nrl-tracker 0.21.4__py3-none-any.whl → 1.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/METADATA +57 -10
- nrl_tracker-1.7.5.dist-info/RECORD +165 -0
- pytcl/__init__.py +4 -3
- pytcl/assignment_algorithms/__init__.py +28 -0
- pytcl/assignment_algorithms/data_association.py +2 -7
- pytcl/assignment_algorithms/gating.py +10 -10
- pytcl/assignment_algorithms/jpda.py +40 -40
- pytcl/assignment_algorithms/nd_assignment.py +379 -0
- pytcl/assignment_algorithms/network_flow.py +371 -0
- pytcl/assignment_algorithms/three_dimensional/assignment.py +3 -3
- pytcl/astronomical/__init__.py +162 -8
- pytcl/astronomical/ephemerides.py +533 -0
- pytcl/astronomical/reference_frames.py +865 -56
- pytcl/astronomical/relativity.py +473 -0
- pytcl/astronomical/sgp4.py +710 -0
- pytcl/astronomical/special_orbits.py +532 -0
- pytcl/astronomical/tle.py +558 -0
- pytcl/atmosphere/__init__.py +45 -3
- pytcl/atmosphere/ionosphere.py +512 -0
- pytcl/atmosphere/nrlmsise00.py +809 -0
- pytcl/clustering/dbscan.py +2 -2
- pytcl/clustering/gaussian_mixture.py +3 -3
- pytcl/clustering/hierarchical.py +15 -15
- pytcl/clustering/kmeans.py +4 -4
- pytcl/containers/__init__.py +28 -21
- pytcl/containers/base.py +219 -0
- pytcl/containers/cluster_set.py +2 -1
- pytcl/containers/covertree.py +26 -29
- pytcl/containers/kd_tree.py +94 -29
- pytcl/containers/measurement_set.py +1 -9
- pytcl/containers/rtree.py +200 -1
- pytcl/containers/vptree.py +21 -28
- pytcl/coordinate_systems/conversions/geodetic.py +272 -5
- pytcl/coordinate_systems/jacobians/jacobians.py +2 -2
- pytcl/coordinate_systems/projections/__init__.py +4 -2
- pytcl/coordinate_systems/projections/projections.py +2 -2
- pytcl/coordinate_systems/rotations/rotations.py +10 -6
- pytcl/core/__init__.py +18 -0
- pytcl/core/validation.py +333 -2
- pytcl/dynamic_estimation/__init__.py +26 -0
- pytcl/dynamic_estimation/gaussian_sum_filter.py +434 -0
- pytcl/dynamic_estimation/imm.py +15 -18
- pytcl/dynamic_estimation/kalman/__init__.py +30 -0
- pytcl/dynamic_estimation/kalman/constrained.py +382 -0
- pytcl/dynamic_estimation/kalman/extended.py +9 -12
- pytcl/dynamic_estimation/kalman/h_infinity.py +613 -0
- pytcl/dynamic_estimation/kalman/square_root.py +60 -573
- pytcl/dynamic_estimation/kalman/sr_ukf.py +302 -0
- pytcl/dynamic_estimation/kalman/ud_filter.py +410 -0
- pytcl/dynamic_estimation/kalman/unscented.py +9 -10
- pytcl/dynamic_estimation/particle_filters/bootstrap.py +15 -15
- pytcl/dynamic_estimation/rbpf.py +589 -0
- pytcl/dynamic_estimation/smoothers.py +1 -5
- pytcl/dynamic_models/discrete_time/__init__.py +1 -5
- pytcl/dynamic_models/process_noise/__init__.py +1 -5
- pytcl/gravity/egm.py +13 -0
- pytcl/gravity/spherical_harmonics.py +98 -37
- pytcl/gravity/tides.py +6 -6
- pytcl/logging_config.py +328 -0
- pytcl/magnetism/__init__.py +10 -14
- pytcl/magnetism/emm.py +10 -3
- pytcl/magnetism/wmm.py +260 -23
- pytcl/mathematical_functions/combinatorics/combinatorics.py +5 -5
- pytcl/mathematical_functions/geometry/geometry.py +5 -5
- pytcl/mathematical_functions/interpolation/__init__.py +2 -2
- pytcl/mathematical_functions/numerical_integration/quadrature.py +6 -6
- pytcl/mathematical_functions/signal_processing/detection.py +24 -24
- pytcl/mathematical_functions/signal_processing/filters.py +14 -14
- pytcl/mathematical_functions/signal_processing/matched_filter.py +12 -12
- pytcl/mathematical_functions/special_functions/__init__.py +2 -2
- pytcl/mathematical_functions/special_functions/bessel.py +15 -3
- pytcl/mathematical_functions/special_functions/debye.py +136 -26
- pytcl/mathematical_functions/special_functions/error_functions.py +3 -1
- pytcl/mathematical_functions/special_functions/gamma_functions.py +4 -4
- pytcl/mathematical_functions/special_functions/hypergeometric.py +81 -15
- pytcl/mathematical_functions/transforms/fourier.py +8 -8
- pytcl/mathematical_functions/transforms/stft.py +12 -12
- pytcl/mathematical_functions/transforms/wavelets.py +9 -9
- pytcl/navigation/__init__.py +14 -10
- pytcl/navigation/geodesy.py +246 -160
- pytcl/navigation/great_circle.py +101 -19
- pytcl/navigation/ins.py +1 -5
- pytcl/plotting/coordinates.py +7 -7
- pytcl/plotting/tracks.py +2 -2
- pytcl/static_estimation/maximum_likelihood.py +16 -14
- pytcl/static_estimation/robust.py +5 -5
- pytcl/terrain/loaders.py +5 -5
- pytcl/trackers/__init__.py +3 -14
- pytcl/trackers/hypothesis.py +1 -1
- pytcl/trackers/mht.py +9 -9
- pytcl/trackers/multi_target.py +2 -5
- nrl_tracker-0.21.4.dist-info/RECORD +0 -148
- {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/LICENSE +0 -0
- {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/WHEEL +0 -0
- {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: nrl-tracker
|
|
3
|
-
Version:
|
|
3
|
+
Version: 1.7.5
|
|
4
4
|
Summary: Python port of the U.S. Naval Research Laboratory's Tracker Component Library for target tracking algorithms
|
|
5
5
|
Author: Original: David F. Crouse, Naval Research Laboratory
|
|
6
6
|
Maintainer: Python Port Contributors
|
|
@@ -34,10 +34,13 @@ Requires-Dist: nrl-tracker[astronomy,dev,geodesy,optimization,signal,visualizati
|
|
|
34
34
|
Provides-Extra: astronomy
|
|
35
35
|
Requires-Dist: astropy>=5.0; extra == "astronomy"
|
|
36
36
|
Requires-Dist: jplephem>=2.18; extra == "astronomy"
|
|
37
|
+
Provides-Extra: benchmark
|
|
38
|
+
Requires-Dist: pytest-benchmark>=4.0.0; extra == "benchmark"
|
|
37
39
|
Provides-Extra: dev
|
|
38
40
|
Requires-Dist: pytest>=7.0.0; extra == "dev"
|
|
39
41
|
Requires-Dist: pytest-cov>=4.0.0; extra == "dev"
|
|
40
42
|
Requires-Dist: pytest-xdist>=3.0.0; extra == "dev"
|
|
43
|
+
Requires-Dist: pytest-benchmark>=4.0.0; extra == "dev"
|
|
41
44
|
Requires-Dist: hypothesis>=6.0.0; extra == "dev"
|
|
42
45
|
Requires-Dist: black>=23.0.0; extra == "dev"
|
|
43
46
|
Requires-Dist: isort>=5.12.0; extra == "dev"
|
|
@@ -60,15 +63,17 @@ Requires-Dist: plotly>=5.15.0; extra == "visualization"
|
|
|
60
63
|
|
|
61
64
|
# Tracker Component Library (Python)
|
|
62
65
|
|
|
63
|
-
[](https://pypi.org/project/nrl-tracker/)
|
|
64
67
|
[](https://www.python.org/downloads/)
|
|
65
68
|
[](https://en.wikipedia.org/wiki/Public_domain)
|
|
66
69
|
[](https://github.com/psf/black)
|
|
67
|
-
[](https://github.com/nedonatelli/TCL)
|
|
71
|
+
[](docs/gap_analysis.rst)
|
|
72
|
+
[](mypy.ini)
|
|
68
73
|
|
|
69
74
|
A Python port of the [U.S. Naval Research Laboratory's Tracker Component Library](https://github.com/USNavalResearchLaboratory/TrackerComponentLibrary), a comprehensive collection of algorithms for target tracking, estimation, coordinate systems, and related mathematical functions.
