar(
|
|
222
|
+
micro.kf,
|
|
223
|
+
micro.esym / nuda.esymffg_nr(micro.kf),
|
|
224
|
+
yerr=micro.esym_err / nuda.esymffg_nr(micro.kf),
|
|
225
|
+
marker=micro.marker,
|
|
226
|
+
markevery=micro.every,
|
|
227
|
+
linestyle=lstyle,
|
|
228
|
+
errorevery=micro.every,
|
|
229
|
+
color=nuda.param.col[kmb],
|
|
230
|
+
)
|
|
93
231
|
|
|
94
|
-
#
|
|
95
|
-
axs[0,0].plot(
|
|
96
|
-
axs[0,1].plot(
|
|
232
|
+
# FFG symmetry energy
|
|
233
|
+
#axs[0, 0].plot(micro.den, nuda.esymffg_nr(micro.kf), linestyle="dotted")
|
|
234
|
+
#axs[0, 1].plot(micro.kf, nuda.esymffg_nr(micro.kf), linestyle="dotted")
|
|
97
235
|
|
|
98
|
-
axs[0,0].fill_between(
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
axs[
|
|
107
|
-
|
|
108
|
-
axs[
|
|
109
|
-
|
|
236
|
+
axs[0, 0].fill_between(
|
|
237
|
+
band.den,
|
|
238
|
+
y1=(band.e2a_int - band.e2a_std),
|
|
239
|
+
y2=(band.e2a_int + band.e2a_std),
|
|
240
|
+
color=band.color,
|
|
241
|
+
alpha=band.alpha,
|
|
242
|
+
visible=True,
|
|
243
|
+
)
|
|
244
|
+
axs[0, 0].plot(
|
|
245
|
+
band.den, (band.e2a_int - band.e2a_std), color="k", linestyle="dashed", visible=True, zorder = 100 )
|
|
246
|
+
axs[0, 0].plot(
|
|
247
|
+
band.den, (band.e2a_int + band.e2a_std), color="k", linestyle="dashed", visible=True, zorder = 100 )
|
|
248
|
+
axs[0, 1].fill_between(
|
|
249
|
+
band.kfn,
|
|
250
|
+
y1=(band.e2a_int - band.e2a_std),
|
|
251
|
+
y2=(band.e2a_int + band.e2a_std),
|
|
252
|
+
color=band.color,
|
|
253
|
+
alpha=band.alpha,
|
|
254
|
+
visible=True,
|
|
255
|
+
)
|
|
256
|
+
axs[0, 1].plot(
|
|
257
|
+
band.kfn, (band.e2a_int - band.e2a_std), color="k", linestyle="dashed", visible=True, zorder = 100 )
|
|
258
|
+
axs[0, 1].plot(
|
|
259
|
+
band.kfn, (band.e2a_int + band.e2a_std), color="k", linestyle="dashed", visible=True, zorder = 100 )
|
|
260
|
+
axs[1, 0].fill_between(
|
|
261
|
+
band.den,
|
|
262
|
+
y1=(band.e2a_int - band.e2a_std) / nuda.esymffg_nr(band.kf),
|
|
263
|
+
y2=(band.e2a_int + band.e2a_std) / nuda.esymffg_nr(band.kf),
|
|
264
|
+
color=band.color,
|
|
265
|
+
alpha=band.alpha,
|
|
266
|
+
visible=True,
|
|
267
|
+
)
|
|
268
|
+
axs[1, 0].plot(
|
|
269
|
+
band.den, (band.e2a_int - band.e2a_std) / nuda.esymffg_nr(band.kf),
|
|
270
|
+
color="k", linestyle="dashed", visible=True, zorder = 100 )
|
|
271
|
+
axs[1, 0].plot(
|
|
272
|
+
band.den, (band.e2a_int + band.e2a_std) / nuda.esymffg_nr(band.kf),
|
|
273
|
+
color="k", linestyle="dashed", visible=True, zorder = 100 )
|
|
274
|
+
axs[1, 1].fill_between(
|
|
275
|
+
band.kfn,
|
|
276
|
+
y1=(band.e2a_int - band.e2a_std) / nuda.esymffg_nr(band.kf),
|
|
277
|
+
y2=(band.e2a_int + band.e2a_std) / nuda.esymffg_nr(band.kf),
|
|
278
|
+
color=band.color,
|
|
279
|
+
alpha=band.alpha,
|
|
280
|
+
visible=True,
|
|
281
|
+
)
|
|
282
|
+
axs[1, 1].plot(
|
|
283
|
+
band.kfn, (band.e2a_int - band.e2a_std) / nuda.esymffg_nr(band.kf),
|
|
284
|
+
color="k", linestyle="dashed", visible=True, zorder = 100 )
|
|
285
|
+
axs[1, 1].plot(
|
|
286
|
+
band.kfn, (band.e2a_int + band.e2a_std) / nuda.esymffg_nr(band.kf),
|
|
287
|
+
color="k", linestyle="dashed", visible=True, zorder = 100 )
|
|
110
288
|
|
|
111
|
-
#axs[1,0].legend(loc='upper right',fontsize='8')
|
|
112
|
-
fig.legend(
|
|
289
|
+
# axs[1,0].legend(loc='upper right',fontsize='8')
|
|
290
|
+
fig.legend(
|
|
291
|
+
loc="upper left",
|
|
292
|
+
bbox_to_anchor=(0.1, 1.0),
|
|
293
|
+
columnspacing=2,
|
|
294
|
+
fontsize="8",
|
|
295
|
+
ncol=6,
|
|
296
|
+
frameon=False,
|
|
297
|
+
)
|
|
113
298
|
#
|
|
114
299
|
if pname is not None:
|
|
115
|
-
|
|
116
|
-
|
|
300
|
+
plt.savefig(pname, dpi=300)
|
|
301
|
+
plt.close()
|
|
302
|
+
#
|