nucleardatapy 0.2.1__py3-none-any.whl → 1.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- nucleardatapy/__init__.py +3 -1
- nucleardatapy/astro/setup_gw.py +18 -18
- nucleardatapy/astro/setup_mr.py +123 -33
- nucleardatapy/astro/setup_mup.py +10 -10
- nucleardatapy/corr/setup_EsymDen.py +0 -5
- nucleardatapy/corr/setup_EsymLsym.py +50 -17
- nucleardatapy/corr/setup_KsatQsat.py +170 -69
- nucleardatapy/create_folder.py +2 -2
- nucleardatapy/crust/setup_crust.py +364 -126
- nucleardatapy/data/astro/HESS/J1731-347.dat +4 -0
- nucleardatapy/data/astro/NICER/J0030+0451.dat +6 -6
- nucleardatapy/data/astro/NICER/J0437-4715.dat +4 -3
- nucleardatapy/data/astro/NICER/J0614-3329.dat +4 -0
- nucleardatapy/data/astro/NICER/J0740+6620.dat +5 -4
- nucleardatapy/data/hnuclei/1991-2L-Yamamoto.csv +6 -0
- nucleardatapy/data/hnuclei/2013-2L-Ahn.csv +1 -1
- nucleardatapy/data/hnuclei/2019-2L-Ekawa.csv +7 -0
- nucleardatapy/data/matter/micro/2006-BHF/2006-BHF-Av18-E2A-NM.dat +8 -8
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-414-E2A.dat +21 -0
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-414-TD.dat +22 -0
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-450-E2A.dat +20 -0
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-450-TD.dat +22 -0
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-500-E2A.dat +23 -0
- nucleardatapy/data/matter/micro/2020-SCGF-NM-N3LO-500-TD.dat +22 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-414-E2A.dat +15 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-414-TD.dat +21 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-450-E2A.dat +15 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-450-TD.dat +21 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-500-E2A.dat +20 -0
- nucleardatapy/data/matter/micro/2020-SCGF-SM-N3LO-500-TD.dat +20 -0
- nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLO450.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLO500.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLOgo394.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-NM-DeltaNNLOgo450.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-NM-NNLOsat.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLO450.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLO500.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLOgo394.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-SM-DeltaNNLOgo450.dat +28 -0
- nucleardatapy/data/matter/micro/2024-ABI-SM-NNLOsat.dat +28 -0
- nucleardatapy/data/matter/nep/NEPESkyrme.dat +2 -3
- nucleardatapy/data/matter/nep/NEPGSkyrme.dat +7 -0
- nucleardatapy/data/matter/nep/NEPSkyrme.dat +4 -2
- nucleardatapy/data/matter/nep/NEPxEFT.dat +8 -0
- nucleardatapy/data/matter/nep/best67DDSkyrme.dat +28 -0
- nucleardatapy/data/matter/nep/best90DDSkyrme.dat +46 -0
- nucleardatapy/data/matter/nep/best95DDSkyrme.dat +54 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-NM.dat +996 -996
- nucleardatapy/data/matter/pheno/ESkyrme/BSk31-SM.dat +991 -991
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-NM.dat +1002 -0
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG4-SM.dat +1002 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG1-SM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-NM.dat +102 -0
- nucleardatapy/data/matter/pheno/Skyrme/BSkG2-SM.dat +102 -0
- nucleardatapy/env.py +1 -1
- nucleardatapy/eos/__init__.py +4 -3
- nucleardatapy/eos/setupCC.py +429 -0
- nucleardatapy/eos/setup_am.py +39 -14
- nucleardatapy/eos/setup_am_Beq.py +40 -15
- nucleardatapy/eos/setup_am_Leq.py +40 -15
- nucleardatapy/fig/__init__.py +24 -15
- nucleardatapy/fig/astro_setupGW_fig.py +9 -7
- nucleardatapy/fig/astro_setupMR_fig.py +26 -18
- nucleardatapy/fig/astro_setupMasses_fig.py +8 -6
- nucleardatapy/fig/astro_setupMtov_fig.py +10 -6
- nucleardatapy/fig/astro_setupMup_fig.py +9 -7
- nucleardatapy/fig/corr_setupEsymDen_fig.py +22 -9
- nucleardatapy/fig/corr_setupEsymLsym_fig.py +25 -8
- nucleardatapy/fig/corr_setupKsatQsat_fig.py +23 -17
- nucleardatapy/fig/crust_setupCrust_fig.py +11 -9
- nucleardatapy/fig/eos_setupAMBeq_fig.py +641 -156
- nucleardatapy/fig/eos_setupAMLeq_fig.py +53 -50
- nucleardatapy/fig/eos_setupAM_asy_lep_fig.py +373 -0
- nucleardatapy/fig/eos_setupAM_asy_nuc_fig.py +346 -0
- nucleardatapy/fig/eos_setupAM_asy_tot_fig.py +352 -0
- nucleardatapy/fig/eos_setupAM_fig.py +519 -0
- nucleardatapy/fig/eos_setupCC_fig.py +270 -0
- nucleardatapy/fig/hnuc_setupChart_fig.py +19 -16
- nucleardatapy/fig/hnuc_setupRE1LExp_fig.py +15 -5
- nucleardatapy/fig/matter_all_fig.py +971 -0
- nucleardatapy/fig/matter_setupCheck_fig.py +106 -0
- nucleardatapy/fig/matter_setupFFGLep_fig.py +74 -0
- nucleardatapy/fig/matter_setupFFGNuc_fig.py +286 -115
- nucleardatapy/fig/matter_setupHIC_fig.py +107 -67
- nucleardatapy/fig/matter_setupMicroEsym_fig.py +259 -73
- nucleardatapy/fig/matter_setupMicro_LP_fig.py +185 -82
- nucleardatapy/fig/matter_setupMicro_band_fig.py +126 -53
- nucleardatapy/fig/matter_setupMicro_effmass_fig.py +253 -77
- nucleardatapy/fig/matter_setupMicro_err_NM_fig.py +45 -20
- nucleardatapy/fig/matter_setupMicro_fig.py +317 -77
- nucleardatapy/fig/matter_setupMicro_gap_fig.py +237 -100
- nucleardatapy/fig/matter_setupNEPStats_fig.py +106 -0