|
|
70
75
|
|
|
71
|
-
**
|
|
76
|
+
**1,070+ functions** | **153 modules** | **1,988 tests** | **100% MATLAB parity**
|
|
72
77
|
|
|
73
78
|
## Overview
|
|
74
79
|
|
|
@@ -76,12 +81,15 @@ The Tracker Component Library provides building blocks for developing target tra
|
|
|
76
81
|
|
|
77
82
|
- **Coordinate Systems**: Conversions between Cartesian, spherical, geodetic, and other coordinate systems
|
|
78
83
|
- **Dynamic Models**: State transition matrices for constant velocity, coordinated turn, and other motion models
|
|
79
|
-
- **Estimation Algorithms**: Kalman filters (EKF, UKF,
|
|
80
|
-
- **Assignment Algorithms**: Hungarian algorithm, auction algorithms,
|
|
84
|
+
- **Estimation Algorithms**: Kalman filters (EKF, UKF, CKF, H-infinity), particle filters, smoothers, and batch estimation
|
|
85
|
+
- **Assignment Algorithms**: Hungarian algorithm, auction algorithms, 3D/ND assignment, k-best assignments
|
|
86
|
+
- **Data Association**: Global Nearest Neighbor, JPDA, MHT for multi-target tracking
|
|
81
87
|
- **Mathematical Functions**: Special functions, statistics, numerical integration, and more
|
|
82
|
-
- **Astronomical Code**:
|
|
83
|
-
- **
|
|
84
|
-
- **
|
|
88
|
+
- **Astronomical Code**: SGP4/SDP4 propagation, TLE parsing, special orbits (parabolic/hyperbolic), ephemerides, relativistic corrections
|
|
89
|
+
- **Reference Frames**: GCRF, ITRF, TEME, TOD, MOD with full transformation chains
|
|
90
|
+
- **Navigation**: Geodetic calculations, INS mechanization, GNSS utilities, INS/GNSS integration
|
|
91
|
+
- **Geophysical Models**: Gravity (WGS84, EGM96/2008), magnetism (WMM, IGRF), atmosphere, tides, terrain
|
|
92
|
+
- **Signal Processing**: Digital filters, matched filtering, CFAR detection, transforms (FFT, STFT, wavelets)
|
|
85
93
|
|
|
86
94
|
## Installation
|
|
87
95
|
|
|
@@ -201,7 +209,46 @@ pytcl/
|
|
|
201
209
|
|
|
202
210
|
- [API Reference](https://pytcl.readthedocs.io/en/latest/api/)
|
|
203
211
|
- [User Guides](https://pytcl.readthedocs.io/en/latest/user_guide/)
|
|
204
|
-
- [Examples](examples/)
|
|
212
|
+
- [Examples](examples/) - 29 validated example scripts
|
|
213
|
+
- [Tutorials](docs/tutorials/) - 10 interactive tutorial modules
|
|
214
|
+
|
|
215
|
+
## Examples & Tutorials
|
|
216
|
+
|
|
217
|
+
The library includes 39 runnable code examples demonstrating all major features:
|
|
218
|
+
|
|
219
|
+
### Examples (29 files in `/examples/`)
|
|
220
|
+
|
|
221
|
+
Comprehensive demonstrations of library functionality:
|
|
222
|
+
- **Tracking & Estimation**: Kalman filters, particle filters, smoothers
|
|
223
|
+
- **Assignment**: Hungarian algorithm, k-best assignments, 3D assignment
|
|
224
|
+
- **Coordinates**: Frame conversions, transformations, geodetic calculations
|
|
225
|
+
- **Dynamics**: State models, motion models, dynamic systems
|
|
226
|
+
- **Filtering**: Uncertainty visualization, multi-target tracking
|
|
227
|
+
- **Astronomy**: Ephemerides, orbital mechanics, relativistic corrections
|
|
228
|
+
- **Navigation**: INS/GNSS integration, geophysical modeling
|
|
229
|
+
- **Signal Processing**: Detection, filtering, transforms
|
|
230
|
+
- **Terrain & Atmosphere**: Elevation models, atmospheric properties
|
|
231
|
+
|
|
232
|
+
**Status**: ✅ All 29 examples validated and passing (100% execution success)
|
|
233
|
+
|
|
234
|
+
### Tutorials (10 modules in `/docs/tutorials/`)
|
|
235
|
+
|
|
236
|
+
Interactive learning modules with visualizations:
|
|
237
|
+
- Assignment algorithms and 3D assignment problems
|
|
238
|
+
- Atmospheric and geophysical models
|
|
239
|
+
- Dynamical systems and reference frames
|
|
240
|
+
- Filtering and smoothing techniques
|
|
241
|
+
- Sensor fusion and advanced filtering
|
|
242
|
+
- Special functions and mathematical tools
|
|
243
|
+
|
|
244
|
+
**Status**: ✅ All 10 tutorials validated and passing (100% execution success)
|
|
245
|
+
|
|
246
|
+
## Documentation
|
|
247
|
+
|
|
248
|
+
- [API Reference](https://pytcl.readthedocs.io/en/latest/api/)
|
|
249
|
+
- [User Guides](https://pytcl.readthedocs.io/en/latest/user_guide/)
|
|
250
|
+
- [Examples](examples/) - 29 validated example scripts
|
|
251
|
+
- [Tutorials](docs/tutorials/) - 10 interactive tutorial modules
|
|
205
252
|
|
|
206
253
|
## Comparison with Original MATLAB Library
|
|
207
254
|
|
|
@@ -0,0 +1,165 @@
|
|
|
1
|
+
pytcl/__init__.py,sha256=k9vpQYy3jGUCAVi6y6m87KltSc7kPBYrWXVlXh6j63E,2030
|
|
2
|
+
pytcl/logging_config.py,sha256=UJaYufQgNuIjpsOMTPo3ewz1XCHPk8a08jTHyP7uoI4,8956
|
|
3
|
+
pytcl/assignment_algorithms/__init__.py,sha256=kUWhmyLhZcs5GiUQA5_v7KA3qETGsvqV6wU8r7paO-k,2976
|
|
4
|
+
pytcl/assignment_algorithms/data_association.py,sha256=tsRxWJZk9aAPmE99BKXGouEpFfZrjPjb4HXvgxFUHhU,11405
|
|
5
|
+
pytcl/assignment_algorithms/gating.py,sha256=AXWn-F_EOGI6qrBc4PN5eFM-ZZGu1WOMi5b5ZsxValU,10910
|
|
6
|
+
pytcl/assignment_algorithms/jpda.py,sha256=8-HoO2VygxJ8FFSCCOIOfbhMAn87jU7PqVvd7lQ3GEY,19797
|
|
7
|
+
pytcl/assignment_algorithms/nd_assignment.py,sha256=RBRoXoJnUY0lB9Vb_dwvQtwh6oI31KfeDqpaNrTNXzk,11344
|
|
8
|
+
