nrl-tracker 0.21.4__py3-none-any.whl → 1.7.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (95) hide show
  1. {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/METADATA +57 -10
  2. nrl_tracker-1.7.5.dist-info/RECORD +165 -0
  3. pytcl/__init__.py +4 -3
  4. pytcl/assignment_algorithms/__init__.py +28 -0
  5. pytcl/assignment_algorithms/data_association.py +2 -7
  6. pytcl/assignment_algorithms/gating.py +10 -10
  7. pytcl/assignment_algorithms/jpda.py +40 -40
  8. pytcl/assignment_algorithms/nd_assignment.py +379 -0
  9. pytcl/assignment_algorithms/network_flow.py +371 -0
  10. pytcl/assignment_algorithms/three_dimensional/assignment.py +3 -3
  11. pytcl/astronomical/__init__.py +162 -8
  12. pytcl/astronomical/ephemerides.py +533 -0
  13. pytcl/astronomical/reference_frames.py +865 -56
  14. pytcl/astronomical/relativity.py +473 -0
  15. pytcl/astronomical/sgp4.py +710 -0
  16. pytcl/astronomical/special_orbits.py +532 -0
  17. pytcl/astronomical/tle.py +558 -0
  18. pytcl/atmosphere/__init__.py +45 -3
  19. pytcl/atmosphere/ionosphere.py +512 -0
  20. pytcl/atmosphere/nrlmsise00.py +809 -0
  21. pytcl/clustering/dbscan.py +2 -2
  22. pytcl/clustering/gaussian_mixture.py +3 -3
  23. pytcl/clustering/hierarchical.py +15 -15
  24. pytcl/clustering/kmeans.py +4 -4
  25. pytcl/containers/__init__.py +28 -21
  26. pytcl/containers/base.py +219 -0
  27. pytcl/containers/cluster_set.py +2 -1
  28. pytcl/containers/covertree.py +26 -29
  29. pytcl/containers/kd_tree.py +94 -29
  30. pytcl/containers/measurement_set.py +1 -9
  31. pytcl/containers/rtree.py +200 -1
  32. pytcl/containers/vptree.py +21 -28
  33. pytcl/coordinate_systems/conversions/geodetic.py +272 -5
  34. pytcl/coordinate_systems/jacobians/jacobians.py +2 -2
  35. pytcl/coordinate_systems/projections/__init__.py +4 -2
  36. pytcl/coordinate_systems/projections/projections.py +2 -2
  37. pytcl/coordinate_systems/rotations/rotations.py +10 -6
  38. pytcl/core/__init__.py +18 -0
  39. pytcl/core/validation.py +333 -2
  40. pytcl/dynamic_estimation/__init__.py +26 -0
  41. pytcl/dynamic_estimation/gaussian_sum_filter.py +434 -0
  42. pytcl/dynamic_estimation/imm.py +15 -18
  43. pytcl/dynamic_estimation/kalman/__init__.py +30 -0
  44. pytcl/dynamic_estimation/kalman/constrained.py +382 -0
  45. pytcl/dynamic_estimation/kalman/extended.py +9 -12
  46. pytcl/dynamic_estimation/kalman/h_infinity.py +613 -0
  47. pytcl/dynamic_estimation/kalman/square_root.py +60 -573
  48. pytcl/dynamic_estimation/kalman/sr_ukf.py +302 -0
  49. pytcl/dynamic_estimation/kalman/ud_filter.py +410 -0
  50. pytcl/dynamic_estimation/kalman/unscented.py +9 -10
  51. pytcl/dynamic_estimation/particle_filters/bootstrap.py +15 -15
  52. pytcl/dynamic_estimation/rbpf.py +589 -0
  53. pytcl/dynamic_estimation/smoothers.py +1 -5
  54. pytcl/dynamic_models/discrete_time/__init__.py +1 -5
  55. pytcl/dynamic_models/process_noise/__init__.py +1 -5
  56. pytcl/gravity/egm.py +13 -0
  57. pytcl/gravity/spherical_harmonics.py +98 -37
  58. pytcl/gravity/tides.py +6 -6
  59. pytcl/logging_config.py +328 -0
  60. pytcl/magnetism/__init__.py +10 -14
  61. pytcl/magnetism/emm.py +10 -3
  62. pytcl/magnetism/wmm.py +260 -23
  63. pytcl/mathematical_functions/combinatorics/combinatorics.py +5 -5
  64. pytcl/mathematical_functions/geometry/geometry.py +5 -5
  65. pytcl/mathematical_functions/interpolation/__init__.py +2 -2
  66. pytcl/mathematical_functions/numerical_integration/quadrature.py +6 -6
  67. pytcl/mathematical_functions/signal_processing/detection.py +24 -24
  68. pytcl/mathematical_functions/signal_processing/filters.py +14 -14
  69. pytcl/mathematical_functions/signal_processing/matched_filter.py +12 -12
  70. pytcl/mathematical_functions/special_functions/__init__.py +2 -2
  71. pytcl/mathematical_functions/special_functions/bessel.py +15 -3