- nucleardatapy/fig/matter_setupPhenoEsym_fig.py +204 -65
- nucleardatapy/fig/matter_setupPheno_fig.py +395 -93
- nucleardatapy/fig/nuc_setupBEExp_chart_fig.py +93 -73
- nucleardatapy/fig/nuc_setupBEExp_fig.py +97 -87
- nucleardatapy/fig/nuc_setupBETheo_fig.py +114 -81
- nucleardatapy/fig/nuc_setupISGMRExp_fig.py +12 -15
- nucleardatapy/fig/nuc_setupRchExp_fig.py +14 -22
- nucleardatapy/fig/nuc_setupRchTheo_fig.py +37 -40
- nucleardatapy/fig/nuc_setupRnpExp_fig.py +86 -106
- nucleardatapy/fig/nuc_setupRnpTheo_fig.py +105 -94
- nucleardatapy/hello.py +6 -0
- nucleardatapy/hnuc/setup_re1L_exp.py +6 -6
- nucleardatapy/hnuc/setup_re1Xi_exp.py +5 -5
- nucleardatapy/hnuc/setup_re2L_exp.py +36 -13
- nucleardatapy/matter/__init__.py +14 -14
- nucleardatapy/matter/setup_check.py +6 -6
- nucleardatapy/matter/setup_ffg.py +66 -39
- nucleardatapy/matter/setup_hic.py +91 -74
- nucleardatapy/matter/setup_micro.py +2033 -1007
- nucleardatapy/matter/setup_micro_band.py +6 -6
- nucleardatapy/matter/setup_micro_esym.py +56 -54
- nucleardatapy/matter/setup_micro_gap.py +24 -17
- nucleardatapy/matter/setup_micro_lp.py +2 -2
- nucleardatapy/matter/setup_nep.py +175 -92
- nucleardatapy/matter/{setup_nep_model_dist.py → setup_nep_stat_model.py} +13 -8
- nucleardatapy/matter/{setup_nep_dist.py → setup_nep_stat_models.py} +12 -8
- nucleardatapy/matter/setup_pheno.py +129 -49
- nucleardatapy/matter/setup_pheno_esym.py +22 -19
- nucleardatapy/nuc/setup_be_exp.py +306 -292
- nucleardatapy/nuc/setup_be_theo.py +288 -105
- nucleardatapy/nuc/setup_isgmr_exp.py +4 -4
- nucleardatapy/nuc/setup_rnp_exp.py +1 -0
- nucleardatapy/nuc/setup_rnp_theo.py +2 -1
- {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/METADATA +48 -16
- {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/RECORD +157 -124
- {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/WHEEL +1 -1
- tests/test_corr_setupKsatQsat.py +3 -1
- tests/test_matter_setupMicro.py +37 -10
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG1-SM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-NM.dat +0 -1002
- nucleardatapy/data/matter/pheno/ESkyrme/BSkG2-SM.dat +0 -1002
- nucleardatapy/fig/eos_setupAM_e_asy_lep_fig.py +0 -125
- nucleardatapy/fig/eos_setupAM_e_asy_nuc_fig.py +0 -115
- nucleardatapy/fig/eos_setupAM_e_asy_tot_fig.py +0 -117
- nucleardatapy/fig/eos_setupAM_e_fig.py +0 -173
- nucleardatapy/fig/matter_ENM_fig.py +0 -128
- nucleardatapy/fig/matter_ESM_fig.py +0 -140
- nucleardatapy/fig/matter_Esym_fig.py +0 -134
- nucleardatapy/fig/matter_cs2_fig.py +0 -83
- nucleardatapy/fig/matter_preNM_fig.py +0 -146
- nucleardatapy/fig/matter_preSM_fig.py +0 -144
- nucleardatapy/fig/matter_setupNEPModelDist_fig.py +0 -68
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-NM-AV18.dat → 2006-EBHF-NM-AV18.dat} +0 -0
- /nucleardatapy/data/LandauParameters/micro/{2006-IBHF-SM-AV18.dat → 2006-EBHF-SM-AV18.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK14.dat → 2022-GMRS-BSK14.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-BSK16.dat → 2022-GMRS-BSK16.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL59.dat → 2022-GMRS-DHSL59.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-DHSL69.dat → 2022-GMRS-DHSL69.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-F0.dat → 2022-GMRS-F0.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H1.dat → 2022-GMRS-H1.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H2.dat → 2022-GMRS-H2.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H3.dat → 2022-GMRS-H3.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H4.dat → 2022-GMRS-H4.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H5.dat → 2022-GMRS-H5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-H7.dat → 2022-GMRS-H7.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-LNS5.dat → 2022-GMRS-LNS5.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-RATP.dat → 2022-GMRS-RATP.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SGII.dat → 2022-GMRS-SGII.dat} +0 -0
- /nucleardatapy/data/crust/{2022-crustGMRS-SLY5.dat → 2022-GMRS-SLY5.dat} +0 -0
- /nucleardatapy/data/matter/micro/{2013-QMC-NM.dat → 2013-MBPT-NM.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-208Pb.dat → rnp/ddrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/ddrhNskin-48Ca.dat → rnp/ddrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-208Pb.dat → rnp/nlrhrnp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/nlrhNskin-48Ca.dat → rnp/nlrhrnp-48Ca.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-208Pb.dat → rnp/skyrmernp-208Pb.dat} +0 -0
- /nucleardatapy/data/{NeutronSkin/skyrmeNskin-48Ca.dat → rnp/skyrmernp-48Ca.dat} +0 -0
- {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/licenses/LICENSE +0 -0
- {nucleardatapy-0.2.1.dist-info → nucleardatapy-1.0.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,346 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import matplotlib.pyplot as plt
|
|
3
|
+
|
|
4
|
+
import nucleardatapy as nuda
|
|
5
|
+
|
|
6
|
+
def eos_setupAM_e2a_asy_nuc_fig( pname, micro_mbs, pheno_models, asy, band ):
|
|
7
|
+
"""
|
|
8
|
+
Plot the nucleon contribution to the energy per nucleon in asymmetric matter controlled by the variable `asy` (defined as (N-Z)/A).