pytcl/assignment_algorithms/network_flow.py,sha256=tmNOHdrRfo30T8UXZ0A_icDdVDgQCShdbXEt9HY0p1w,10325
|
|
9
|
+
pytcl/assignment_algorithms/three_dimensional/__init__.py,sha256=1Q40OUlUQoo7YKEucwdrSNo3D4A0Zibvkr8z4TpueBg,526
|
|
10
|
+
pytcl/assignment_algorithms/three_dimensional/assignment.py,sha256=OGcjg3Yr1tYriWYBJ5k6jiRMpOHDISK8FJDY0nTQxxw,19244
|
|
11
|
+
pytcl/assignment_algorithms/two_dimensional/__init__.py,sha256=4Evsn__9hTfI2i8m8Ngl-Zy0Fa2OydKmDKlZlH6jaao,778
|
|
12
|
+
pytcl/assignment_algorithms/two_dimensional/assignment.py,sha256=eh87MBb-uiUSI1MXj4HrreRKB6Z8rxAyDkNQ8-u4SbM,11848
|
|
13
|
+
pytcl/assignment_algorithms/two_dimensional/kbest.py,sha256=yiTToLuP7xWxQlQ8E-fpgXg-5iu0nnXcJXStjUB0nOE,17284
|
|
14
|
+
pytcl/astronomical/__init__.py,sha256=v0nUgEy5ReHXzpNb1JdwWXv4AtcFksotEOccQnOyVfI,9667
|
|
15
|
+
pytcl/astronomical/ephemerides.py,sha256=nQSbcipQ_IhPv1R-Q0-iPlfTCb4x2KdfVjwc0c_YeeE,16705
|
|
16
|
+
pytcl/astronomical/lambert.py,sha256=Lc8FT1JmpI9WSXsG2s5vIRkSoBSV7r5hd3o2bGh2Ojo,15607
|
|
17
|
+
pytcl/astronomical/orbital_mechanics.py,sha256=8GssRanwTowCl6PJYqmB_SDnNznLUq5gkPa3j6iEo3U,19965
|
|
18
|
+
pytcl/astronomical/reference_frames.py,sha256=MBqprzBpEvdq3ngRL-_pp-Vnj7AqbuXhjUfGQ98znfc,35616
|
|
19
|
+
pytcl/astronomical/relativity.py,sha256=deuzBIINS4HimCwNU0_mzlHiB2nJ3AW8PnqtpzTw5_I,15534
|
|
20
|
+
pytcl/astronomical/sgp4.py,sha256=iNZrqMRUzR-LFeZiluzlNmkwxeYbIyF2F1cygyeEZVE,21546
|
|
21
|
+
pytcl/astronomical/special_orbits.py,sha256=N54c_wAD7XKk_diDOw2QjUSkmYECMyWQDq2P6EeEBEI,12745
|
|
22
|
+
pytcl/astronomical/time_systems.py,sha256=Jg0Zaq60hc4Ts1aQtb5bK4KSZhz-uQse8gYC89Y0-TA,15243
|
|
23
|
+
pytcl/astronomical/tle.py,sha256=t3e2-0f3Wiz77q-pC2jfpohkrDfoYOEHacpNgWMNLAk,14638
|
|
24
|
+
pytcl/atmosphere/__init__.py,sha256=Joa6PBEfKun0Moii6BOzyVYG8AOFyvucKdVuY62ArQc,1685
|
|
25
|
+
pytcl/atmosphere/ionosphere.py,sha256=1qC3hY-27pD0XcLBjU735deKYmmi6qnj2fDG1zNbTqg,14681
|
|
26
|
+
pytcl/atmosphere/models.py,sha256=pMLv8D7qoFqLZrlbTHLJJULOdDdhPskJ1m7KVKLV63E,9584
|
|
27
|
+
pytcl/atmosphere/nrlmsise00.py,sha256=jcmAC00G3X0CzfK4eWkvq2tPxHXzMqC8GBHNbFZRq4w,25868
|
|
28
|
+
pytcl/clustering/__init__.py,sha256=bYdhC_XJEt6KUUni9bIPxaddXNEGmIJQvGkA14rK4J8,1697
|
|
29
|
+
pytcl/clustering/dbscan.py,sha256=WgzYz_f5nDh0T1RPClX9b3xSvFPmLxY6QaI2NCtxJg4,7389
|
|
30
|
+
pytcl/clustering/gaussian_mixture.py,sha256=UAI2_WG2RASA0N2PIZ0EZgqYZ3yly7oJBSJWSJnm_bE,22904
|
|
31
|
+
pytcl/clustering/hierarchical.py,sha256=K7z6bZR4QSDMva9kaqEOjdktl8unMK1wyCJm3cFN8pQ,14292
|
|
32
|
+
pytcl/clustering/kmeans.py,sha256=GNvgaGP53LKr4-fh-UajxbjCi0jWCCLJba23EGcQq4I,10712
|
|
33
|
+
pytcl/containers/__init__.py,sha256=jZAZb0VUft5gjQghfg2S9PD-LsA5xgtXkc0mAS_Gnmk,2428
|
|
34
|
+
pytcl/containers/base.py,sha256=UL-RXobVlZCZ5H3Xdo_TzcJQANNsIVQeynKHhLGxRVE,5545
|
|
35
|
+
pytcl/containers/cluster_set.py,sha256=uhfOIpXlYoI1U75TWcLMHjezVavnIZhVEGQHKCDmKo4,22774
|
|
36
|
+
pytcl/containers/covertree.py,sha256=SKiosZnJ9bvAaANDKQSbDUqL2BnIno-1D8TbOWDM3m0,13337
|
|
37
|
+
pytcl/containers/kd_tree.py,sha256=9CKHAzid0DZ879hut8M4dyW_976pIWNLX3uWzELPIu4,18563
|
|
38
|
+
pytcl/containers/measurement_set.py,sha256=87AbdoZIUspn1yJsiMpyQ5LoEVcerUnXefXGGPtFTJg,12654
|
|
39
|
+
pytcl/containers/rtree.py,sha256=SGlnEG6q670qxO9P_jDT7yocjYmdal8f22SvEXdvw9E,21857
|
|
40
|
+
pytcl/containers/track_list.py,sha256=6q9Qgcwm-8H_JqtOCsMssF27av4XaSkhfDl-MWb1ABc,12520
|
|
41
|
+
pytcl/containers/vptree.py,sha256=eFBX2-sm_lgqON18uM4MEk4I4_sRgoPla29cTJFy_Xo,8800
|
|
42
|
+
pytcl/coordinate_systems/__init__.py,sha256=jwYhu_-9AvOeP9WLG9PYtyDwfe0GjxNZ9-xCqiLymW4,3909
|
|
43
|
+
pytcl/coordinate_systems/conversions/__init__.py,sha256=PkNevB78vBw0BkalydJBbQO91AyiMJxKRrgJNt4HsYc,1100
|
|
44
|
+
pytcl/coordinate_systems/conversions/geodetic.py,sha256=rRRf4MWBkGj3VTN1WRW3lrlw4Yf9a4HH3UCgNOGjbJ0,23460
|
|
45
|
+
pytcl/coordinate_systems/conversions/spherical.py,sha256=q7k9l5mJbVzVdNj9Gcq4ibFxax8z_mVpJfITRBzx630,10812
|
|
46
|
+
pytcl/coordinate_systems/jacobians/__init__.py,sha256=CRGB8GzvGT_sr4Ynm51S7gSX8grqt1pO1Pq1MWmHPTs,890
|
|
47
|
+
pytcl/coordinate_systems/jacobians/jacobians.py,sha256=0gpbelZPN4HDtvS1ymc3RIhOfxCVTKpRc-jDJXdM6pQ,11747
|
|
48
|
+
pytcl/coordinate_systems/projections/__init__.py,sha256=TmBiffO5cmazAhsfPIVBaaqnravVSO3JxjGb0MXkucc,2404
|
|
49
|
+
pytcl/coordinate_systems/projections/projections.py,sha256=y_kwcu_zp0HHiKR-wp3v3AvRcY61bleDi1SxwbrnWB0,33179
|
|
50
|
+
pytcl/coordinate_systems/rotations/__init__.py,sha256=nqAz4iJd2hEOX_r7Tz4cE524sShyxdbtcQ5m56RrDLg,1047
|
|
51
|
+
pytcl/coordinate_systems/rotations/rotations.py,sha256=2KK6Lgpfmjac3qfOMvHku_BcwGOgkRC13BZbSCUvfwQ,18314
|
|
52
|
+
pytcl/core/__init__.py,sha256=3GFQX_Q9f7fhmWlA6OQiS6OpM7HWhyT9iQhB8Mhi_kk,1580
|
|
53
|
+
pytcl/core/array_utils.py,sha256=SsgEiAoRCWxAVKq1aa5-nPdOi-2AB6XNObu0IaGClUk,13983
|
|
54
|
+
pytcl/core/constants.py,sha256=lZVDK5zsSR02_4b2Nqx9KDtZT9QaYhkZ9wuoODbifd4,8693
|
|
55
|
+
pytcl/core/validation.py,sha256=9Pjn2wOYmGLJDSA8eS2aGTCGO16o5l2xioOHamNXuIg,23441
|
|
56
|
+
pytcl/dynamic_estimation/__init__.py,sha256=zxmkZIXVfHPv5AHYpQV5nwsI0PA3m-Vw7W0gkJE7j98,5191
|
|
57
|
+
pytcl/dynamic_estimation/gaussian_sum_filter.py,sha256=rxUy_WapTL_pkGimD01DqYE7fElLS_DljnX2yg95Uts,13620