  72. pytcl/mathematical_functions/special_functions/debye.py +136 -26
  73. pytcl/mathematical_functions/special_functions/error_functions.py +3 -1
  74. pytcl/mathematical_functions/special_functions/gamma_functions.py +4 -4
  75. pytcl/mathematical_functions/special_functions/hypergeometric.py +81 -15
  76. pytcl/mathematical_functions/transforms/fourier.py +8 -8
  77. pytcl/mathematical_functions/transforms/stft.py +12 -12
  78. pytcl/mathematical_functions/transforms/wavelets.py +9 -9
  79. pytcl/navigation/__init__.py +14 -10
  80. pytcl/navigation/geodesy.py +246 -160
  81. pytcl/navigation/great_circle.py +101 -19
  82. pytcl/navigation/ins.py +1 -5
  83. pytcl/plotting/coordinates.py +7 -7
  84. pytcl/plotting/tracks.py +2 -2
  85. pytcl/static_estimation/maximum_likelihood.py +16 -14
  86. pytcl/static_estimation/robust.py +5 -5
  87. pytcl/terrain/loaders.py +5 -5
  88. pytcl/trackers/__init__.py +3 -14
  89. pytcl/trackers/hypothesis.py +1 -1
  90. pytcl/trackers/mht.py +9 -9
  91. pytcl/trackers/multi_target.py +2 -5
  92. nrl_tracker-0.21.4.dist-info/RECORD +0 -148
  93. {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/LICENSE +0 -0
  94. {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/WHEEL +0 -0
  95. {nrl_tracker-0.21.4.dist-info → nrl_tracker-1.7.5.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: nrl-tracker
3
- Version: 0.21.4
3
+ Version: 1.7.5
4
4
  Summary: Python port of the U.S. Naval Research Laboratory's Tracker Component Library for target tracking algorithms
5
5
  Author: Original: David F. Crouse, Naval Research Laboratory
6
6
  Maintainer: Python Port Contributors
@@ -34,10 +34,13 @@ Requires-Dist: nrl-tracker[astronomy,dev,geodesy,optimization,signal,visualizati
34
34
  Provides-Extra: astronomy
35
35
  Requires-Dist: astropy>=5.0; extra == "astronomy"
36
36
  Requires-Dist: jplephem>=2.18; extra == "astronomy"
37
+ Provides-Extra: benchmark
38
+ Requires-Dist: pytest-benchmark>=4.0.0; extra == "benchmark"
37
39
  Provides-Extra: dev
38
40
  Requires-Dist: pytest>=7.0.0; extra == "dev"
39
41
  Requires-Dist: pytest-cov>=4.0.0; extra == "dev"
40
42
  Requires-Dist: pytest-xdist>=3.0.0; extra == "dev"
43
+ Requires-Dist: pytest-benchmark>=4.0.0; extra == "dev"
41
44
  Requires-Dist: hypothesis>=6.0.0; extra == "dev"
42
45
  Requires-Dist: black>=23.0.0; extra == "dev"
43
46
  Requires-Dist: isort>=5.12.0; extra == "dev"
@@ -60,15 +63,17 @@ Requires-Dist: plotly>=5.15.0; extra == "visualization"
60
63
 
61
64
  # Tracker Component Library (Python)
62
65
 
63
- [![PyPI version](https://img.shields.io/badge/pypi-v0.21.4-blue.svg)](https://pypi.org/project/nrl-tracker/)
66
+ [![PyPI version](https://img.shields.io/badge/pypi-v1.7.2-blue.svg)](https://pypi.org/project/nrl-tracker/)
64
67
  [![Python 3.10+](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/)
65
68
  [![License: Public Domain](https://img.shields.io/badge/License-Public%20Domain-brightgreen.svg)](https://en.wikipedia.org/wiki/Public_domain)
66
69
  [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
67
- [![Tests](https://img.shields.io/badge/tests-1530%20passing-success.svg)](https://github.com/nedonatelli/TCL)
70
+ [![Tests](https://img.shields.io/badge/tests-1988%20passing-success.svg)](https://github.com/nedonatelli/TCL)
71
+ [![MATLAB Parity](https://img.shields.io/badge/MATLAB%20Parity-100%25-brightgreen.svg)](docs/gap_analysis.rst)
72
+ [![Type Checking](https://img.shields.io/badge/mypy--strict-passing-brightgreen.svg)](mypy.ini)
68
73
 
69
74
  A Python port of the [U.S. Naval Research Laboratory's Tracker Component Library](https://github.com/USNavalResearchLaboratory/TrackerComponentLibrary), a comprehensive collection of algorithms for target tracking, estimation, coordinate systems, and related mathematical functions.
