nrl-tracker 0.21.4__py3-none-any.whl → 1.7.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (95) hide show
  1. {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/METADATA +57 -10
  2. nrl_tracker-1.7.5.dist-info/RECORD +165 -0
  3. pytcl/__init__.py +4 -3
  4. pytcl/assignment_algorithms/__init__.py +28 -0
  5. pytcl/assignment_algorithms/data_association.py +2 -7
  6. pytcl/assignment_algorithms/gating.py +10 -10
  7. pytcl/assignment_algorithms/jpda.py +40 -40
  8. pytcl/assignment_algorithms/nd_assignment.py +379 -0
  9. pytcl/assignment_algorithms/network_flow.py +371 -0
  10. pytcl/assignment_algorithms/three_dimensional/assignment.py +3 -3
  11. pytcl/astronomical/__init__.py +162 -8
  12. pytcl/astronomical/ephemerides.py +533 -0
  13. pytcl/astronomical/reference_frames.py +865 -56
  14. pytcl/astronomical/relativity.py +473 -0
  15. pytcl/astronomical/sgp4.py +710 -0
  16. pytcl/astronomical/special_orbits.py +532 -0
  17. pytcl/astronomical/tle.py +558 -0
  18. pytcl/atmosphere/__init__.py +45 -3
  19. pytcl/atmosphere/ionosphere.py +512 -0
  20. pytcl/atmosphere/nrlmsise00.py +809 -0
  21. pytcl/clustering/dbscan.py +2 -2
  22. pytcl/clustering/gaussian_mixture.py +3 -3
  23. pytcl/clustering/hierarchical.py +15 -15
  24. pytcl/clustering/kmeans.py +4 -4
  25. pytcl/containers/__init__.py +28 -21
  26. pytcl/containers/base.py +219 -0
  27. pytcl/containers/cluster_set.py +2 -1
  28. pytcl/containers/covertree.py +26 -29
  29. pytcl/containers/kd_tree.py +94 -29
  30. pytcl/containers/measurement_set.py +1 -9
  31. pytcl/containers/rtree.py +200 -1
  32. pytcl/containers/vptree.py +21 -28
  33. pytcl/coordinate_systems/conversions/geodetic.py +272 -5
  34. pytcl/coordinate_systems/jacobians/jacobians.py +2 -2
  35. pytcl/coordinate_systems/projections/__init__.py +4 -2
  36. pytcl/coordinate_systems/projections/projections.py +2 -2
  37. pytcl/coordinate_systems/rotations/rotations.py +10 -6
  38. pytcl/core/__init__.py +18 -0
  39. pytcl/core/validation.py +333 -2
  40. pytcl/dynamic_estimation/__init__.py +26 -0
  41. pytcl/dynamic_estimation/gaussian_sum_filter.py +434 -0
  42. pytcl/dynamic_estimation/imm.py +15 -18
  43. pytcl/dynamic_estimation/kalman/__init__.py +30 -0
  44. pytcl/dynamic_estimation/kalman/constrained.py +382 -0
  45. pytcl/dynamic_estimation/kalman/extended.py +9 -12
  46. pytcl/dynamic_estimation/kalman/h_infinity.py +613 -0
  47. pytcl/dynamic_estimation/kalman/square_root.py +60 -573
  48. pytcl/dynamic_estimation/kalman/sr_ukf.py +302 -0
  49. pytcl/dynamic_estimation/kalman/ud_filter.py +410 -0
  50. pytcl/dynamic_estimation/kalman/unscented.py +9 -10
  51. pytcl/dynamic_estimation/particle_filters/bootstrap.py +15 -15
  52. pytcl/dynamic_estimation/rbpf.py +589 -0
  53. pytcl/dynamic_estimation/smoothers.py +1 -5
  54. pytcl/dynamic_models/discrete_time/__init__.py +1 -5
  55. pytcl/dynamic_models/process_noise/__init__.py +1 -5
  56. pytcl/gravity/egm.py +13 -0
  57. pytcl/gravity/spherical_harmonics.py +98 -37
  58. pytcl/gravity/tides.py +6 -6
  59. pytcl/logging_config.py +328 -0