|
|
58
|
+
pytcl/dynamic_estimation/imm.py,sha256=RLSFPTMDsudxSf9Mh6Q5qD852tq9lRoCTvFCGphezhs,22152
|
|
59
|
+
pytcl/dynamic_estimation/information_filter.py,sha256=x7iQwO_iJT1dCSvDws5LqD3yAtjw9QVGUfMPcXn1IA4,17349
|
|
60
|
+
pytcl/dynamic_estimation/rbpf.py,sha256=CaKSD2TC1sxICnHuN1W2v2S7P-Kxi4lxdy4KRq2We3w,17898
|
|
61
|
+
pytcl/dynamic_estimation/smoothers.py,sha256=x2j-nR--EI5JNZvMywPeDHcrfW8b5PYK0DCU4Rmig_g,18914
|
|
62
|
+
pytcl/dynamic_estimation/batch_estimation/__init__.py,sha256=JQ0s76Enov5a7plA4EnUua4t-7etikQrwr5z4WIjUeo,46
|
|
63
|
+
pytcl/dynamic_estimation/kalman/__init__.py,sha256=lR-OacfZ5mqnAboEbOel5w_WS_Gmz-1q0l4meKfQsGs,3163
|
|
64
|
+
pytcl/dynamic_estimation/kalman/constrained.py,sha256=Zidzz6_9OvwUyQppEltdmYTMvEeqRKFRkVMwx1TASuw,10960
|
|
65
|
+
pytcl/dynamic_estimation/kalman/extended.py,sha256=fxi2-oq8qxnxZqPmjB8-Am03z6_F_R90wwFcOIEk_dg,10459
|
|
66
|
+
pytcl/dynamic_estimation/kalman/h_infinity.py,sha256=rtbYiryJbxzko-CIdNJSHuWXU2wI9T52YGBYq3o92sE,16563
|
|
67
|
+
pytcl/dynamic_estimation/kalman/linear.py,sha256=1Zgg9gZya0Vxs9im7sPUqLj0Luo463vS-RSa6GCReFI,12248
|
|
68
|
+
pytcl/dynamic_estimation/kalman/square_root.py,sha256=pDEDstYIQht5e7ahD6x13UfSVIUWMe4jRR4z6j687vw,13457
|
|
69
|
+
pytcl/dynamic_estimation/kalman/sr_ukf.py,sha256=xlKRML6QOHD99P-urIeBZsBDc_DY1_U73W3eDkiqRRY,8737
|
|
70
|
+
pytcl/dynamic_estimation/kalman/ud_filter.py,sha256=j56gw-piKJaMtoHWRkr2MiBjOC9tGSguIgFregOMJOs,10269
|
|
71
|
+
pytcl/dynamic_estimation/kalman/unscented.py,sha256=G3Ks6fa_Z-MxUdOEiiHqQ1wYJzOgfuipiP32at6Mv8o,15505
|
|
72
|
+
pytcl/dynamic_estimation/measurement_update/__init__.py,sha256=8rlyJwVpxf0fZj-AFo1hlewvryZRhUzcy3F8uMe6I8c,48
|
|
73
|
+
pytcl/dynamic_estimation/particle_filters/__init__.py,sha256=-DRF5rVF2749suLlArmkTvVkqeMcV_mIx0eLeTj6wNU,906
|
|
74
|
+
pytcl/dynamic_estimation/particle_filters/bootstrap.py,sha256=6KSLZROxfrldExpDL1GaGhd75IXO5KA8iC-kmhuUBkg,13531
|
|
75
|
+
pytcl/dynamic_models/__init__.py,sha256=Cd8MyyYuB8gMnepkPA-HSwTaKFPThnqoKOhdjVOsXWg,2783
|
|
76
|
+
pytcl/dynamic_models/continuous_time/__init__.py,sha256=dAkfEddLkfMvDalK9v2GRBvaZV1KgqYpFBLOnoiFClw,1023
|
|
77
|
+
pytcl/dynamic_models/continuous_time/dynamics.py,sha256=CDwqn-66eUwXA5xfIjaG6A4EDBqtOyQ3aWarJr9QH4g,12858
|
|
78
|
+
pytcl/dynamic_models/discrete_time/__init__.py,sha256=1cdYeVIe-kgogiHzeCv1eYMctSimh8t1nIE6Z1N4im4,949
|
|
79
|
+
pytcl/dynamic_models/discrete_time/coordinated_turn.py,sha256=jrSGCKiAdXaFIJBLzRyAv0xxxpOHOBnAtDHyu7VYsm8,7206
|
|
80
|
+
pytcl/dynamic_models/discrete_time/polynomial.py,sha256=zv5V-AbuaXlIj36n-YkOEyC74jV2vczxpCW09P0kmi0,5529
|
|
81
|
+
pytcl/dynamic_models/discrete_time/singer.py,sha256=wZS3Nad-YyPZp8Mle8Sf5GgW0-t4TxMRcnbc42HtQnA,3861
|
|
82
|
+
pytcl/dynamic_models/process_noise/__init__.py,sha256=ZRYgV40qmBkPwU3yTbIMvxorr4nVz0_FEP2oCeVjXoM,933
|
|
83
|
+
pytcl/dynamic_models/process_noise/coordinated_turn.py,sha256=w7bHUImLPL5m3KYenfNgAnHPCRtAyYESbsFc6lQKXRg,4768
|
|
84
|
+
pytcl/dynamic_models/process_noise/polynomial.py,sha256=natfpsdN3qM9VzPeXF_nBpsbRI74S1WkkRCaaem6EQo,7620
|
|
85
|
+
pytcl/dynamic_models/process_noise/singer.py,sha256=lsJDT6xOvcS_qQKFtgHX0L7Ukpy4D7HgvPT8Q3I0ibU,3901
|
|
86
|
+
pytcl/gravity/__init__.py,sha256=5xNdQSrrkt7-1-JPOYqR38CqvNJ7qKlPyMK36DGm6-I,3693
|
|
87
|
+
pytcl/gravity/clenshaw.py,sha256=1BdxzU8IfGGd68H_U35soIJkiOHphY35e9mLElhPTOg,15364
|
|
88
|
+
pytcl/gravity/egm.py,sha256=47I8nyXNhXUKPkufXahs4JGsBcqhM-9z2xGz0X4JPmU,18422
|
|
89
|
+
pytcl/gravity/models.py,sha256=rdY3Do4M1eRFO74gu3xy-bBn7tox3zM49wYbfnsIQWw,11159
|
|
90
|
+
pytcl/gravity/spherical_harmonics.py,sha256=FV_cFp0lx6uGw-dxNFRpehaAn28QImX9z7PFdyRbEJI,16549
|
|
91
|
+
pytcl/gravity/tides.py,sha256=nu9_L12aBd2EpmTMh3UulmYCUxQ9wC4kOpdSIn7f0Z8,27785
|
|
92
|
+
pytcl/magnetism/__init__.py,sha256=pBASOzCPHNnYqUH_XDEblhGtjz50vY9uW2KS25A0zQQ,2701
|
|
93
|
+
pytcl/magnetism/emm.py,sha256=iIdxSL0uGGIf8nfA-c_SmHvg9_J7HwRA2-qbQIUW6IE,22380
|
|
94
|
+
pytcl/magnetism/igrf.py,sha256=3g0PsH8IdbwQQS28OR5XWD-g-QxvfUva7jOkKToxndQ,13384
|
|
95
|
+
pytcl/magnetism/wmm.py,sha256=7YsxnBmxeH5WnTTZ3VE91gr55Qq-OvVmBRAMbqlhGVg,23479
|
|
96
|
+
pytcl/mathematical_functions/__init__.py,sha256=zeJ1ffRRl83k2NHn3HTn-fgtFoWNPq6LCALc3xRo4Do,3767
|
|
97
|
+
pytcl/mathematical_functions/basic_matrix/__init__.py,sha256=kZv3kMAEHBdVxhbyMxTyM0s-4XJP1tK6po82UsIE4tc,1318
|
|
98
|
+
pytcl/mathematical_functions/basic_matrix/decompositions.py,sha256=PWJsFDiXM2T78RHdxBJZPFnl8kFbNZQpHrbpw0mhE00,12268
|
|
99
|
+
pytcl/mathematical_functions/basic_matrix/special_matrices.py,sha256=kOozwP2CHAj4qyO7Z9ct6GwDMkmHkk1bQa0e9G98FgA,13499
|
|
100
|
+
pytcl/mathematical_functions/combinatorics/__init__.py,sha256=byuHI0WkxOkQF8egrfjEr-awB2visWDXlGMnDux5IBg,1043
|
|
101
|
+
pytcl/mathematical_functions/combinatorics/combinatorics.py,sha256=LzVxY3E5_pnpVl9XlcRdQjWhSSY8Fa1JUVYA6J25fro,12354
|
|
102
|
+
pytcl/mathematical_functions/continuous_optimization/__init__.py,sha256=lck60eeCUOsRpEzPHBY3kiLKwNz_fhmYoUGP3lTmTwk,55
|
|
103
|
+
pytcl/mathematical_functions/geometry/__init__.py,sha256=DhCmux9-6zxYRzlhQ9du18kvUL-leiiZwdd3Cmb5WX0,1092
|
|
104
|
+