70
75
 
71
- **800+ functions** | **144 modules** | **1,530 tests** | **15+ algorithm categories**
76
+ **1,070+ functions** | **153 modules** | **1,988 tests** | **100% MATLAB parity**
72
77
 
73
78
  ## Overview
74
79
 
@@ -76,12 +81,15 @@ The Tracker Component Library provides building blocks for developing target tra
76
81
 
77
82
  - **Coordinate Systems**: Conversions between Cartesian, spherical, geodetic, and other coordinate systems
78
83
  - **Dynamic Models**: State transition matrices for constant velocity, coordinated turn, and other motion models
79
- - **Estimation Algorithms**: Kalman filters (EKF, UKF, etc.), particle filters, and batch estimation
80
- - **Assignment Algorithms**: Hungarian algorithm, auction algorithms, and multi-dimensional assignment
84
+ - **Estimation Algorithms**: Kalman filters (EKF, UKF, CKF, H-infinity), particle filters, smoothers, and batch estimation
85
+ - **Assignment Algorithms**: Hungarian algorithm, auction algorithms, 3D/ND assignment, k-best assignments
86
+ - **Data Association**: Global Nearest Neighbor, JPDA, MHT for multi-target tracking
81
87
  - **Mathematical Functions**: Special functions, statistics, numerical integration, and more
82
- - **Astronomical Code**: Ephemeris calculations, time systems, celestial mechanics
83
- - **Navigation**: Geodetic calculations, INS algorithms, GNSS utilities
84
- - **Geophysical Models**: Gravity, magnetism, atmosphere, and terrain models
88
+ - **Astronomical Code**: SGP4/SDP4 propagation, TLE parsing, special orbits (parabolic/hyperbolic), ephemerides, relativistic corrections
89
+ - **Reference Frames**: GCRF, ITRF, TEME, TOD, MOD with full transformation chains
90
+ - **Navigation**: Geodetic calculations, INS mechanization, GNSS utilities, INS/GNSS integration
91
+ - **Geophysical Models**: Gravity (WGS84, EGM96/2008), magnetism (WMM, IGRF), atmosphere, tides, terrain
92
+ - **Signal Processing**: Digital filters, matched filtering, CFAR detection, transforms (FFT, STFT, wavelets)
85
93
 
86
94
  ## Installation
87
95
 
@@ -201,7 +209,46 @@ pytcl/
201
209
 
202
210
  - [API Reference](https://pytcl.readthedocs.io/en/latest/api/)
203
211
  - [User Guides](https://pytcl.readthedocs.io/en/latest/user_guide/)
204
- - [Examples](examples/)
212
+ - [Examples](examples/) - 29 validated example scripts
213
+ - [Tutorials](docs/tutorials/) - 10 interactive tutorial modules
214
+
215
+ ## Examples & Tutorials
216
+
217
+ The library includes 39 runnable code examples demonstrating all major features:
218
+
219
+ ### Examples (29 files in `/examples/`)
220
+
221
+ Comprehensive demonstrations of library functionality:
222
+ - **Tracking & Estimation**: Kalman filters, particle filters, smoothers
223
+ - **Assignment**: Hungarian algorithm, k-best assignments, 3D assignment
224
+ - **Coordinates**: Frame conversions, transformations, geodetic calculations
225
+ - **Dynamics**: State models, motion models, dynamic systems
226
+ - **Filtering**: Uncertainty visualization, multi-target tracking