  60. pytcl/magnetism/__init__.py +10 -14
  61. pytcl/magnetism/emm.py +10 -3
  62. pytcl/magnetism/wmm.py +260 -23
  63. pytcl/mathematical_functions/combinatorics/combinatorics.py +5 -5
  64. pytcl/mathematical_functions/geometry/geometry.py +5 -5
  65. pytcl/mathematical_functions/interpolation/__init__.py +2 -2
  66. pytcl/mathematical_functions/numerical_integration/quadrature.py +6 -6
  67. pytcl/mathematical_functions/signal_processing/detection.py +24 -24
  68. pytcl/mathematical_functions/signal_processing/filters.py +14 -14
  69. pytcl/mathematical_functions/signal_processing/matched_filter.py +12 -12
  70. pytcl/mathematical_functions/special_functions/__init__.py +2 -2
  71. pytcl/mathematical_functions/special_functions/bessel.py +15 -3
  72. pytcl/mathematical_functions/special_functions/debye.py +136 -26
  73. pytcl/mathematical_functions/special_functions/error_functions.py +3 -1
  74. pytcl/mathematical_functions/special_functions/gamma_functions.py +4 -4
  75. pytcl/mathematical_functions/special_functions/hypergeometric.py +81 -15
  76. pytcl/mathematical_functions/transforms/fourier.py +8 -8
  77. pytcl/mathematical_functions/transforms/stft.py +12 -12
  78. pytcl/mathematical_functions/transforms/wavelets.py +9 -9
  79. pytcl/navigation/__init__.py +14 -10
  80. pytcl/navigation/geodesy.py +246 -160
  81. pytcl/navigation/great_circle.py +101 -19
  82. pytcl/navigation/ins.py +1 -5
  83. pytcl/plotting/coordinates.py +7 -7
  84. pytcl/plotting/tracks.py +2 -2
  85. pytcl/static_estimation/maximum_likelihood.py +16 -14
  86. pytcl/static_estimation/robust.py +5 -5
  87. pytcl/terrain/loaders.py +5 -5
  88. pytcl/trackers/__init__.py +3 -14
  89. pytcl/trackers/hypothesis.py +1 -1
  90. pytcl/trackers/mht.py +9 -9
  91. pytcl/trackers/multi_target.py +2 -5
  92. nrl_tracker-0.21.4.dist-info/RECORD +0 -148
  93. {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/LICENSE +0 -0
  94. {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/WHEEL +0 -0
  95. {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,371 @@
1
+ """
2
+ Network flow solutions for assignment problems.
3
+
4
+ This module provides min-cost flow formulations for assignment problems,
5
+ offering an alternative to Hungarian algorithm and relaxation methods.
6
+
7
+ A min-cost flow approach:
8
+ 1. Models assignment as flow network
9
+ 2. Uses cost edges for penalties
10
+ 3. Enforces supply/demand constraints
11
+ 4. Finds minimum-cost flow solution
12
+ 5. Extracts assignment from flow
13
+
14
+ References
15
+ ----------
16
+ .. [1] Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network Flows:
17
+ Theory, Algorithms, and Applications. Prentice-Hall.
18
+ .. [2] Costain, G., & Liang, H. (2012). An Auction Algorithm for the
19
+ Minimum Cost Flow Problem. CoRR, abs/1208.4859.
20
+ """
21
+
22
+ from enum import Enum
23
+ from typing import Any, NamedTuple, Tuple
24
+
25
+ import numpy as np
26
+ from numpy.typing import NDArray
27
+
28
+
29
+ class FlowStatus(Enum):
30
+ """Status of min-cost flow computation."""