pytcl/mathematical_functions/geometry/geometry.py,sha256=iLKqTlLEGm8IScEDHEWOBQz5xfj-fflzIOzZaJ8fPtE,16522
|
|
105
|
+
pytcl/mathematical_functions/interpolation/__init__.py,sha256=lK4Rs0Ds_fzf9q0n6id5epdN0U8V7yD87dS-w1hvN8I,741
|
|
106
|
+
pytcl/mathematical_functions/interpolation/interpolation.py,sha256=2cXMDgWBjWDGHnK1K_lawFlJL8oPl5AQGf9MNgsESfo,12610
|
|
107
|
+
pytcl/mathematical_functions/numerical_integration/__init__.py,sha256=iXiHzyV_KIhCv7tXErXlN1_fUEACN6yN3CYDHRA7esw,974
|
|
108
|
+
pytcl/mathematical_functions/numerical_integration/quadrature.py,sha256=3MwNCjdMfopgtJjXWxn-q9VyawI1IArkNBXqa_kRMj4,15716
|
|
109
|
+
pytcl/mathematical_functions/polynomials/__init__.py,sha256=WJWZcoQhnvy5f59-kncMTgD9mCtgwfDgULvDYYHS5ys,43
|
|
110
|
+
pytcl/mathematical_functions/signal_processing/__init__.py,sha256=_SzzBVtxmSvP8FKeogRdNmFo8FOVDDoexVOqd-lE7do,2325
|
|
111
|
+
pytcl/mathematical_functions/signal_processing/detection.py,sha256=1Uok0p82t2zB7BWZB6GEkUCwuoM3WB8SRykTrVRdsIo,30612
|
|
112
|
+
pytcl/mathematical_functions/signal_processing/filters.py,sha256=xiB8VSFqTFkBCAom0yIWw7pK3Zjm6l-VZ_DAtwJMxFA,23676
|
|
113
|
+
pytcl/mathematical_functions/signal_processing/matched_filter.py,sha256=El7XcUbunmXA7s-btXX_R4fgNx8d6QNa86GJETg4zAQ,23134
|
|
114
|
+
pytcl/mathematical_functions/special_functions/__init__.py,sha256=AJBCKj32daQxdahUQckW0bWowzOoapxni2eZnVXERdg,3859
|
|
115
|
+
pytcl/mathematical_functions/special_functions/bessel.py,sha256=Xe62y2vrDwdJy3fR4U8_e8TAgisXIWJ94J7wu_xk0kI,14603
|
|
116
|
+
pytcl/mathematical_functions/special_functions/debye.py,sha256=eH7Y5qq5j-AMKKx7y8uMS_l_pb6z9_3SG6Igvnc1Fdg,9626
|
|
117
|
+
pytcl/mathematical_functions/special_functions/elliptic.py,sha256=WyzBkrfZufIR5dUmCKGcxp6KNpVDrU89NGLDyRrZOqQ,7418
|
|
118
|
+
pytcl/mathematical_functions/special_functions/error_functions.py,sha256=24-XRcAW-KF6ixEU5V7iB7brD8UVPPQ0b4Zz8gscRdw,6321
|
|
119
|
+
pytcl/mathematical_functions/special_functions/gamma_functions.py,sha256=XB7NHVgKzOEVKpUScqvG3L220bvwIRuUnm_ayO7lJRk,10243
|
|
120
|
+
pytcl/mathematical_functions/special_functions/hypergeometric.py,sha256=mCBf5NPl0mOkwvIwAUp-sbXshin5HyGsdqEeGbYt3wQ,11428
|
|
121
|
+
pytcl/mathematical_functions/special_functions/lambert_w.py,sha256=ivRc4KH5Lwoxb_yijrJEwG0ITa0hhcYF7_gCfVBBNW4,6855
|
|
122
|
+
pytcl/mathematical_functions/special_functions/marcum_q.py,sha256=OZ5QjIB1e_XvRG8A-3dbZ13YXHtdk2EYVEPaqtgVr14,9580
|
|
123
|
+
pytcl/mathematical_functions/statistics/__init__.py,sha256=dfypStgmnFmOrnWcm-3CEvLinONHraFgx9O66_37bqw,1278
|
|
124
|
+
pytcl/mathematical_functions/statistics/distributions.py,sha256=icfFIIKCEFzkpFHuYGWL197nm8wvS7UPJlr9kd_uEgw,19373
|
|
125
|
+
pytcl/mathematical_functions/statistics/estimators.py,sha256=TLnYXSwk5MzBakZrzDBupbOB3ONmJI7q1-oB2xuSVQM,10831
|
|
126
|
+
pytcl/mathematical_functions/transforms/__init__.py,sha256=SPXSKHjqR6B_8pvgtbtOnEiCpU-u0JF2s7hAlhb0BbI,2343
|
|
127
|
+
pytcl/mathematical_functions/transforms/fourier.py,sha256=yD1CcH7sdPlrOmBgL7JoMiPNgN8ee7bTwvblgRRf7l4,20823
|
|
128
|
+
pytcl/mathematical_functions/transforms/stft.py,sha256=olDzNH02Nta5GoeEdsdX1tTVKODr6OxLEYt_h3ZtMgA,18878
|
|
129
|
+
pytcl/mathematical_functions/transforms/wavelets.py,sha256=g7ra-uk-HnQmJRCj1VvJuuz8t8FW55kCENUkx0vPrP4,21807
|
|
130
|
+
pytcl/misc/__init__.py,sha256=SCHf_lQVfdl2gwUluHBiIloTF8HRH8EkgYfbNr7zOug,33
|
|
131
|
+
pytcl/navigation/__init__.py,sha256=k1_x_FnnPrIzGeNu7zejPtPubIhweBgCfwqlZJEMw0I,6042
|
|
132
|
+
pytcl/navigation/geodesy.py,sha256=zrpFhPFLr3N1byeE1pxXh-SmPixjuuoGK3_izEnAAdw,19719
|
|
133
|
+
pytcl/navigation/great_circle.py,sha256=u8iqMV6RNsAyzATzjJU11QFGA2pGEaiFJRakQwxTTs0,23326
|
|
134
|
+
pytcl/navigation/ins.py,sha256=OIi8_RjrgEYl0MFpJEFMjIlpgX8DYGTEhdLEvqG-ABU,31151
|
|
135
|
+
pytcl/navigation/ins_gnss.py,sha256=euKF5JGgwmVBsw3jBf7_wa2z1BpZeVbSNmBuwzhGS6c,30157
|
|
136
|
+
pytcl/navigation/rhumb.py,sha256=lr1c3iEXfoOSfIyyXSRWv6He5TlaxEHbJy-dhqM1gRw,18224
|
|
137
|
+
pytcl/performance_evaluation/__init__.py,sha256=tM2pnBfDb2XbnLt4Y5MQ6w6XBwFy_5bf_y0toZmxx88,1859
|
|
138
|
+
pytcl/performance_evaluation/estimation_metrics.py,sha256=X1ZCpp8m6DV14N2wbMvlRwfORRKga8DgKmG3dROyJqA,12351
|
|
139
|
+
pytcl/performance_evaluation/track_metrics.py,sha256=Nd3royJkAelZV-Qggl8i72e7WocCxWomgliArvVAEkc,13342
|
|
140
|
+
pytcl/physical_values/__init__.py,sha256=SGbg6b0d4dWebE3baW4OlJshL00grG5E4wABw6jxl20,44
|
|
141
|
+
pytcl/plotting/__init__.py,sha256=YtYnKYHL5lN6EaT_bwwR3h89NW0HSMToIWHhHBxcidY,3126
|
|
142
|
+
pytcl/plotting/coordinates.py,sha256=lTNBwlq_4hnQx_w6RIX6X35Ke3YMFvqV_huJrcFCvNs,17362
|
|
143
|
+
pytcl/plotting/ellipses.py,sha256=bcns6dfNK4bwA_QBshscYhbAz_5wegwyqjDzzoUdWsQ,12465
|
|
144
|
+
pytcl/plotting/metrics.py,sha256=zbJr5P2kQg7-rGpGHsN7rC02S0JLOpPUZeoscQem7uQ,18148
|
|
145
|
+
pytcl/plotting/tracks.py,sha256=3V_78oPEGi7lsTNk-lhYRffXWNHH0-Lj2oNw2HIKRJQ,23054
|
|
146
|
+
pytcl/scheduling/__init__.py,sha256=jTqMSKcsCrWU_Fh6WaT6BW5WatNHyyEYjFbsv6X18Oc,39
|
|
147
|
+
pytcl/static_estimation/__init__.py,sha256=sSEhqq35jq_MpRLnBtWjKXwGZ9dqIw71iwji-TNwXmc,2222
|
|
148
|
+
pytcl/static_estimation/least_squares.py,sha256=8ouOyRGC7K-W8fynZMWlc2-KAFojvTbuzcqi5uS_sVA,13432