227
+ - **Astronomy**: Ephemerides, orbital mechanics, relativistic corrections
228
+ - **Navigation**: INS/GNSS integration, geophysical modeling
229
+ - **Signal Processing**: Detection, filtering, transforms
230
+ - **Terrain & Atmosphere**: Elevation models, atmospheric properties
231
+
232
+ **Status**: ✅ All 29 examples validated and passing (100% execution success)
233
+
234
+ ### Tutorials (10 modules in `/docs/tutorials/`)
235
+
236
+ Interactive learning modules with visualizations:
237
+ - Assignment algorithms and 3D assignment problems
238
+ - Atmospheric and geophysical models
239
+ - Dynamical systems and reference frames
240
+ - Filtering and smoothing techniques
241
+ - Sensor fusion and advanced filtering
242
+ - Special functions and mathematical tools
243
+
244
+ **Status**: ✅ All 10 tutorials validated and passing (100% execution success)
245
+
246
+ ## Documentation
247
+
248
+ - [API Reference](https://pytcl.readthedocs.io/en/latest/api/)
249
+ - [User Guides](https://pytcl.readthedocs.io/en/latest/user_guide/)
250
+ - [Examples](examples/) - 29 validated example scripts
251
+ - [Tutorials](docs/tutorials/) - 10 interactive tutorial modules
205
252
 
206
253
  ## Comparison with Original MATLAB Library
207
254
 
@@ -0,0 +1,165 @@
1
+ pytcl/__init__.py,sha256=k9vpQYy3jGUCAVi6y6m87KltSc7kPBYrWXVlXh6j63E,2030
2
+ pytcl/logging_config.py,sha256=UJaYufQgNuIjpsOMTPo3ewz1XCHPk8a08jTHyP7uoI4,8956
3
+ pytcl/assignment_algorithms/__init__.py,sha256=kUWhmyLhZcs5GiUQA5_v7KA3qETGsvqV6wU8r7paO-k,2976
4
+ pytcl/assignment_algorithms/data_association.py,sha256=tsRxWJZk9aAPmE99BKXGouEpFfZrjPjb4HXvgxFUHhU,11405
5
+ pytcl/assignment_algorithms/gating.py,sha256=AXWn-F_EOGI6qrBc4PN5eFM-ZZGu1WOMi5b5ZsxValU,10910
6
+ pytcl/assignment_algorithms/jpda.py,sha256=8-HoO2VygxJ8FFSCCOIOfbhMAn87jU7PqVvd7lQ3GEY,19797
7
+ pytcl/assignment_algorithms/nd_assignment.py,sha256=RBRoXoJnUY0lB9Vb_dwvQtwh6oI31KfeDqpaNrTNXzk,11344
8
+ pytcl/assignment_algorithms/network_flow.py,sha256=tmNOHdrRfo30T8UXZ0A_icDdVDgQCShdbXEt9HY0p1w,10325
9
+ pytcl/assignment_algorithms/three_dimensional/__init__.py,sha256=1Q40OUlUQoo7YKEucwdrSNo3D4A0Zibvkr8z4TpueBg,526
10
+ pytcl/assignment_algorithms/three_dimensional/assignment.py,sha256=OGcjg3Yr1tYriWYBJ5k6jiRMpOHDISK8FJDY0nTQxxw,19244
11
+ pytcl/assignment_algorithms/two_dimensional/__init__.py,sha256=4Evsn__9hTfI2i8m8Ngl-Zy0Fa2OydKmDKlZlH6jaao,778
12
+ pytcl/assignment_algorithms/two_dimensional/assignment.py,sha256=eh87MBb-uiUSI1MXj4HrreRKB6Z8rxAyDkNQ8-u4SbM,11848
13
+ pytcl/assignment_algorithms/two_dimensional/kbest.py,sha256=yiTToLuP7xWxQlQ8E-fpgXg-5iu0nnXcJXStjUB0nOE,17284
14
+ pytcl/astronomical/__init__.py,sha256=v0nUgEy5ReHXzpNb1JdwWXv4AtcFksotEOccQnOyVfI,9667
15
+ pytcl/astronomical/ephemerides.py,sha256=nQSbcipQ_IhPv1R-Q0-iPlfTCb4x2KdfVjwc0c_YeeE,16705
16
+ pytcl/astronomical/lambert.py,sha256=Lc8FT1JmpI9WSXsG2s5vIRkSoBSV7r5hd3o2bGh2Ojo,15607
17
+ pytcl/astronomical/orbital_mechanics.py,sha256=8GssRanwTowCl6PJYqmB_SDnNznLUq5gkPa3j6iEo3U,19965
18