31
+
32
+ OPTIMAL = 0
33
+ UNBOUNDED = 1
34
+ INFEASIBLE = 2
35
+ TIMEOUT = 3
36
+
37
+
38
+ class MinCostFlowResult(NamedTuple):
39
+ """Result of min-cost flow computation.
40
+
41
+ Attributes
42
+ ----------
43
+ flow : ndarray
44
+ Flow values on each edge, shape (n_edges,).
45
+ cost : float
46
+ Total flow cost.
47
+ status : FlowStatus
48
+ Optimization status.
49
+ iterations : int
50
+ Number of iterations used.
51
+ """
52
+
53
+ flow: NDArray[np.float64]
54
+ cost: float
55
+ status: FlowStatus
56
+ iterations: int
57
+
58
+
59
+ class FlowEdge(NamedTuple):
60
+ """Edge in a flow network.
61
+
62
+ Attributes
63
+ ----------
64
+ from_node : int
65
+ Source node index.
66
+ to_node : int
67
+ Destination node index.
68
+ capacity : float
69
+ Maximum flow on edge (default 1.0 for assignment).
70
+ cost : float
71
+ Cost per unit flow.
72
+ """
73
+
74
+ from_node: int
75
+ to_node: int
76
+ capacity: float
77
+ cost: float
78
+
79
+
80
+ def assignment_to_flow_network(
81
+ cost_matrix: NDArray[np.float64],
82
+ ) -> Tuple[list[FlowEdge], NDArray[np.floating], NDArray[Any]]:
83
+ """
84
+ Convert 2D assignment problem to min-cost flow network.
85
+
86
+ Network structure:
87
+ - Source node (0) supplies all workers
88
+ - Worker nodes (1 to m) demand 1 unit each
89
+ - Task nodes (m+1 to m+n) supply 1 unit each
90
+ - Sink node (m+n+1) collects all completed tasks
91
+
92
+ Parameters
93
+ ----------
94
+ cost_matrix : ndarray
95
+ Cost matrix of shape (m, n) where cost[i,j] is cost of
96
+ assigning worker i to task j.
97
+
98
+ Returns
99
+ -------
100
+ edges : list[FlowEdge]
101
+ List of edges in the flow network.
102
+ supplies : ndarray
103
+ Supply/demand at each node (shape n_nodes,).
104
+ Positive = supply, negative = demand.
105
+ node_names : ndarray
106
+ Names of nodes for reference.
107
+ """
108
+ m, n = cost_matrix.shape
109
+
110
+ # Node numbering:
111
+ # 0: source
112
+ # 1 to m: workers
113
+ # m+1 to m+n: tasks
114
+ # m+n+1: sink
115
+
116
+ n_nodes = m + n + 2
117
+ source = 0
118
+ sink = m + n + 1
119
+
120
+ edges = []
121
+
122
+ # Source to workers: capacity 1, cost 0
123
+ for i in range(1, m + 1):
124
+ edges.append(FlowEdge(from_node=source, to_node=i, capacity=1.0, cost=0.0))
125
+
126
+ # Workers to tasks: capacity 1, cost = assignment cost
127
+ for i in range(m):
128
+ for j in range(n):
129
+ worker_node = i + 1
130
+ task_node = m + 1 + j
131
+ edges.append(
132
+ FlowEdge(
133
+ from_node=worker_node,
134
+ to_node=task_node,
135
+ capacity=1.0,
136
+ cost=cost_matrix[i, j],
137
+ )
138
+ )
139
+
140
+ # Tasks to sink: capacity 1, cost 0
141
+ for j in range(1, n + 1):
142
+ task_node = m + j
143
+ edges.append(
144
+ FlowEdge(from_node=task_node, to_node=sink, capacity=1.0, cost=0.0)
145
+ )
146
+
147
+ # Supply/demand: source supplies m units, sink demands m units
148
+ supplies = np.zeros(n_nodes)
149
+ supplies[source] = float(m)
150
+ supplies[sink] = float(-m)
151
+
152
+ node_names = np.array(
153
+ ["source"]
154
+ + [f"worker_{i}" for i in range(m)]
155
+ + [f"task_{j}" for j in range(n)]
156
+ + ["sink"]
157
+ )
158
+
159
+ return edges, supplies, node_names
160
+
161
+
162
+ def min_cost_flow_successive_shortest_paths(
163
+ edges: list[FlowEdge],
164
+ supplies: NDArray[np.float64],
165
+ max_iterations: int = 1000,
166
+ ) -> MinCostFlowResult:
167
+ """
168
+ Solve min-cost flow using successive shortest paths.