|
|
149
|
+
pytcl/static_estimation/maximum_likelihood.py,sha256=nt1WShfZ0PlT_eA4gu2WcLiz9zZO9r90m_1PhWqDDgY,21821
|
|
150
|
+
pytcl/static_estimation/robust.py,sha256=mpDUcc3-8F42SVGxXMv20huzekoGWattAa4px9tAZNM,18623
|
|
151
|
+
pytcl/terrain/__init__.py,sha256=e7plNQI5Y_jpZ24r82AgqdX0ChmmyYoeT7HReclnGXc,3228
|
|
152
|
+
pytcl/terrain/dem.py,sha256=rg2o0h0ZDrfxvtYhnE2A5tdzRnCmqcihu4w1uNJdH3Y,20814
|
|
153
|
+
pytcl/terrain/loaders.py,sha256=FGRnyzKh03LrpXICocbIK3MhTW7o9nsVvsm3iuIUqK4,27066
|
|
154
|
+
pytcl/terrain/visibility.py,sha256=nIJr9AVk7C8GCpJV4UDvUjhmAieycWD8BLepAMUBMIQ,22739
|
|
155
|
+
pytcl/trackers/__init__.py,sha256=Gw79xlSIUzdPV8bN1slNWUlGxE3d-NsVmbMygkYVV20,1151
|
|
156
|
+
pytcl/trackers/hypothesis.py,sha256=ubK-q89cYayahSHIw5sVYD1fpRUEB0XvC6rQnI1WACA,17361
|
|
157
|
+
pytcl/trackers/mht.py,sha256=osEOXMaCeTt1eVn_E08dLRhEvBroVmf8b81zO5Zp1lU,20720
|
|
158
|
+
pytcl/trackers/multi_target.py,sha256=RDITa0xnbgtVYAMj5XXp4lljo5lZ2zAAc02KZlOjxbQ,10526
|
|
159
|
+
pytcl/trackers/single_target.py,sha256=Yy3FwaNTArMWcaod-0HVeiioNV4xLWxNDn_7ZPVqQYs,6562
|
|
160
|
+
pytcl/transponders/__init__.py,sha256=5fL4u3lKCYgPLo5uFeuZbtRZkJPABntuKYGUvVgMMEI,41
|
|
161
|
+
nrl_tracker-1.7.5.dist-info/LICENSE,sha256=rB5G4WppIIUzMOYr2N6uyYlNJ00hRJqE5tie6BMvYuE,1612
|
|
162
|
+
nrl_tracker-1.7.5.dist-info/METADATA,sha256=VaT708s9KWzDJuK9iwP-dqOVZ-CLp0T2IDLXfXWoFRw,12452
|
|
163
|
+
nrl_tracker-1.7.5.dist-info/WHEEL,sha256=pL8R0wFFS65tNSRnaOVrsw9EOkOqxLrlUPenUYnJKNo,91
|
|
164
|
+
nrl_tracker-1.7.5.dist-info/top_level.txt,sha256=17megxcrTPBWwPZTh6jTkwTKxX7No-ZqRpyvElnnO-s,6
|
|
165
|
+
nrl_tracker-1.7.5.dist-info/RECORD,,
|
pytcl/__init__.py
CHANGED
|
@@ -6,7 +6,8 @@ systems, dynamic models, estimation algorithms, and mathematical functions.
|
|
|
6
6
|
|
|
7
7
|
This is a Python port of the U.S. Naval Research Laboratory's Tracker Component
|
|
8
8
|
Library originally written in MATLAB.
|
|
9
|
-
|
|
9
|
+
**Current Version:** 1.7.4 (January 4, 2026)
|
|
10
|
+
**Status:** Production-ready, 2,057 tests passing, 76% line coverage
|
|
10
11
|
Examples
|
|
11
12
|
--------
|
|
12
13
|
>>> import pytcl as pytcl
|
|
@@ -20,7 +21,7 @@ References
|
|
|
20
21
|
no. 5, pp. 18-27, May 2017.
|
|
21
22
|
"""
|
|
22
23
|
|
|
23
|
-
__version__ = "
|
|
24
|
+
__version__ = "1.7.5"
|
|
24
25
|
__author__ = "Python Port Contributors"
|
|
25
26
|
__original_author__ = "David F. Crouse, Naval Research Laboratory"
|
|
26
27
|
|
|
@@ -44,7 +45,7 @@ from pytcl import (
|
|
|
44
45
|
|
|
45
46
|
# Version tuple for programmatic access
|
|
46
47
|
# Handle dev/alpha/beta/rc suffixes by extracting only numeric parts
|
|
47
|
-
def _parse_version(version_str):
|
|
48
|
+
def _parse_version(version_str: str) -> tuple[int, ...]:
|
|
48
49
|
"""Parse version string into tuple of integers."""
|
|
49
50
|
import re
|
|
50
51
|
|
|
@@ -32,6 +32,21 @@ from pytcl.assignment_algorithms.jpda import (
|
|
|
32
32
|
jpda_probabilities,
|
|
33
33
|
jpda_update,
|
|
34
34
|
)
|
|
35
|
+
from pytcl.assignment_algorithms.nd_assignment import (
|
|
36
|
+
AssignmentNDResult,
|
|
37
|
+
auction_assignment_nd,
|
|
38
|
+
detect_dimension_conflicts,
|
|
39
|
+
greedy_assignment_nd,
|
|
40
|
+
relaxation_assignment_nd,
|
|
41
|
+
validate_cost_tensor,
|
|
42
|
+
)
|
|
43
|
+
from pytcl.assignment_algorithms.network_flow import (
|
|
44
|
+
FlowStatus,
|
|
45
|
+
MinCostFlowResult,
|
|
46
|
+
assignment_to_flow_network,
|
|
47
|
+
min_cost_assignment_via_flow,
|
|
48
|
+
min_cost_flow_successive_shortest_paths,
|
|
49
|
+
)
|
|
35
50
|
from pytcl.assignment_algorithms.three_dimensional import (
|
|
36
51
|
Assignment3DResult,
|
|
37
52
|
assign3d,
|
|
@@ -91,4 +106,17 @@ __all__ = [
|
|
|
91
106
|
"jpda_update",
|
|
92
107
|
"jpda_probabilities",
|
|
93
108
|
"compute_likelihood_matrix",
|
|
109
|
+
# N-Dimensional Assignment (4D+)
|
|
110
|
+
"AssignmentNDResult",
|
|
111
|
+
"validate_cost_tensor",
|
|
112
|
+
"greedy_assignment_nd",
|
|
113
|
+
"relaxation_assignment_nd",
|
|
114
|
+
"auction_assignment_nd",
|
|
115
|
+
"detect_dimension_conflicts",
|
|
116
|
+
# Network Flow-Based Assignment
|
|
117
|
+
"FlowStatus",
|
|
118
|
+
"MinCostFlowResult",
|
|
119
|
+
"assignment_to_flow_network",
|
|
120
|
+
"min_cost_flow_successive_shortest_paths",
|
|
121
|
+
"min_cost_assignment_via_flow",
|
|
94
122
|
]
|
|
@@ -10,13 +10,8 @@ from typing import List, NamedTuple, Optional
|
|
|
10
10
|
import numpy as np
|
|
11
11
|
from numpy.typing import ArrayLike, NDArray
|
|
12
12
|
|
|
13
|
-
from pytcl.assignment_algorithms.gating import
|
|
14
|
-
|
|
15
|
-
mahalanobis_distance,
|
|
16
|
-
)
|
|
17
|
-
from pytcl.assignment_algorithms.two_dimensional import (
|
|
18
|
-
assign2d,
|
|
19
|
-
)
|
|
13
|
+
from pytcl.assignment_algorithms.gating import mahalanobis_batch, mahalanobis_distance
|
|
14
|
+
from pytcl.assignment_algorithms.two_dimensional import assign2d
|
|
20
15
|
|
|
21
16
|
|
|
22
17
|
class AssociationResult(NamedTuple):
|
|
@@ -5,7 +5,7 @@ This module provides gating methods to determine which measurements
|
|
|
5
5
|
fall within a validation region around predicted track states.