+ pytcl/astronomical/reference_frames.py,sha256=MBqprzBpEvdq3ngRL-_pp-Vnj7AqbuXhjUfGQ98znfc,35616
19
+ pytcl/astronomical/relativity.py,sha256=deuzBIINS4HimCwNU0_mzlHiB2nJ3AW8PnqtpzTw5_I,15534
20
+ pytcl/astronomical/sgp4.py,sha256=iNZrqMRUzR-LFeZiluzlNmkwxeYbIyF2F1cygyeEZVE,21546
21
+ pytcl/astronomical/special_orbits.py,sha256=N54c_wAD7XKk_diDOw2QjUSkmYECMyWQDq2P6EeEBEI,12745
22
+ pytcl/astronomical/time_systems.py,sha256=Jg0Zaq60hc4Ts1aQtb5bK4KSZhz-uQse8gYC89Y0-TA,15243
23
+ pytcl/astronomical/tle.py,sha256=t3e2-0f3Wiz77q-pC2jfpohkrDfoYOEHacpNgWMNLAk,14638
24
+ pytcl/atmosphere/__init__.py,sha256=Joa6PBEfKun0Moii6BOzyVYG8AOFyvucKdVuY62ArQc,1685
25
+ pytcl/atmosphere/ionosphere.py,sha256=1qC3hY-27pD0XcLBjU735deKYmmi6qnj2fDG1zNbTqg,14681
26
+ pytcl/atmosphere/models.py,sha256=pMLv8D7qoFqLZrlbTHLJJULOdDdhPskJ1m7KVKLV63E,9584
27
+ pytcl/atmosphere/nrlmsise00.py,sha256=jcmAC00G3X0CzfK4eWkvq2tPxHXzMqC8GBHNbFZRq4w,25868
28
+ pytcl/clustering/__init__.py,sha256=bYdhC_XJEt6KUUni9bIPxaddXNEGmIJQvGkA14rK4J8,1697
29
+ pytcl/clustering/dbscan.py,sha256=WgzYz_f5nDh0T1RPClX9b3xSvFPmLxY6QaI2NCtxJg4,7389
30
+ pytcl/clustering/gaussian_mixture.py,sha256=UAI2_WG2RASA0N2PIZ0EZgqYZ3yly7oJBSJWSJnm_bE,22904
31
+ pytcl/clustering/hierarchical.py,sha256=K7z6bZR4QSDMva9kaqEOjdktl8unMK1wyCJm3cFN8pQ,14292
32
+ pytcl/clustering/kmeans.py,sha256=GNvgaGP53LKr4-fh-UajxbjCi0jWCCLJba23EGcQq4I,10712
33
+ pytcl/containers/__init__.py,sha256=jZAZb0VUft5gjQghfg2S9PD-LsA5xgtXkc0mAS_Gnmk,2428
34
+ pytcl/containers/base.py,sha256=UL-RXobVlZCZ5H3Xdo_TzcJQANNsIVQeynKHhLGxRVE,5545
35
+ pytcl/containers/cluster_set.py,sha256=uhfOIpXlYoI1U75TWcLMHjezVavnIZhVEGQHKCDmKo4,22774
36
+ pytcl/containers/covertree.py,sha256=SKiosZnJ9bvAaANDKQSbDUqL2BnIno-1D8TbOWDM3m0,13337
37
+ pytcl/containers/kd_tree.py,sha256=9CKHAzid0DZ879hut8M4dyW_976pIWNLX3uWzELPIu4,18563
38
+ pytcl/containers/measurement_set.py,sha256=87AbdoZIUspn1yJsiMpyQ5LoEVcerUnXefXGGPtFTJg,12654
39
+ pytcl/containers/rtree.py,sha256=SGlnEG6q670qxO9P_jDT7yocjYmdal8f22SvEXdvw9E,21857
40
+ pytcl/containers/track_list.py,sha256=6q9Qgcwm-8H_JqtOCsMssF27av4XaSkhfDl-MWb1ABc,12520
41
+ pytcl/containers/vptree.py,sha256=eFBX2-sm_lgqON18uM4MEk4I4_sRgoPla29cTJFy_Xo,8800
42
+ pytcl/coordinate_systems/__init__.py,sha256=jwYhu_-9AvOeP9WLG9PYtyDwfe0GjxNZ9-xCqiLymW4,3909
43
+ pytcl/coordinate_systems/conversions/__init__.py,sha256=PkNevB78vBw0BkalydJBbQO91AyiMJxKRrgJNt4HsYc,1100
44
+ pytcl/coordinate_systems/conversions/geodetic.py,sha256=rRRf4MWBkGj3VTN1WRW3lrlw4Yf9a4HH3UCgNOGjbJ0,23460
45
+ pytcl/coordinate_systems/conversions/spherical.py,sha256=q7k9l5mJbVzVdNj9Gcq4ibFxax8z_mVpJfITRBzx630,10812
46
+ pytcl/coordinate_systems/jacobians/__init__.py,sha256=CRGB8GzvGT_sr4Ynm51S7gSX8grqt1pO1Pq1MWmHPTs,890
47
+ pytcl/coordinate_systems/jacobians/jacobians.py,sha256=0gpbelZPN4HDtvS1ymc3RIhOfxCVTKpRc-jDJXdM6pQ,11747
48
+ pytcl/coordinate_systems/projections/__init__.py,sha256=TmBiffO5cmazAhsfPIVBaaqnravVSO3JxjGb0MXkucc,2404
49
+ pytcl/coordinate_systems/projections/projections.py,sha256=y_kwcu_zp0HHiKR-wp3v3AvRcY61bleDi1SxwbrnWB0,33179