169
+
170
+ Algorithm:
171
+ 1. While there is excess supply:
172
+ - Find shortest path from a supply node to a demand node
173
+ - Push maximum feasible flow along path
174
+ - Update supplies and residual capacities
175
+
176
+ Parameters
177
+ ----------
178
+ edges : list[FlowEdge]
179
+ List of edges with capacities and costs.
180
+ supplies : ndarray
181
+ Supply/demand at each node.
182
+ max_iterations : int, optional
183
+ Maximum iterations (default 1000).
184
+
185
+ Returns
186
+ -------
187
+ MinCostFlowResult
188
+ Solution with flow values, cost, status, and iterations.
189
+
190
+ Notes
191
+ -----
192
+ This is a simplified implementation using Bellman-Ford for shortest
193
+ paths. Production code would use more efficient implementations.
194
+ """
195
+ n_nodes = len(supplies)
196
+ n_edges = len(edges)
197
+
198
+ # Build adjacency lists for residual graph
199
+ graph: list[list[tuple[int, int, float]]] = [[] for _ in range(n_nodes)]
200
+ flow = np.zeros(n_edges)
201
+ residual_capacity = np.array([e.capacity for e in edges])
202
+
203
+ for edge_idx, edge in enumerate(edges):
204
+ graph[edge.from_node].append((edge.to_node, edge_idx, edge.cost))
205
+ # Add reverse edge with negative cost
206
+ graph[edge.to_node].append((edge.from_node, edge_idx, -edge.cost))
207
+
208
+ current_supplies = supplies.copy()
209
+ iteration = 0
210
+
211
+ while iteration < max_iterations:
212
+ # Find a node with excess supply
213
+ excess_node = None
214
+ for node in range(n_nodes):
215
+ if current_supplies[node] > 1e-10:
216
+ excess_node = node
217
+ break
218
+
219
+ if excess_node is None:
220
+ break
221
+
222
+ # Find a node with deficit
223
+ deficit_node = None
224
+ for node in range(n_nodes):
225
+ if current_supplies[node] < -1e-10:
226
+ deficit_node = node
227
+ break
228
+
229
+ if deficit_node is None:
230
+ break
231
+
232
+ # Find shortest path using Bellman-Ford relaxation
233
+ dist = np.full(n_nodes, np.inf)
234
+ dist[excess_node] = 0.0
235
+ parent = np.full(n_nodes, -1, dtype=int)
236
+ parent_edge = np.full(n_nodes, -1, dtype=int)
237
+
238
+ for _ in range(n_nodes - 1):
239
+ for u in range(n_nodes):
240
+ if dist[u] == np.inf:
241
+ continue
242
+ for v, edge_idx, cost in graph[u]:
243
+ if residual_capacity[edge_idx] > 1e-10:
244
+ new_dist = dist[u] + cost
245
+ if new_dist < dist[v]:
246
+ dist[v] = new_dist
247
+ parent[v] = u
248
+ parent_edge[v] = edge_idx
249
+
250
+ if dist[deficit_node] == np.inf:
251
+ # No path found
252
+ break
253
+
254
+ # Extract path and find bottleneck capacity
255
+ path_edges = []
256
+ node = deficit_node
257
+ while parent[node] != -1:
258
+ path_edges.append(parent_edge[node])
259
+ node = parent[node]
260
+
261
+ path_edges.reverse()
262
+
263
+ # Find minimum capacity along path
264
+ min_flow = min(residual_capacity[e] for e in path_edges)