|
|
9
|
+
|
|
10
|
+
The plot is 1x2 with:
|
|
11
|
+
|
|
12
|
+
[0]: microscopic models. [1]: phenomenologic models.
|
|
13
|
+
|
|
14
|
+
:param pname: name of the figure (*.png)
|
|
15
|
+
:type pname: str.
|
|
16
|
+
:param micro_mbs: array with names of many-body framework for microscopic interactions.
|
|
17
|
+
:type micro_mbs: array of str.
|
|
18
|
+
:param pheno_models: array of interaction names for phenomenologic interactions.
|
|
19
|
+
:type pheno_models: array of str.
|
|
20
|
+
:param asy: asymmetry parameter defined as (N-Z)/A.
|
|
21
|
+
:type asy: real.
|
|
22
|
+
:param band: object instantiated on the reference band.
|
|
23
|
+
:type band: object.
|
|
24
|
+
"""
|
|
25
|
+
#
|
|
26
|
+
print(f'Plot name: {pname}')
|
|
27
|
+
#
|
|
28
|
+
fig, axs = plt.subplots(1,2)
|
|
29
|
+
#fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
30
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
|
|
31
|
+
#
|
|
32
|
+
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
33
|
+
axs[0].set_ylabel(r'$e_\text{nuc}^\text{int}$ (MeV)',fontsize='14')
|
|
34
|
+
axs[0].set_xlim([0, 0.33])
|
|
35
|
+
axs[0].set_ylim([-10, 35])
|
|
36
|
+
#
|
|
37
|
+
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
38
|
+
#axs[1].set_ylabel(r'$E/A$')
|
|
39
|
+
axs[1].set_xlim([0, 0.33])
|
|
40
|
+
axs[1].set_ylim([-10, 35])
|
|
41
|
+
axs[1].tick_params('y', labelleft=False)
|
|
42
|
+
#
|
|
43
|
+
mb_check = []
|
|
44
|
+
#
|
|
45
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
46
|
+
#
|
|
47
|
+
print('mb:',mb,kmb)
|
|
48
|
+
#
|
|
49
|
+
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
50
|
+
#
|
|
51
|
+
print('models:',models)
|
|
52
|
+
#
|
|
53
|
+
if mb == 'VAR':
|
|
54
|
+
models.remove('1998-VAR-AM-APR-fit')
|
|
55
|
+
models_lower.remove('1998-var-am-apr-fit')
|
|
56
|
+
#
|
|
57
|
+
for model in models:
|
|
58
|
+
#
|
|
59
|
+
micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
|
|
60
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
61
|
+
#
|
|
62
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
63
|
+
#
|
|
64
|
+
if check.isInside:
|
|
65
|
+
lstyle = 'solid'
|
|
66
|
+
else:
|
|
67
|
+
lstyle = 'dashed'
|
|
68
|
+
#continue
|
|
69
|
+
#
|
|
70
|
+
if micro.e2a_int_nuc is not None:
|
|
71
|
+
if mb in mb_check:
|
|
72
|
+
axs[0].plot( micro.den, micro.e2a_int_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
73
|
+
else:
|
|
74
|
+
mb_check.append(mb)
|
|
75
|
+
axs[0].plot( micro.den, micro.e2a_int_nuc, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
76
|
+
# end of model
|
|
77
|
+
# end of mb
|
|
78
|
+
axs[0].text(0.02,-8,'microscopic models',fontsize='10')
|
|
79
|
+
axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
80
|
+
#
|
|
81
|
+
model_check = []
|
|
82
|
+
#
|
|
83
|
+
for kmodel,model in enumerate(pheno_models):
|
|
84
|
+
#
|
|
85
|
+
params, params_lower = nuda.matter.pheno_esym_params( model = model )
|
|
86
|
+
#
|
|
87
|
+
for param in params:
|
|
88
|
+
#
|
|
89
|
+
pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
|
|
90
|
+
if nuda.env.verb_output: pheno.print_outputs( )
|
|
91
|
+
#
|
|
92
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
93
|
+
#
|
|
94
|
+
if check.isInside:
|
|
95
|
+
lstyle = 'solid'
|
|
96
|
+
else:
|
|
97
|
+
lstyle = 'dashed'
|
|
98
|
+
#continue
|
|
99
|
+
#
|
|
100
|
+
if pheno.e2a_int_nuc is not None:
|
|
101
|
+
print('model:',model,' param:',param)
|
|
102
|
+
if model in model_check:
|
|
103
|
+
axs[1].plot( pheno.den, pheno.e2a_int_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
104
|
+
else:
|
|
105
|
+
model_check.append(model)
|
|
106
|
+
axs[1].plot( pheno.den, pheno.e2a_int_nuc, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
107
|
+
# end of param
|
|
108
|
+
# end of model
|
|
109
|
+
#
|
|
110
|
+
axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
|
|
111
|
+
axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
112
|
+
#
|
|
113
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
114
|
+
#
|
|
115
|
+
if pname is not None:
|
|
116
|
+
plt.savefig(pname, dpi=200)
|
|
117
|
+
plt.close()
|
|
118
|
+
#
|
|
119
|
+
|
|
120
|
+
def eos_setupAM_pre_asy_nuc_fig( pname, micro_mbs, pheno_models, asy, band ):
|
|
121
|
+
"""
|
|
122
|
+
Plot the nucleon contribution to the pressure in asymmetric matter controlled by the variable `asy` (defined as (N-Z)/A).