50
+ pytcl/coordinate_systems/rotations/__init__.py,sha256=nqAz4iJd2hEOX_r7Tz4cE524sShyxdbtcQ5m56RrDLg,1047
51
+ pytcl/coordinate_systems/rotations/rotations.py,sha256=2KK6Lgpfmjac3qfOMvHku_BcwGOgkRC13BZbSCUvfwQ,18314
52
+ pytcl/core/__init__.py,sha256=3GFQX_Q9f7fhmWlA6OQiS6OpM7HWhyT9iQhB8Mhi_kk,1580
53
+ pytcl/core/array_utils.py,sha256=SsgEiAoRCWxAVKq1aa5-nPdOi-2AB6XNObu0IaGClUk,13983
54
+ pytcl/core/constants.py,sha256=lZVDK5zsSR02_4b2Nqx9KDtZT9QaYhkZ9wuoODbifd4,8693
55
+ pytcl/core/validation.py,sha256=9Pjn2wOYmGLJDSA8eS2aGTCGO16o5l2xioOHamNXuIg,23441
56
+ pytcl/dynamic_estimation/__init__.py,sha256=zxmkZIXVfHPv5AHYpQV5nwsI0PA3m-Vw7W0gkJE7j98,5191
57
+ pytcl/dynamic_estimation/gaussian_sum_filter.py,sha256=rxUy_WapTL_pkGimD01DqYE7fElLS_DljnX2yg95Uts,13620
58
+ pytcl/dynamic_estimation/imm.py,sha256=RLSFPTMDsudxSf9Mh6Q5qD852tq9lRoCTvFCGphezhs,22152
59
+ pytcl/dynamic_estimation/information_filter.py,sha256=x7iQwO_iJT1dCSvDws5LqD3yAtjw9QVGUfMPcXn1IA4,17349
60
+ pytcl/dynamic_estimation/rbpf.py,sha256=CaKSD2TC1sxICnHuN1W2v2S7P-Kxi4lxdy4KRq2We3w,17898
61
+ pytcl/dynamic_estimation/smoothers.py,sha256=x2j-nR--EI5JNZvMywPeDHcrfW8b5PYK0DCU4Rmig_g,18914
62
+ pytcl/dynamic_estimation/batch_estimation/__init__.py,sha256=JQ0s76Enov5a7plA4EnUua4t-7etikQrwr5z4WIjUeo,46
63
+ pytcl/dynamic_estimation/kalman/__init__.py,sha256=lR-OacfZ5mqnAboEbOel5w_WS_Gmz-1q0l4meKfQsGs,3163
64
+ pytcl/dynamic_estimation/kalman/constrained.py,sha256=Zidzz6_9OvwUyQppEltdmYTMvEeqRKFRkVMwx1TASuw,10960
65
+ pytcl/dynamic_estimation/kalman/extended.py,sha256=fxi2-oq8qxnxZqPmjB8-Am03z6_F_R90wwFcOIEk_dg,10459
66
+ pytcl/dynamic_estimation/kalman/h_infinity.py,sha256=rtbYiryJbxzko-CIdNJSHuWXU2wI9T52YGBYq3o92sE,16563
67
+ pytcl/dynamic_estimation/kalman/linear.py,sha256=1Zgg9gZya0Vxs9im7sPUqLj0Luo463vS-RSa6GCReFI,12248
68
+ pytcl/dynamic_estimation/kalman/square_root.py,sha256=pDEDstYIQht5e7ahD6x13UfSVIUWMe4jRR4z6j687vw,13457
69
+ pytcl/dynamic_estimation/kalman/sr_ukf.py,sha256=xlKRML6QOHD99P-urIeBZsBDc_DY1_U73W3eDkiqRRY,8737
70
+ pytcl/dynamic_estimation/kalman/ud_filter.py,sha256=j56gw-piKJaMtoHWRkr2MiBjOC9tGSguIgFregOMJOs,10269
71
+ pytcl/dynamic_estimation/kalman/unscented.py,sha256=G3Ks6fa_Z-MxUdOEiiHqQ1wYJzOgfuipiP32at6Mv8o,15505
72
+ pytcl/dynamic_estimation/measurement_update/__init__.py,sha256=8rlyJwVpxf0fZj-AFo1hlewvryZRhUzcy3F8uMe6I8c,48
73
+ pytcl/dynamic_estimation/particle_filters/__init__.py,sha256=-DRF5rVF2749suLlArmkTvVkqeMcV_mIx0eLeTj6wNU,906
74
+ pytcl/dynamic_estimation/particle_filters/bootstrap.py,sha256=6KSLZROxfrldExpDL1GaGhd75IXO5KA8iC-kmhuUBkg,13531
75
+ pytcl/dynamic_models/__init__.py,sha256=Cd8MyyYuB8gMnepkPA-HSwTaKFPThnqoKOhdjVOsXWg,2783
76
+ pytcl/dynamic_models/continuous_time/__init__.py,sha256=dAkfEddLkfMvDalK9v2GRBvaZV1KgqYpFBLOnoiFClw,1023
77
+ pytcl/dynamic_models/continuous_time/dynamics.py,sha256=CDwqn-66eUwXA5xfIjaG6A4EDBqtOyQ3aWarJr9QH4g,12858
78
+ pytcl/dynamic_models/discrete_time/__init__.py,sha256=1cdYeVIe-kgogiHzeCv1eYMctSimh8t1nIE6Z1N4im4,949