265
+ min_flow = min(
266
+ min_flow, current_supplies[excess_node], -current_supplies[deficit_node]
267
+ )
268
+
269
+ # Push flow along path
270
+ total_cost = 0.0
271
+ for edge_idx in path_edges:
272
+ flow[edge_idx] += min_flow
273
+ residual_capacity[edge_idx] -= min_flow
274
+ total_cost += min_flow * edges[edge_idx].cost
275
+
276
+ current_supplies[excess_node] -= min_flow
277
+ current_supplies[deficit_node] += min_flow
278
+
279
+ iteration += 1
280
+
281
+ # Compute total cost
282
+ total_cost = float(np.sum(flow[i] * edges[i].cost for i in range(n_edges)))
283
+
284
+ # Determine status
285
+ if np.allclose(current_supplies, 0):
286
+ status = FlowStatus.OPTIMAL
287
+ elif iteration >= max_iterations:
288
+ status = FlowStatus.TIMEOUT
289
+ else:
290
+ status = FlowStatus.INFEASIBLE
291
+
292
+ return MinCostFlowResult(
293
+ flow=flow,
294
+ cost=total_cost,
295
+ status=status,
296
+ iterations=iteration,
297
+ )
298
+
299
+
300
+ def assignment_from_flow_solution(
301
+ flow: NDArray[np.float64],
302
+ edges: list[FlowEdge],
303
+ cost_matrix_shape: Tuple[int, int],
304
+ ) -> Tuple[NDArray[np.intp], float]:
305
+ """
306
+ Extract assignment from flow network solution.
307
+
308
+ Parameters
309
+ ----------
310
+ flow : ndarray
311
+ Flow values on each edge.
312
+ edges : list[FlowEdge]
313
+ List of edges used in network.
314
+ cost_matrix_shape : tuple
315
+ Shape of original cost matrix (m, n).
316
+
317
+ Returns
318
+ -------
319
+ assignment : ndarray
320
+ Assignment array of shape (n_assignments, 2) with [worker, task].
321
+ cost : float
322
+ Total assignment cost.
323
+ """
324
+ m, n = cost_matrix_shape
325
+ assignment = []
326
+
327
+ for edge_idx, edge in enumerate(edges):
328
+ # Worker-to-task edges: from_node in [1, m], to_node in [m+1, m+n]
329
+ if 1 <= edge.from_node <= m and m + 1 <= edge.to_node <= m + n:
330
+ if flow[edge_idx] > 0.5: # Flow > 0 (allowing for numerical tolerance)
331
+ worker_idx = edge.from_node - 1
332
+ task_idx = edge.to_node - m - 1
333
+ assignment.append([worker_idx, task_idx])
334
+
335
+ assignment = np.array(assignment, dtype=np.intp)
336
+ cost = 0.0
337
+ if len(assignment) > 0:
338
+ cost = float(
339
+ np.sum(
340
+ flow[edge_idx] * edges[edge_idx].cost for edge_idx in range(len(edges))
341
+ )
342
+ )
343
+
344
+ return assignment, cost
345
+
346
+
347
+ def min_cost_assignment_via_flow(
348
+ cost_matrix: NDArray[np.float64],
349
+ ) -> Tuple[NDArray[np.intp], float]:
350
+ """
351
+ Solve 2D assignment problem via min-cost flow network.
352
+
353
+ Parameters
354
+ ----------
355
+ cost_matrix : ndarray
356
+ Cost matrix of shape (m, n).
357
+
358
+ Returns
359
+ -------
360
+ assignment : ndarray
361
+ Assignment array of shape (n_assignments, 2).
362
+ total_cost : float
363
+ Total assignment cost.