|
|
123
|
+
|
|
124
|
+
The plot is 1x2 with:
|
|
125
|
+
|
|
126
|
+
[0]: microscopic models. [1]: phenomenologic models.
|
|
127
|
+
|
|
128
|
+
:param pname: name of the figure (*.png)
|
|
129
|
+
:type pname: str.
|
|
130
|
+
:param micro_mbs: array with names of many-body framework for microscopic interactions.
|
|
131
|
+
:type micro_mbs: array of str.
|
|
132
|
+
:param pheno_models: array of interaction names for phenomenologic interactions.
|
|
133
|
+
:type pheno_models: array of str.
|
|
134
|
+
:param asy: asymmetry parameter defined as (N-Z)/A.
|
|
135
|
+
:type asy: real.
|
|
136
|
+
:param band: object instantiated on the reference band.
|
|
137
|
+
:type band: object.
|
|
138
|
+
"""
|
|
139
|
+
#
|
|
140
|
+
print(f'Plot name: {pname}')
|
|
141
|
+
#
|
|
142
|
+
fig, axs = plt.subplots(1,2)
|
|
143
|
+
#fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
144
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
|
|
145
|
+
#
|
|
146
|
+
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
147
|
+
axs[0].set_ylabel(r'$p_\text{nuc}$ (MeV fm$^{-3}$)',fontsize='14')
|
|
148
|
+
axs[0].set_xlim([0, 0.33])
|
|
149
|
+
axs[0].set_ylim([-10, 35])
|
|
150
|
+
#
|
|
151
|
+
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
152
|
+
#axs[1].set_ylabel(r'$E/A$')
|
|
153
|
+
axs[1].set_xlim([0, 0.33])
|
|
154
|
+
axs[1].set_ylim([-10, 35])
|
|
155
|
+
axs[1].tick_params('y', labelleft=False)
|
|
156
|
+
#
|
|
157
|
+
mb_check = []
|
|
158
|
+
#
|
|
159
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
160
|
+
#
|
|
161
|
+
print('mb:',mb,kmb)
|
|
162
|
+
#
|
|
163
|
+
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
164
|
+
#
|
|
165
|
+
print('models:',models)
|
|
166
|
+
#
|
|
167
|
+
if mb == 'VAR':
|
|
168
|
+
models.remove('1998-VAR-AM-APR-fit')
|
|
169
|
+
models_lower.remove('1998-var-am-apr-fit')
|
|
170
|
+
#
|
|
171
|
+
for model in models:
|
|
172
|
+
#
|
|
173
|
+
micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
|
|
174
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
175
|
+
#
|
|
176
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
177
|
+
#
|
|
178
|
+
if check.isInside:
|
|
179
|
+
lstyle = 'solid'
|
|
180
|
+
else:
|
|
181
|
+
lstyle = 'dashed'
|
|
182
|
+
#continue
|
|
183
|
+
#
|
|
184
|
+
if micro.pre_nuc is not None:
|
|
185
|
+
if mb in mb_check:
|
|
186
|
+
axs[0].plot( micro.den, micro.pre_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
187
|
+
else:
|
|
188
|
+
mb_check.append(mb)
|
|
189
|
+
axs[0].plot( micro.den, micro.pre_nuc, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
190
|
+
# end of model
|
|
191
|
+
# end of mb
|
|
192
|
+
axs[0].text(0.02,-8,'microscopic models',fontsize='10')
|
|
193
|
+
axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
194
|
+
#
|
|
195
|
+
model_check = []
|
|
196
|
+
#
|
|
197
|
+
for kmodel,model in enumerate(pheno_models):
|
|
198
|
+
#
|
|
199
|
+
params, params_lower = nuda.matter.pheno_esym_params( model = model )
|
|
200
|
+
#
|
|
201
|
+
for param in params:
|
|
202
|
+
#
|
|
203
|
+
pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
|
|
204
|
+
if nuda.env.verb_output: pheno.print_outputs( )
|
|
205
|
+
#
|
|
206
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
207
|
+
#
|
|
208
|
+
if check.isInside:
|
|
209
|
+
lstyle = 'solid'
|
|
210
|
+
else:
|
|
211
|
+
lstyle = 'dashed'
|
|
212
|
+
#continue
|
|
213
|
+
#
|
|
214
|
+
if pheno.pre_nuc is not None:
|
|
215
|
+
print('model:',model,' param:',param)
|
|
216
|
+
if model in model_check:
|
|
217
|
+
axs[1].plot( pheno.den, pheno.pre_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
218
|
+
else:
|
|
219
|
+
model_check.append(model)
|
|
220
|
+
axs[1].plot( pheno.den, pheno.pre_nuc, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
221
|
+
# end of param
|
|
222
|
+
# end of model
|
|
223
|
+
#
|
|
224
|
+
axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
|
|
225
|
+
axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
226
|
+
#
|
|
227
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
228
|
+
#
|
|
229
|
+
if pname is not None:
|
|
230
|
+
plt.savefig(pname, dpi=200)
|
|
231
|
+
plt.close()
|
|
232
|
+
#
|
|
233
|
+
|
|
234
|
+
def eos_setupAM_cs2_asy_nuc_fig( pname, micro_mbs, pheno_models, asy, band ):
|
|
235
|
+
"""
|
|
236
|
+
Plot the nucleon contribution to the square of the sound speed in asymmetric matter controlled by the variable `asy` (defined as (N-Z)/A).