|
|
6
6
|
"""
|
|
7
7
|
|
|
8
|
-
from typing import List, Tuple
|
|
8
|
+
from typing import Any, List, Tuple
|
|
9
9
|
|
|
10
10
|
import numpy as np
|
|
11
11
|
from numba import njit
|
|
@@ -15,8 +15,8 @@ from scipy.stats import chi2
|
|
|
15
15
|
|
|
16
16
|
@njit(cache=True, fastmath=True)
|
|
17
17
|
def _mahalanobis_distance_2d(
|
|
18
|
-
innovation: np.ndarray,
|
|
19
|
-
S_inv: np.ndarray,
|
|
18
|
+
innovation: np.ndarray[Any, Any],
|
|
19
|
+
S_inv: np.ndarray[Any, Any],
|
|
20
20
|
) -> float:
|
|
21
21
|
"""JIT-compiled Mahalanobis distance for 2D innovations."""
|
|
22
22
|
return innovation[0] * (
|
|
@@ -26,8 +26,8 @@ def _mahalanobis_distance_2d(
|
|
|
26
26
|
|
|
27
27
|
@njit(cache=True, fastmath=True)
|
|
28
28
|
def _mahalanobis_distance_3d(
|
|
29
|
-
innovation: np.ndarray,
|
|
30
|
-
S_inv: np.ndarray,
|
|
29
|
+
innovation: np.ndarray[Any, Any],
|
|
30
|
+
S_inv: np.ndarray[Any, Any],
|
|
31
31
|
) -> float:
|
|
32
32
|
"""JIT-compiled Mahalanobis distance for 3D innovations."""
|
|
33
33
|
result = 0.0
|
|
@@ -39,8 +39,8 @@ def _mahalanobis_distance_3d(
|
|
|
39
39
|
|
|
40
40
|
@njit(cache=True, fastmath=True)
|
|
41
41
|
def _mahalanobis_distance_general(
|
|
42
|
-
innovation: np.ndarray,
|
|
43
|
-
S_inv: np.ndarray,
|
|
42
|
+
innovation: np.ndarray[Any, Any],
|
|
43
|
+
S_inv: np.ndarray[Any, Any],
|
|
44
44
|
) -> float:
|
|
45
45
|
"""JIT-compiled Mahalanobis distance for general dimension."""
|
|
46
46
|
n = len(innovation)
|
|
@@ -341,9 +341,9 @@ def compute_gate_volume(
|
|
|
341
341
|
|
|
342
342
|
@njit(cache=True, fastmath=True, parallel=False)
|
|
343
343
|
def mahalanobis_batch(
|
|
344
|
-
innovations: np.ndarray,
|
|
345
|
-
S_inv: np.ndarray,
|
|
346
|
-
output: np.ndarray,
|
|
344
|
+
innovations: np.ndarray[Any, Any],
|
|
345
|
+
S_inv: np.ndarray[Any, Any],
|
|
346
|
+
output: np.ndarray[Any, Any],
|
|
347
347
|
) -> None:
|
|
348
348
|
"""
|
|
349
349
|
Compute Mahalanobis distances for a batch of innovations.
|
|
@@ -9,7 +9,7 @@ This is more sophisticated than GNN which makes hard assignment decisions,
|
|
|
9
9
|
as JPDA can handle measurement origin uncertainty in cluttered environments.
|
|
10
10
|
"""
|
|
11
11
|
|
|
12
|
-
from typing import List, NamedTuple, Optional
|
|
12
|
+
from typing import Any, List, NamedTuple, Optional
|
|
13
13
|
|
|
14
14
|
import numpy as np
|
|
15
15
|
from numba import njit
|
|
@@ -24,7 +24,7 @@ class JPDAResult(NamedTuple):
|
|
|
24
24
|
|
|
25
25
|
Attributes
|
|
26
26
|
----------
|
|
27
|
-
association_probs : ndarray
|
|
27
|
+
association_probs : ndarray[Any]
|
|
28
28
|
Association probability matrix of shape (n_tracks, n_measurements + 1).
|
|
29
29
|
association_probs[i, j] is the probability that track i is associated
|
|
30
30
|
with measurement j. The last column (j = n_measurements) represents
|
|
@@ -32,9 +32,9 @@ class JPDAResult(NamedTuple):
|
|
|
32
32
|
marginal_probs : list of ndarray
|
|
33
33
|
List of marginal association probabilities for each track.
|
|
34
34
|
marginal_probs[i][j] = P(measurement j originated from track i).
|
|
35
|
-
likelihood_matrix : ndarray
|
|
35
|
+
likelihood_matrix : ndarray[Any]
|
|
36
36
|
Measurement likelihood matrix of shape (n_tracks, n_measurements).
|
|
37
|
-
gated : ndarray
|
|
37
|
+
gated : ndarray[Any]
|
|
38
38
|
Boolean matrix indicating which track-measurement pairs passed gating.
|
|
39
39
|
"""
|
|
40
40
|
|
|
@@ -53,7 +53,7 @@ class JPDAUpdate(NamedTuple):
|
|
|
53
53
|
Updated state estimates for each track.
|
|
54
54
|
covariances : list of ndarray
|
|
55
55
|
Updated covariances for each track (includes spread of means).
|
|
56
|
-
association_probs : ndarray
|
|
56
|
+
association_probs : ndarray[Any]
|
|
57
57
|
Association probability matrix.
|
|
58
58
|
innovations : list of ndarray
|
|
59
59
|
Combined weighted innovations for each track.
|
|
@@ -66,8 +66,8 @@ class JPDAUpdate(NamedTuple):
|
|
|
66
66
|
|
|
67
67
|
|
|
68
68
|
def compute_measurement_likelihood(
|
|
69
|
-
innovation: NDArray,
|
|
70
|
-
innovation_cov: NDArray,
|
|
69
|
+
innovation: NDArray[Any],
|
|
70
|
+
innovation_cov: NDArray[Any],
|
|
71
71
|
detection_prob: float = 1.0,
|
|
72
72
|
) -> float:
|
|
73
73
|
"""
|
|
@@ -75,9 +75,9 @@ def compute_measurement_likelihood(
|
|
|
75
75
|
|
|
76
76
|
Parameters
|
|
77
77
|
----------
|
|
78
|
-
innovation : ndarray
|
|
78
|
+
innovation : ndarray[Any]
|
|
79
79
|
Measurement innovation (residual), shape (m,).
|
|
80
|
-
innovation_cov : ndarray
|
|
80
|
+
innovation_cov : ndarray[Any]
|
|
81
81
|
Innovation covariance, shape (m, m).
|
|
82
82
|
detection_prob : float
|
|
83
83
|
Probability of detection (Pd).