364
+ """
365
+ edges, supplies, _ = assignment_to_flow_network(cost_matrix)
366
+ result = min_cost_flow_successive_shortest_paths(edges, supplies)
367
+ assignment, cost = assignment_from_flow_solution(
368
+ result.flow, edges, cost_matrix.shape
369
+ )
370
+
371
+ return assignment, cost
@@ -11,7 +11,7 @@ cost subject to the constraint that each index appears in at most one
11
11
  selected tuple.
12
12
  """
13
13
 
14
- from typing import List, NamedTuple, Optional, Tuple
14
+ from typing import Any, List, NamedTuple, Optional, Tuple
15
15
 
16
16
  import numpy as np
17
17
  from numpy.typing import ArrayLike, NDArray
@@ -511,7 +511,7 @@ def assign3d_auction(
511
511
  assign_i: List[Optional[Tuple[int, int]]] = [None] * n1
512
512
 
513
513
  # Reverse: which i is assigned to (j, k)
514
- reverse: dict = {}
514
+ reverse: dict[tuple[int, int], int] = {}
515
515
 
516
516
  converged = False
517
517
 
@@ -585,7 +585,7 @@ def assign3d(
585
585
  cost_tensor: ArrayLike,
586
586
  method: str = "lagrangian",
587
587
  maximize: bool = False,
588
- **kwargs,
588
+ **kwargs: Any,
589
589
  ) -> Assignment3DResult:
590
590
  """
591
591
  Solve 3D assignment problem.
@@ -2,7 +2,8 @@
2
2
  Astronomical calculations for target tracking.
3
3
 
4
4
  This module provides time system conversions, orbital mechanics,
5
- Lambert problem solvers, and reference frame transformations.
5
+ Lambert problem solvers, reference frame transformations, and high-precision
6
+ ephemerides for celestial bodies.
6
7
 
7
8
  Examples
8
9
  --------
@@ -18,8 +19,19 @@ Examples
18
19
  >>> r1 = np.array([5000, 10000, 2100])
19
20
  >>> r2 = np.array([-14600, 2500, 7000])
20
21
  >>> sol = lambert_universal(r1, r2, 3600)
22
+
23
+ >>> # Query Sun position with high precision
24
+ >>> from pytcl.astronomical import sun_position
25
+ >>> r_sun, v_sun = sun_position(2451545.0) # J2000.0
21
26
  """
22
27
 
28
+ from pytcl.astronomical.ephemerides import (
29
+ DEEphemeris,
30
+ barycenter_position,
31
+ moon_position,
32
+ planet_position,
33
+ sun_position,
34
+ )
23
35
  from pytcl.astronomical.lambert import (
24
36
  LambertSolution,
25
37
  bi_elliptic_transfer,
@@ -28,8 +40,10 @@ from pytcl.astronomical.lambert import (
28
40
  lambert_universal,
29
41
  minimum_energy_transfer,
30
42
  )
31
- from pytcl.astronomical.orbital_mechanics import ( # Constants; Types; Anomaly conversions; Element conversions; Propagation; Orbital quantities
32
- GM_EARTH,
43
+ from pytcl.astronomical.orbital_mechanics import (
44
+ GM_EARTH, # Constants; Types; Anomaly conversions; Element conversions; Propagation; Orbital quantities
45
+ )
46
+ from pytcl.astronomical.orbital_mechanics import (
33
47
  GM_JUPITER,
34
48
  GM_MARS,
35
49
  GM_MOON,
@@ -62,29 +76,88 @@ from pytcl.astronomical.orbital_mechanics import ( # Constants; Types; Anomaly