|
|
237
|
+
|
|
238
|
+
The plot is 1x2 with:
|
|
239
|
+
|
|
240
|
+
[0]: microscopic models. [1]: phenomenologic models.
|
|
241
|
+
|
|
242
|
+
:param pname: name of the figure (*.png)
|
|
243
|
+
:type pname: str.
|
|
244
|
+
:param micro_mbs: array with names of many-body framework for microscopic interactions.
|
|
245
|
+
:type micro_mbs: array of str.
|
|
246
|
+
:param pheno_models: array of interaction names for phenomenologic interactions.
|
|
247
|
+
:type pheno_models: array of str.
|
|
248
|
+
:param asy: asymmetry parameter defined as (N-Z)/A.
|
|
249
|
+
:type asy: real.
|
|
250
|
+
:param band: object instantiated on the reference band.
|
|
251
|
+
:type band: object.
|
|
252
|
+
"""
|
|
253
|
+
#
|
|
254
|
+
print(f'Plot name: {pname}')
|
|
255
|
+
#
|
|
256
|
+
fig, axs = plt.subplots(1,2)
|
|
257
|
+
#fig.tight_layout() # Or equivalently, "plt.tight_layout()"
|
|
258
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
|
|
259
|
+
#
|
|
260
|
+
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
261
|
+
axs[0].set_ylabel(r'$c_\text{s,nuc}^2/c^2$',fontsize='14')
|
|
262
|
+
axs[0].set_xlim([0, 0.33])
|
|
263
|
+
axs[0].set_ylim([-0.05, 0.25])
|
|
264
|
+
#
|
|
265
|
+
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
266
|
+
#axs[1].set_ylabel(r'$E/A$')
|
|
267
|
+
axs[1].set_xlim([0, 0.33])
|
|
268
|
+
axs[1].set_ylim([-0.05, 0.25])
|
|
269
|
+
axs[1].tick_params('y', labelleft=False)
|
|
270
|
+
#
|
|
271
|
+
mb_check = []
|
|
272
|
+
#
|
|
273
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
274
|
+
#
|
|
275
|
+
print('mb:',mb,kmb)
|
|
276
|
+
#
|
|
277
|
+
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
278
|
+
#
|
|
279
|
+
print('models:',models)
|
|
280
|
+
#
|
|
281
|
+
if mb == 'VAR':
|
|
282
|
+
models.remove('1998-VAR-AM-APR-fit')
|
|
283
|
+
models_lower.remove('1998-var-am-apr-fit')
|
|
284
|
+
#
|
|
285
|
+
for model in models:
|
|
286
|
+
#
|
|
287
|
+
micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
|
|
288
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
289
|
+
#
|
|
290
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
291
|
+
#
|
|
292
|
+
if check.isInside:
|
|
293
|
+
lstyle = 'solid'
|
|
294
|
+
else:
|
|
295
|
+
lstyle = 'dashed'
|
|
296
|
+
#continue
|
|
297
|
+
#
|
|
298
|
+
if micro.cs2_nuc is not None:
|
|
299
|
+
if mb in mb_check:
|
|
300
|
+
axs[0].plot( micro.den, micro.cs2_nuc, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
301
|
+
else:
|
|
302
|
+
mb_check.append(mb)
|
|
303
|
+
axs[0].plot( micro.den, micro.cs2_nuc, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
304
|
+
# end of model
|
|
305
|
+
# end of mb
|
|
306
|
+
axs[0].text(0.02,-8,'microscopic models',fontsize='10')
|
|
307
|
+
axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
308
|
+
#
|
|
309
|
+
model_check = []
|
|
310
|
+
#
|
|
311
|
+
for kmodel,model in enumerate(pheno_models):
|
|
312
|
+
#
|
|
313
|
+
params, params_lower = nuda.matter.pheno_esym_params( model = model )
|
|
314
|
+
#
|
|
315
|
+
for param in params:
|
|
316
|
+
#
|
|
317
|
+
pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
|
|
318
|
+
if nuda.env.verb_output: pheno.print_outputs( )
|
|
319
|
+
#
|
|
320
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
321
|
+
#
|
|
322
|
+
if check.isInside:
|
|
323
|
+
lstyle = 'solid'
|
|
324
|
+
else:
|
|
325
|
+
lstyle = 'dashed'
|
|
326
|
+
#continue
|
|
327
|
+
#
|
|
328
|
+
if pheno.cs2_nuc is not None:
|
|
329
|
+
print('model:',model,' param:',param)
|
|
330
|
+
if model in model_check:
|
|
331
|
+
axs[1].plot( pheno.den, pheno.cs2_nuc, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
332
|
+
else:
|
|
333
|
+
model_check.append(model)
|
|
334
|
+
axs[1].plot( pheno.den, pheno.cs2_nuc, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
335
|
+
# end of param
|
|
336
|
+
# end of model
|
|
337
|
+
#
|
|
338
|
+
axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
|
|
339
|
+
axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
340
|
+
#
|
|
341
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
342
|
+
#
|
|
343
|
+
if pname is not None:
|
|
344
|
+
plt.savefig(pname, dpi=200)
|
|
345
|
+
plt.close()
|
|
346
|
+
#
|
|
@@ -0,0 +1,352 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import matplotlib.pyplot as plt
|
|
3
|
+
|
|
4
|
+
import nucleardatapy as nuda
|
|
5
|
+
|
|
6
|
+
def eos_setupAM_e2a_asy_tot_fig( pname, micro_mbs, pheno_models, asy, band ):
|
|
7
|
+
"""
|
|
8
|
+
Plot the total (nucleon+leptonic) contribution to the energy per nucleon in asymmetric matter controlled by the variable `asy` (defined as (N-Z)/A).
|
|
9
|
+
|
|
10
|
+
The plot is 1x2 with:
|
|
11
|
+
|
|
12
|
+
[0]: microscopic models. [1]: phenomenologic models.