|
|
@@ -102,14 +102,14 @@ def compute_measurement_likelihood(
|
|
|
102
102
|
|
|
103
103
|
|
|
104
104
|
def compute_likelihood_matrix(
|
|
105
|
-
track_states:
|
|
106
|
-
track_covariances:
|
|
107
|
-
measurements: NDArray,
|
|
108
|
-
H: NDArray,
|
|
109
|
-
R: NDArray,
|
|
105
|
+
track_states: list[NDArray[Any]],
|
|
106
|
+
track_covariances: list[NDArray[Any]],
|
|
107
|
+
measurements: NDArray[Any],
|
|
108
|
+
H: NDArray[Any],
|
|
109
|
+
R: NDArray[Any],
|
|
110
110
|
detection_prob: float = 1.0,
|
|
111
111
|
gate_threshold: Optional[float] = None,
|
|
112
|
-
) ->
|
|
112
|
+
) -> tuple[NDArray[Any], NDArray[Any]]:
|
|
113
113
|
"""
|
|
114
114
|
Compute likelihood matrix for all track-measurement pairs.
|
|
115
115
|
|
|
@@ -119,11 +119,11 @@ def compute_likelihood_matrix(
|
|
|
119
119
|
State estimates for each track.
|
|
120
120
|
track_covariances : list of ndarray
|
|
121
121
|
Covariances for each track.
|
|
122
|
-
measurements : ndarray
|
|
122
|
+
measurements : ndarray[Any]
|
|
123
123
|
Measurements, shape (n_meas, m).
|
|
124
|
-
H : ndarray
|
|
124
|
+
H : ndarray[Any]
|
|
125
125
|
Measurement matrix, shape (m, n).
|
|
126
|
-
R : ndarray
|
|
126
|
+
R : ndarray[Any]
|
|
127
127
|
Measurement noise covariance, shape (m, m).
|
|
128
128
|
detection_prob : float
|
|
129
129
|
Probability of detection.
|
|
@@ -132,9 +132,9 @@ def compute_likelihood_matrix(
|
|
|
132
132
|
|
|
133
133
|
Returns
|
|
134
134
|
-------
|
|
135
|
-
likelihood_matrix : ndarray
|
|
135
|
+
likelihood_matrix : ndarray[Any]
|
|
136
136
|
Likelihood values, shape (n_tracks, n_meas).
|
|
137
|
-
gated : ndarray
|
|
137
|
+
gated : ndarray[Any]
|
|
138
138
|
Boolean gating matrix, shape (n_tracks, n_meas).
|
|
139
139
|
"""
|
|
140
140
|
n_tracks = len(track_states)
|
|
@@ -163,11 +163,11 @@ def compute_likelihood_matrix(
|
|
|
163
163
|
|
|
164
164
|
|
|
165
165
|
def jpda_probabilities(
|
|
166
|
-
likelihood_matrix: NDArray,
|
|
167
|
-
gated: NDArray,
|
|
166
|
+
likelihood_matrix: NDArray[Any],
|
|
167
|
+
gated: NDArray[Any],
|
|
168
168
|
detection_prob: float = 1.0,
|
|
169
169
|
clutter_density: float = 1e-6,
|
|
170
|
-
) -> NDArray:
|
|
170
|
+
) -> NDArray[Any]:
|
|
171
171
|
"""
|
|
172
172
|
Compute JPDA association probabilities.
|
|
173
173
|
|
|
@@ -176,9 +176,9 @@ def jpda_probabilities(
|
|
|
176
176
|
|
|
177
177
|
Parameters
|
|
178
178
|
----------
|
|
179
|
-
likelihood_matrix : ndarray
|
|
179
|
+
likelihood_matrix : ndarray[Any]
|
|
180
180
|
Likelihood values, shape (n_tracks, n_meas).
|
|
181
|
-
gated : ndarray
|
|
181
|
+
gated : ndarray[Any]
|
|
182
182
|
Boolean gating matrix, shape (n_tracks, n_meas).
|
|
183
183
|
detection_prob : float
|
|
184
184
|
Probability of detection (Pd).
|
|
@@ -187,7 +187,7 @@ def jpda_probabilities(
|
|
|
187
187
|
|
|
188
188
|
Returns
|
|
189
189
|
-------
|
|
190
|
-
beta : ndarray
|
|
190
|
+
beta : ndarray[Any]
|
|
191
191
|
Association probability matrix, shape (n_tracks, n_meas + 1).
|
|
192
192
|
beta[i, j] = P(measurement j is from track i) for j < n_meas.
|
|
193
193
|
beta[i, n_meas] = P(track i has no measurement).
|
|
@@ -218,11 +218,11 @@ def jpda_probabilities(
|
|
|
218
218
|
|
|
219
219
|
|
|
220
220
|
def _jpda_exact(
|
|
221
|
-
likelihood_matrix: NDArray,
|
|
222
|
-
gated: NDArray,
|
|
221
|
+
likelihood_matrix: NDArray[Any],
|
|
222
|
+
gated: NDArray[Any],
|
|
223
223
|
detection_prob: float,
|
|
224
224
|
clutter_density: float,
|
|
225
|
-
) -> NDArray:
|
|
225
|
+
) -> NDArray[Any]:
|
|
226
226
|
"""
|
|
227
227
|
Exact JPDA computation via hypothesis enumeration.
|
|
228
228
|
|
|
@@ -241,8 +241,8 @@ def _jpda_exact(
|
|
|
241
241
|
def generate_hypotheses(
|
|
242
242
|
meas_idx: int,
|
|
243
243
|
current_assignment: List[int],
|
|
244
|
-
used_tracks: set,
|
|
245
|
-
):
|
|
244
|
+
used_tracks: set[Any],
|
|
245
|
+
) -> Any:
|
|
246
246
|
"""Recursively generate valid hypotheses."""
|
|
247
247
|
if meas_idx == n_meas:
|
|
248
248
|
yield current_assignment.copy()
|
|
@@ -268,11 +268,11 @@ def _jpda_exact(
|
|
|
268
268
|
hypothesis_probs = []
|
|
269
269
|
hypothesis_assignments = []
|
|
270
270
|
|
|
271
|
-
for assignment in generate_hypotheses(0, [], set()):
|
|
271
|
+
for assignment in generate_hypotheses(0, [], set[Any]()):
|
|
272
272
|
# Compute probability of this hypothesis
|
|
273
273
|
prob = 1.0
|
|
274
274
|
|
|
275
|
-
detected_tracks = set()
|
|
275
|
+
detected_tracks = set[Any]()
|
|
276
276
|
for j, track_idx in enumerate(assignment):
|
|
277
277
|
if track_idx == -1:
|
|
278
278
|
# Measurement j is clutter
|
|
@@ -301,7 +301,7 @@ def _jpda_exact(
|
|
|
301
301
|
for h_idx, (assignment, prob) in enumerate(
|
|
302
302
|
zip(hypothesis_assignments, hypothesis_probs)
|
|
303
303
|
):
|
|
304
|
-
detected_tracks = set()
|
|
304
|
+
detected_tracks = set[Any]()
|
|
305
305
|
for j, track_idx in enumerate(assignment):
|
|
306
306
|
if track_idx >= 0:
|
|
307
307
|
beta[track_idx, j] += prob
|
|
@@ -317,11 +317,11 @@ def _jpda_exact(
|
|
|
317
317
|
|
|
318
318
|
@njit(cache=True)
|
|
319
319
|
def _jpda_approximate_core(
|
|
320
|
-
likelihood_matrix: np.ndarray,
|
|
321
|
-
gated: np.ndarray,
|
|
320
|
+
likelihood_matrix: np.ndarray[Any, Any],
|
|
321
|
+
gated: np.ndarray[Any, Any],
|
|
322
322
|
detection_prob: float,
|
|
323
323
|
clutter_density: float,
|
|
324
|
-
) -> np.ndarray:
|
|
324
|
+
) -> np.ndarray[Any, Any]:
|
|
325
325
|
"""JIT-compiled core of approximate JPDA computation."""
|
|
326
326
|
n_tracks = likelihood_matrix.shape[0]
|
|
327
327
|
n_meas = likelihood_matrix.shape[1]
|
|
@@ -369,11 +369,11 @@ def _jpda_approximate_core(
|
|
|
369
369
|
|
|
370
370
|
|
|
371
371
|
def _jpda_approximate(
|
|
372
|
-
likelihood_matrix: NDArray,
|
|
373
|
-
gated: NDArray,
|
|
372
|
+
likelihood_matrix: NDArray[Any],
|
|
373
|
+
gated: NDArray[Any],
|
|
374
374
|
detection_prob: float,
|
|
375
375
|
clutter_density: float,
|
|
376
|
-
) -> NDArray:
|
|
376
|
+
) -> NDArray[Any]:
|
|
377
377
|
"""
|
|
378
378
|
Approximate JPDA using parametric approach.
|
|
379
379
|
|