62
76
  true_to_mean_anomaly,
63
77
  vis_viva,
64
78
  )
65
- from pytcl.astronomical.reference_frames import ( # Time utilities; Precession; Nutation; Earth rotation; Polar motion; Full transformations; Ecliptic/equatorial
66
- earth_rotation_angle,
67
- ecef_to_eci,
79
+ from pytcl.astronomical.reference_frames import (
80
+ earth_rotation_angle, # Time utilities; Precession; Nutation
81
+ )
82
+ from pytcl.astronomical.reference_frames import ecef_to_eci # Time utilities
83
+ from pytcl.astronomical.reference_frames import (
68
84
  eci_to_ecef,
69
85
  ecliptic_to_equatorial,
70
86
  equation_of_equinoxes,
71
87
  equatorial_to_ecliptic,
72
88
  gast_iau82,
73
89
  gcrf_to_itrf,
90
+ gcrf_to_mod,
91
+ gcrf_to_teme,
92
+ gcrf_to_tod,
74
93
  gmst_iau82,
75
94
  itrf_to_gcrf,
95
+ itrf_to_teme,
96
+ itrf_to_teme_with_velocity,
97
+ itrf_to_tod,
76
98
  julian_centuries_j2000,
77
99
  mean_obliquity_iau80,
100
+ mod_to_gcrf,
101
+ mod_to_tod,
78
102
  nutation_angles_iau80,
79
103
  nutation_matrix,
104
+ pef_to_teme,
80
105
  polar_motion_matrix,
81
106
  precession_angles_iau76,
82
107
  precession_matrix_iau76,
83
108
  sidereal_rotation_matrix,
109
+ teme_to_gcrf,
110
+ teme_to_itrf,
111
+ teme_to_itrf_with_velocity,
112
+ teme_to_pef,
113
+ tod_to_gcrf,
114
+ tod_to_itrf,
115
+ tod_to_mod,
84
116
  true_obliquity,
85
117
  )
86
- from pytcl.astronomical.time_systems import ( # Julian dates; Time scales; Unix time; GPS week; Sidereal time; Leap seconds; Constants
87
- JD_GPS_EPOCH,
118
+ from pytcl.astronomical.relativity import (
119
+ C_LIGHT, # Physical constants; Schwarzschild metric; Time dilation
120
+ )
121
+ from pytcl.astronomical.relativity import (
122
+ G_GRAV,
123
+ geodetic_precession,
124
+ gravitational_time_dilation,
125
+ lense_thirring_precession,
126
+ post_newtonian_acceleration,
127
+ proper_time_rate,
128
+ relativistic_range_correction,
129
+ schwarzschild_precession_per_orbit,
130
+ schwarzschild_radius,
131
+ shapiro_delay,
132
+ )
133
+ from pytcl.astronomical.sgp4 import (
134
+ SGP4Satellite,
135
+ SGP4State,
136
+ sgp4_propagate,
137
+ sgp4_propagate_batch,
138
+ )
139
+ from pytcl.astronomical.special_orbits import (
140
+ OrbitType,
141
+ classify_orbit,
142
+ eccentricity_vector,
143
+ escape_velocity_at_radius,
144
+ hyperbolic_anomaly_to_true_anomaly,
145
+ hyperbolic_asymptote_angle,
146
+ hyperbolic_deflection_angle,
147
+ hyperbolic_excess_velocity,
148
+ mean_to_parabolic_anomaly,
149
+ mean_to_true_anomaly_parabolic,
150
+ parabolic_anomaly_to_true_anomaly,
151
+ radius_parabolic,
152
+ semi_major_axis_from_energy,
153
+ true_anomaly_to_hyperbolic_anomaly,
154
+ true_anomaly_to_parabolic_anomaly,
155
+ velocity_parabolic,
156
+ )
157
+ from pytcl.astronomical.time_systems import (
158
+ JD_GPS_EPOCH, # Julian dates; Time scales; Unix time; GPS week; Sidereal time; Leap seconds; Constants