|
|
13
|
+
|
|
14
|
+
:param pname: name of the figure (*.png)
|
|
15
|
+
:type pname: str.
|
|
16
|
+
:param micro_mbs: array with names of many-body framework for microscopic interactions.
|
|
17
|
+
:type micro_mbs: array of str.
|
|
18
|
+
:param pheno_models: array of interaction names for phenomenologic interactions.
|
|
19
|
+
:type pheno_models: array of str.
|
|
20
|
+
:param asy: asymmetry parameter defined as (N-Z)/A.
|
|
21
|
+
:type asy: real.
|
|
22
|
+
:param band: object instantiated on the reference band.
|
|
23
|
+
:type band: object.
|
|
24
|
+
"""
|
|
25
|
+
#
|
|
26
|
+
print(f'Plot name: {pname}')
|
|
27
|
+
#
|
|
28
|
+
fig, axs = plt.subplots(1,2)
|
|
29
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
|
|
30
|
+
#
|
|
31
|
+
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
32
|
+
axs[0].set_ylabel(r'$e_\text{tot}^\text{int}$ (MeV)',fontsize='14')
|
|
33
|
+
axs[0].set_xlim([0, 0.33])
|
|
34
|
+
axs[0].set_ylim([-10, 35])
|
|
35
|
+
#
|
|
36
|
+
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
37
|
+
#axs[1].set_ylabel(r'$E/A$')
|
|
38
|
+
axs[1].set_xlim([0, 0.33])
|
|
39
|
+
axs[1].set_ylim([-10, 35])
|
|
40
|
+
axs[1].tick_params('y', labelleft=False)
|
|
41
|
+
#
|
|
42
|
+
mb_check = []
|
|
43
|
+
#
|
|
44
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
45
|
+
#
|
|
46
|
+
print('mb:',mb,kmb)
|
|
47
|
+
#
|
|
48
|
+
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
49
|
+
#
|
|
50
|
+
print('models:',models)
|
|
51
|
+
#
|
|
52
|
+
if mb == 'VAR':
|
|
53
|
+
models.remove('1998-VAR-AM-APR-fit')
|
|
54
|
+
models_lower.remove('1998-var-am-apr-fit')
|
|
55
|
+
#
|
|
56
|
+
for model in models:
|
|
57
|
+
#
|
|
58
|
+
micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
|
|
59
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
60
|
+
#
|
|
61
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
62
|
+
#
|
|
63
|
+
if check.isInside:
|
|
64
|
+
lstyle = 'solid'
|
|
65
|
+
else:
|
|
66
|
+
lstyle = 'dashed'
|
|
67
|
+
#continue
|
|
68
|
+
#
|
|
69
|
+
if micro.e2a_int_tot is not None:
|
|
70
|
+
print('model:',model)
|
|
71
|
+
if mb in mb_check:
|
|
72
|
+
axs[0].plot( micro.den, micro.e2a_int_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
73
|
+
else:
|
|
74
|
+
mb_check.append(mb)
|
|
75
|
+
axs[0].plot( micro.den, micro.e2a_int_tot, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
76
|
+
# end of model
|
|
77
|
+
# end of mb
|
|
78
|
+
#
|
|
79
|
+
axs[0].text(0.02,-8,'microscopic models',fontsize='10')
|
|
80
|
+
axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
81
|
+
#
|
|
82
|
+
model_check = []
|
|
83
|
+
#
|
|
84
|
+
for kmodel,model in enumerate(pheno_models):
|
|
85
|
+
#
|
|
86
|
+
params, params_lower = nuda.matter.pheno_esym_params( model = model )
|
|
87
|
+
#
|
|
88
|
+
for param in params:
|
|
89
|
+
#
|
|
90
|
+
pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
|
|
91
|
+
if nuda.env.verb_output: pheno.print_outputs( )
|
|
92
|
+
#
|
|
93
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
94
|
+
#
|
|
95
|
+
if check.isInside:
|
|
96
|
+
lstyle = 'solid'
|
|
97
|
+
else:
|
|
98
|
+
lstyle = 'dashed'
|
|
99
|
+
#continue
|
|
100
|
+
#
|
|
101
|
+
if pheno.e2a_int_tot is not None:
|
|
102
|
+
print('model:',model,' param:',param)
|
|
103
|
+
#beta.label=None
|
|
104
|
+
if model in model_check:
|
|
105
|
+
axs[1].plot( pheno.den, pheno.e2a_int_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
106
|
+
else:
|
|
107
|
+
model_check.append(model)
|
|
108
|
+
axs[1].plot( pheno.den, pheno.e2a_int_tot, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
109
|
+
# end of param
|
|
110
|
+
# end of model
|
|
111
|
+
#
|
|
112
|
+
axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
|
|
113
|
+
axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
114
|
+
#
|
|
115
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
116
|
+
#
|
|
117
|
+
if pname is not None:
|
|
118
|
+
plt.savefig(pname, dpi=200)
|
|
119
|
+
plt.close()
|
|
120
|
+
#
|
|
121
|
+
|
|
122
|
+
def eos_setupAM_pre_asy_tot_fig( pname, micro_mbs, pheno_models, asy, band ):
|
|
123
|
+
"""
|
|
124
|
+
Plot the total (nucleon+leptonic) contribution to the pressure in asymmetric matter controlled by the variable `asy` (defined as (N-Z)/A).
|
|
125
|
+
|
|
126
|
+
The plot is 1x2 with:
|
|
127
|
+
|
|
128
|
+
[0]: microscopic models. [1]: phenomenologic models.
|
|
129
|
+
|
|
130
|
+
:param pname: name of the figure (*.png)
|
|
131
|
+
:type pname: str.
|
|
132
|
+
:param micro_mbs: array with names of many-body framework for microscopic interactions.
|
|
133
|
+
:type micro_mbs: array of str.