79
+ pytcl/dynamic_models/discrete_time/coordinated_turn.py,sha256=jrSGCKiAdXaFIJBLzRyAv0xxxpOHOBnAtDHyu7VYsm8,7206
80
+ pytcl/dynamic_models/discrete_time/polynomial.py,sha256=zv5V-AbuaXlIj36n-YkOEyC74jV2vczxpCW09P0kmi0,5529
81
+ pytcl/dynamic_models/discrete_time/singer.py,sha256=wZS3Nad-YyPZp8Mle8Sf5GgW0-t4TxMRcnbc42HtQnA,3861
82
+ pytcl/dynamic_models/process_noise/__init__.py,sha256=ZRYgV40qmBkPwU3yTbIMvxorr4nVz0_FEP2oCeVjXoM,933
83
+ pytcl/dynamic_models/process_noise/coordinated_turn.py,sha256=w7bHUImLPL5m3KYenfNgAnHPCRtAyYESbsFc6lQKXRg,4768
84
+ pytcl/dynamic_models/process_noise/polynomial.py,sha256=natfpsdN3qM9VzPeXF_nBpsbRI74S1WkkRCaaem6EQo,7620
85
+ pytcl/dynamic_models/process_noise/singer.py,sha256=lsJDT6xOvcS_qQKFtgHX0L7Ukpy4D7HgvPT8Q3I0ibU,3901
86
+ pytcl/gravity/__init__.py,sha256=5xNdQSrrkt7-1-JPOYqR38CqvNJ7qKlPyMK36DGm6-I,3693
87
+ pytcl/gravity/clenshaw.py,sha256=1BdxzU8IfGGd68H_U35soIJkiOHphY35e9mLElhPTOg,15364
88
+ pytcl/gravity/egm.py,sha256=47I8nyXNhXUKPkufXahs4JGsBcqhM-9z2xGz0X4JPmU,18422
89
+ pytcl/gravity/models.py,sha256=rdY3Do4M1eRFO74gu3xy-bBn7tox3zM49wYbfnsIQWw,11159
90
+ pytcl/gravity/spherical_harmonics.py,sha256=FV_cFp0lx6uGw-dxNFRpehaAn28QImX9z7PFdyRbEJI,16549
91
+ pytcl/gravity/tides.py,sha256=nu9_L12aBd2EpmTMh3UulmYCUxQ9wC4kOpdSIn7f0Z8,27785
92
+ pytcl/magnetism/__init__.py,sha256=pBASOzCPHNnYqUH_XDEblhGtjz50vY9uW2KS25A0zQQ,2701
93
+ pytcl/magnetism/emm.py,sha256=iIdxSL0uGGIf8nfA-c_SmHvg9_J7HwRA2-qbQIUW6IE,22380
94
+ pytcl/magnetism/igrf.py,sha256=3g0PsH8IdbwQQS28OR5XWD-g-QxvfUva7jOkKToxndQ,13384
95
+ pytcl/magnetism/wmm.py,sha256=7YsxnBmxeH5WnTTZ3VE91gr55Qq-OvVmBRAMbqlhGVg,23479
96
+ pytcl/mathematical_functions/__init__.py,sha256=zeJ1ffRRl83k2NHn3HTn-fgtFoWNPq6LCALc3xRo4Do,3767
97
+ pytcl/mathematical_functions/basic_matrix/__init__.py,sha256=kZv3kMAEHBdVxhbyMxTyM0s-4XJP1tK6po82UsIE4tc,1318
98
+ pytcl/mathematical_functions/basic_matrix/decompositions.py,sha256=PWJsFDiXM2T78RHdxBJZPFnl8kFbNZQpHrbpw0mhE00,12268
99
+ pytcl/mathematical_functions/basic_matrix/special_matrices.py,sha256=kOozwP2CHAj4qyO7Z9ct6GwDMkmHkk1bQa0e9G98FgA,13499
100
+ pytcl/mathematical_functions/combinatorics/__init__.py,sha256=byuHI0WkxOkQF8egrfjEr-awB2visWDXlGMnDux5IBg,1043
101
+ pytcl/mathematical_functions/combinatorics/combinatorics.py,sha256=LzVxY3E5_pnpVl9XlcRdQjWhSSY8Fa1JUVYA6J25fro,12354
102
+ pytcl/mathematical_functions/continuous_optimization/__init__.py,sha256=lck60eeCUOsRpEzPHBY3kiLKwNz_fhmYoUGP3lTmTwk,55
103
+ pytcl/mathematical_functions/geometry/__init__.py,sha256=DhCmux9-6zxYRzlhQ9du18kvUL-leiiZwdd3Cmb5WX0,1092
104
+ pytcl/mathematical_functions/geometry/geometry.py,sha256=iLKqTlLEGm8IScEDHEWOBQz5xfj-fflzIOzZaJ8fPtE,16522
105
+ pytcl/mathematical_functions/interpolation/__init__.py,sha256=lK4Rs0Ds_fzf9q0n6id5epdN0U8V7yD87dS-w1hvN8I,741
106
+ pytcl/mathematical_functions/interpolation/interpolation.py,sha256=2cXMDgWBjWDGHnK1K_lawFlJL8oPl5AQGf9MNgsESfo,12610
107
+ pytcl/mathematical_functions/numerical_integration/__init__.py,sha256=iXiHzyV_KIhCv7tXErXlN1_fUEACN6yN3CYDHRA7esw,974