159
+ )
160
+ from pytcl.astronomical.time_systems import (
88
161
  JD_J2000,
89
162
  JD_UNIX_EPOCH,
90
163
  MJD_OFFSET,
@@ -112,6 +185,17 @@ from pytcl.astronomical.time_systems import ( # Julian dates; Time scales; Unix
112
185
  utc_to_tai,
113
186
  utc_to_tt,
114
187
  )
188
+ from pytcl.astronomical.tle import (
189
+ TLE,
190
+ format_tle,
191
+ is_deep_space,
192
+ orbital_period_from_tle,
193
+ parse_tle,
194
+ parse_tle_3line,
195
+ semi_major_axis_from_mean_motion,
196
+ tle_epoch_to_datetime,
197
+ tle_epoch_to_jd,
198
+ )
115
199
 
116
200
  __all__ = [
117
201
  # Time systems - Julian dates
@@ -218,4 +302,74 @@ __all__ = [
218
302
  # Reference frames - Ecliptic/equatorial
219
303
  "ecliptic_to_equatorial",
220
304
  "equatorial_to_ecliptic",
305
+ # Reference frames - TEME (for SGP4/SDP4)
306
+ "teme_to_pef",
307
+ "pef_to_teme",
308
+ "teme_to_itrf",
309
+ "itrf_to_teme",
310
+ "teme_to_gcrf",
311
+ "gcrf_to_teme",
312
+ "teme_to_itrf_with_velocity",
313
+ "itrf_to_teme_with_velocity",
314
+ # Reference frames - TOD/MOD (legacy conventions)
315
+ "gcrf_to_mod",
316
+ "mod_to_gcrf",
317
+ "gcrf_to_tod",
318
+ "tod_to_gcrf",
319
+ "mod_to_tod",
320
+ "tod_to_mod",
321
+ "tod_to_itrf",
322
+ "itrf_to_tod",
323
+ # TLE parsing
324
+ "TLE",
325
+ "parse_tle",
326
+ "parse_tle_3line",
327
+ "tle_epoch_to_jd",
328
+ "tle_epoch_to_datetime",
329
+ "format_tle",
330
+ "is_deep_space",
331
+ "semi_major_axis_from_mean_motion",
332
+ "orbital_period_from_tle",
333
+ # SGP4/SDP4 propagation
334
+ "SGP4State",
335
+ "SGP4Satellite",
336
+ "sgp4_propagate",
337
+ "sgp4_propagate_batch",
338
+ # Ephemerides - Classes
339
+ "DEEphemeris",
340
+ # Ephemerides - Functions
341
+ "sun_position",
342
+ "moon_position",
343
+ "planet_position",
344
+ "barycenter_position",
345
+ # Relativity - Constants
346
+ "C_LIGHT",
347
+ "G_GRAV",
348
+ # Relativity - Functions
349
+ "schwarzschild_radius",
350
+ "gravitational_time_dilation",
351
+ "proper_time_rate",
352
+ "shapiro_delay",
353
+ "schwarzschild_precession_per_orbit",
354
+ "post_newtonian_acceleration",
355
+ "geodetic_precession",
356
+ "lense_thirring_precession",
357
+ "relativistic_range_correction",
358
+ # Special orbits - Parabolic and hyperbolic
359
+ "OrbitType",
360
+ "classify_orbit",
361
+ "mean_to_parabolic_anomaly",
362
+ "parabolic_anomaly_to_true_anomaly",
363
+ "true_anomaly_to_parabolic_anomaly",
364
+ "mean_to_true_anomaly_parabolic",
365
+ "radius_parabolic",
366
+ "velocity_parabolic",
367
+ "hyperbolic_anomaly_to_true_anomaly",
368
+ "true_anomaly_to_hyperbolic_anomaly",
369
+ "escape_velocity_at_radius",
370
+ "hyperbolic_excess_velocity",
371
+ "semi_major_axis_from_energy",
372
+ "hyperbolic_asymptote_angle",
373
+ "hyperbolic_deflection_angle",
374
+ "eccentricity_vector",
221
375
  ]