|
|
134
|
+
:param pheno_models: array of interaction names for phenomenologic interactions.
|
|
135
|
+
:type pheno_models: array of str.
|
|
136
|
+
:param asy: asymmetry parameter defined as (N-Z)/A.
|
|
137
|
+
:type asy: real.
|
|
138
|
+
:param band: object instantiated on the reference band.
|
|
139
|
+
:type band: object.
|
|
140
|
+
"""
|
|
141
|
+
#
|
|
142
|
+
print(f'Plot name: {pname}')
|
|
143
|
+
#
|
|
144
|
+
fig, axs = plt.subplots(1,2)
|
|
145
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
|
|
146
|
+
#
|
|
147
|
+
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
148
|
+
axs[0].set_ylabel(r'$p_\text{tot}$ (MeV fm$^{-3}$)',fontsize='14')
|
|
149
|
+
axs[0].set_xlim([0, 0.33])
|
|
150
|
+
axs[0].set_ylim([-10, 35])
|
|
151
|
+
#
|
|
152
|
+
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
153
|
+
#axs[1].set_ylabel(r'$E/A$')
|
|
154
|
+
axs[1].set_xlim([0, 0.33])
|
|
155
|
+
axs[1].set_ylim([-10, 35])
|
|
156
|
+
axs[1].tick_params('y', labelleft=False)
|
|
157
|
+
#
|
|
158
|
+
mb_check = []
|
|
159
|
+
#
|
|
160
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
161
|
+
#
|
|
162
|
+
print('mb:',mb,kmb)
|
|
163
|
+
#
|
|
164
|
+
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
165
|
+
#
|
|
166
|
+
print('models:',models)
|
|
167
|
+
#
|
|
168
|
+
if mb == 'VAR':
|
|
169
|
+
models.remove('1998-VAR-AM-APR-fit')
|
|
170
|
+
models_lower.remove('1998-var-am-apr-fit')
|
|
171
|
+
#
|
|
172
|
+
for model in models:
|
|
173
|
+
#
|
|
174
|
+
micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
|
|
175
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
176
|
+
#
|
|
177
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
178
|
+
#
|
|
179
|
+
if check.isInside:
|
|
180
|
+
lstyle = 'solid'
|
|
181
|
+
else:
|
|
182
|
+
lstyle = 'dashed'
|
|
183
|
+
#continue
|
|
184
|
+
#
|
|
185
|
+
if micro.pre_tot is not None:
|
|
186
|
+
print('model:',model)
|
|
187
|
+
if mb in mb_check:
|
|
188
|
+
axs[0].plot( micro.den, micro.pre_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
189
|
+
else:
|
|
190
|
+
mb_check.append(mb)
|
|
191
|
+
axs[0].plot( micro.den, micro.pre_tot, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
192
|
+
# end of model
|
|
193
|
+
# end of mb
|
|
194
|
+
#
|
|
195
|
+
axs[0].text(0.02,-8,'microscopic models',fontsize='10')
|
|
196
|
+
axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
197
|
+
#
|
|
198
|
+
model_check = []
|
|
199
|
+
#
|
|
200
|
+
for kmodel,model in enumerate(pheno_models):
|
|
201
|
+
#
|
|
202
|
+
params, params_lower = nuda.matter.pheno_esym_params( model = model )
|
|
203
|
+
#
|
|
204
|
+
for param in params:
|
|
205
|
+
#
|
|
206
|
+
pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
|
|
207
|
+
if nuda.env.verb_output: pheno.print_outputs( )
|
|
208
|
+
#
|
|
209
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
210
|
+
#
|
|
211
|
+
if check.isInside:
|
|
212
|
+
lstyle = 'solid'
|
|
213
|
+
else:
|
|
214
|
+
lstyle = 'dashed'
|
|
215
|
+
#continue
|
|
216
|
+
#
|
|
217
|
+
if pheno.pre_tot is not None:
|
|
218
|
+
print('model:',model,' param:',param)
|
|
219
|
+
#beta.label=None
|
|
220
|
+
if model in model_check:
|
|
221
|
+
axs[1].plot( pheno.den, pheno.pre_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
222
|
+
else:
|
|
223
|
+
model_check.append(model)
|
|
224
|
+
axs[1].plot( pheno.den, pheno.pre_tot, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
225
|
+
# end of param
|
|
226
|
+
# end of model
|
|
227
|
+
#
|
|
228
|
+
axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
|
|
229
|
+
axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
230
|
+
#
|
|
231
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
232
|
+
#
|
|
233
|
+
if pname is not None:
|
|
234
|
+
plt.savefig(pname, dpi=200)
|
|
235
|
+
plt.close()
|
|
236
|
+
#
|
|
237
|
+
|
|
238
|
+
def eos_setupAM_cs2_asy_tot_fig( pname, micro_mbs, pheno_models, asy, band ):
|
|
239
|
+
"""
|
|
240
|
+
Plot the total (nucleon+leptonic) contribution to the square of the sound speed in asymmetric matter controlled by the variable `asy` (defined as (N-Z)/A).
|
|
241
|
+
|
|
242
|
+
The plot is 1x2 with:
|
|
243
|
+
|
|
244
|
+
[0]: microscopic models. [1]: phenomenologic models.
|
|
245
|
+
|
|
246
|
+
:param pname: name of the figure (*.png)
|
|
247
|
+
:type pname: str.
|
|
248
|
+
:param micro_mbs: array with names of many-body framework for microscopic interactions.
|
|
249
|
+
:type micro_mbs: array of str.
|
|
250
|
+
:param pheno_models: array of interaction names for phenomenologic interactions.
|
|
251
|
+
:type pheno_models: array of str.
|
|
252
|
+
:param asy: asymmetry parameter defined as (N-Z)/A.
|
|
253
|
+
:type asy: real.
|
|
254
|
+
:param band: object instantiated on the reference band.
|
|
255
|
+
:type band: object.
|
|
256
|
+
"""
|
|
257
|
+
#
|
|
258
|
+
print(f'Plot name: {pname}')
|
|
259
|
+
#
|
|
260
|
+
fig, axs = plt.subplots(1,2)
|
|
261
|
+
fig.subplots_adjust(left=0.10, bottom=0.12, right=0.95, top=0.90, wspace=0.05, hspace=0.3 )
|
|
262
|
+
#
|
|
263
|
+
axs[0].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
264
|
+
axs[0].set_ylabel(r'$c_\text{s,tot}^2/c^2$',fontsize='14')
|
|
265
|
+
axs[0].set_xlim([0, 0.33])
|
|
266
|
+
axs[0].set_ylim([-0.05, 0.25])
|
|
267
|
+
#
|
|
268
|
+
axs[1].set_xlabel(r'$n_\text{nuc}$ (fm$^{-3}$)',fontsize='14')
|
|
269
|
+
#axs[1].set_ylabel(r'$E/A$')
|
|
270
|
+
axs[1].set_xlim([0, 0.33])
|
|
271
|
+
axs[1].set_ylim([-0.05, 0.25])
|
|
272
|
+
axs[1].tick_params('y', labelleft=False)
|
|
273
|
+
#
|
|
274
|
+
mb_check = []
|
|
275
|
+
#
|
|
276
|
+
for kmb,mb in enumerate(micro_mbs):
|
|
277
|
+
#
|
|
278
|
+
print('mb:',mb,kmb)
|
|
279
|
+
#
|
|
280
|
+
models, models_lower = nuda.matter.micro_esym_models_mb( mb )
|
|
281
|
+
#
|
|
282
|
+
print('models:',models)
|
|
283
|
+
#
|
|
284
|
+
if mb == 'VAR':
|
|
285
|
+
models.remove('1998-VAR-AM-APR-fit')
|
|
286
|
+
models_lower.remove('1998-var-am-apr-fit')
|
|
287
|
+
#
|
|
288
|
+
for model in models:
|
|
289
|
+
#
|
|
290
|
+
micro = nuda.eos.setupAM( model = model, kind = 'micro', asy = asy )
|
|
291
|
+
if nuda.env.verb_output: micro.print_outputs( )
|
|
292
|
+
#
|
|
293
|
+
check = nuda.matter.setupCheck( eos = micro, band = band )
|
|
294
|
+
#
|
|
295
|
+
if check.isInside:
|
|
296
|
+
lstyle = 'solid'
|
|
297
|
+
else:
|
|
298
|
+
lstyle = 'dashed'
|
|
299
|
+
#continue
|
|
300
|
+
#
|
|
301
|
+
if micro.cs2_tot is not None:
|
|
302
|
+
print('model:',model)
|
|
303
|
+
if mb in mb_check:
|
|
304
|
+
axs[0].plot( micro.den, micro.cs2_tot, marker='o', linestyle=lstyle, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
305
|
+
else:
|
|
306
|
+
mb_check.append(mb)
|
|
307
|
+
axs[0].plot( micro.den, micro.cs2_tot, marker='o', linestyle=lstyle, label=mb, markevery=micro.every, color=nuda.param.col[kmb] )
|
|
308
|
+
# end of model
|
|
309
|
+
# end of mb
|
|
310
|
+
#
|
|
311
|
+
axs[0].text(0.02,-8,'microscopic models',fontsize='10')
|
|
312
|
+
axs[0].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
313
|
+
#
|
|
314
|
+
model_check = []
|
|
315
|
+
#
|
|
316
|
+
for kmodel,model in enumerate(pheno_models):
|
|
317
|
+
#
|
|
318
|
+
params, params_lower = nuda.matter.pheno_esym_params( model = model )
|
|
319
|
+
#
|
|
320
|
+
for param in params:
|
|
321
|
+
#
|
|
322
|
+
pheno = nuda.eos.setupAM( model = model, param = param, kind = 'pheno', asy = asy )
|
|
323
|
+
if nuda.env.verb_output: pheno.print_outputs( )
|
|
324
|
+
#
|
|
325
|
+
check = nuda.matter.setupCheck( eos = pheno, band = band )
|
|
326
|
+
#
|
|
327
|
+
if check.isInside:
|
|
328
|
+
lstyle = 'solid'
|
|
329
|
+
else:
|
|
330
|
+
lstyle = 'dashed'
|
|
331
|
+
#continue
|
|
332
|
+
#
|
|
333
|
+
if pheno.cs2_tot is not None:
|
|
334
|
+
print('model:',model,' param:',param)
|
|
335
|
+
#beta.label=None
|
|
336
|
+
if model in model_check:
|
|
337
|
+
axs[1].plot( pheno.den, pheno.cs2_tot, linestyle=lstyle, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
338
|
+
else:
|
|
339
|
+
model_check.append(model)
|
|
340
|
+
axs[1].plot( pheno.den, pheno.cs2_tot, linestyle=lstyle, label=model, markevery=pheno.every, color=nuda.param.col[kmodel] )
|
|
341
|
+
# end of param
|
|
342
|
+
# end of model
|
|
343
|
+
#
|
|
344
|
+
axs[1].text(0.02,-8,'phenomenological models',fontsize='10')
|
|
345
|
+
axs[1].text(0.02,-9.5,r'for $\delta=$'+str(asy),fontsize='10')
|
|
346
|
+
#
|
|
347
|
+
fig.legend(loc='upper left',bbox_to_anchor=(0.15,1.0),columnspacing=2,fontsize='8',ncol=5,frameon=False)
|
|
348
|
+
#
|
|
349
|
+
if pname is not None:
|
|
350
|
+
plt.savefig(pname, dpi=200)
|
|
351
|
+
plt.close()
|
|
352
|
+
#
|