108
+ pytcl/mathematical_functions/numerical_integration/quadrature.py,sha256=3MwNCjdMfopgtJjXWxn-q9VyawI1IArkNBXqa_kRMj4,15716
109
+ pytcl/mathematical_functions/polynomials/__init__.py,sha256=WJWZcoQhnvy5f59-kncMTgD9mCtgwfDgULvDYYHS5ys,43
110
+ pytcl/mathematical_functions/signal_processing/__init__.py,sha256=_SzzBVtxmSvP8FKeogRdNmFo8FOVDDoexVOqd-lE7do,2325
111
+ pytcl/mathematical_functions/signal_processing/detection.py,sha256=1Uok0p82t2zB7BWZB6GEkUCwuoM3WB8SRykTrVRdsIo,30612
112
+ pytcl/mathematical_functions/signal_processing/filters.py,sha256=xiB8VSFqTFkBCAom0yIWw7pK3Zjm6l-VZ_DAtwJMxFA,23676
113
+ pytcl/mathematical_functions/signal_processing/matched_filter.py,sha256=El7XcUbunmXA7s-btXX_R4fgNx8d6QNa86GJETg4zAQ,23134
114
+ pytcl/mathematical_functions/special_functions/__init__.py,sha256=AJBCKj32daQxdahUQckW0bWowzOoapxni2eZnVXERdg,3859
115
+ pytcl/mathematical_functions/special_functions/bessel.py,sha256=Xe62y2vrDwdJy3fR4U8_e8TAgisXIWJ94J7wu_xk0kI,14603
116
+ pytcl/mathematical_functions/special_functions/debye.py,sha256=eH7Y5qq5j-AMKKx7y8uMS_l_pb6z9_3SG6Igvnc1Fdg,9626
117
+ pytcl/mathematical_functions/special_functions/elliptic.py,sha256=WyzBkrfZufIR5dUmCKGcxp6KNpVDrU89NGLDyRrZOqQ,7418
118
+ pytcl/mathematical_functions/special_functions/error_functions.py,sha256=24-XRcAW-KF6ixEU5V7iB7brD8UVPPQ0b4Zz8gscRdw,6321
119
+ pytcl/mathematical_functions/special_functions/gamma_functions.py,sha256=XB7NHVgKzOEVKpUScqvG3L220bvwIRuUnm_ayO7lJRk,10243
120
+ pytcl/mathematical_functions/special_functions/hypergeometric.py,sha256=mCBf5NPl0mOkwvIwAUp-sbXshin5HyGsdqEeGbYt3wQ,11428
121
+ pytcl/mathematical_functions/special_functions/lambert_w.py,sha256=ivRc4KH5Lwoxb_yijrJEwG0ITa0hhcYF7_gCfVBBNW4,6855
122
+ pytcl/mathematical_functions/special_functions/marcum_q.py,sha256=OZ5QjIB1e_XvRG8A-3dbZ13YXHtdk2EYVEPaqtgVr14,9580
123
+ pytcl/mathematical_functions/statistics/__init__.py,sha256=dfypStgmnFmOrnWcm-3CEvLinONHraFgx9O66_37bqw,1278
124
+ pytcl/mathematical_functions/statistics/distributions.py,sha256=icfFIIKCEFzkpFHuYGWL197nm8wvS7UPJlr9kd_uEgw,19373
125
+ pytcl/mathematical_functions/statistics/estimators.py,sha256=TLnYXSwk5MzBakZrzDBupbOB3ONmJI7q1-oB2xuSVQM,10831
126
+ pytcl/mathematical_functions/transforms/__init__.py,sha256=SPXSKHjqR6B_8pvgtbtOnEiCpU-u0JF2s7hAlhb0BbI,2343
127
+ pytcl/mathematical_functions/transforms/fourier.py,sha256=yD1CcH7sdPlrOmBgL7JoMiPNgN8ee7bTwvblgRRf7l4,20823
128
+ pytcl/mathematical_functions/transforms/stft.py,sha256=olDzNH02Nta5GoeEdsdX1tTVKODr6OxLEYt_h3ZtMgA,18878
129
+ pytcl/mathematical_functions/transforms/wavelets.py,sha256=g7ra-uk-HnQmJRCj1VvJuuz8t8FW55kCENUkx0vPrP4,21807
130
+ pytcl/misc/__init__.py,sha256=SCHf_lQVfdl2gwUluHBiIloTF8HRH8EkgYfbNr7zOug,33
131
+ pytcl/navigation/__init__.py,sha256=k1_x_FnnPrIzGeNu7zejPtPubIhweBgCfwqlZJEMw0I,6042
132
+ pytcl/navigation/geodesy.py,sha256=zrpFhPFLr3N1byeE1pxXh-SmPixjuuoGK3_izEnAAdw,19719
133
+ pytcl/navigation/great_circle.py,sha256=u8iqMV6RNsAyzATzjJU11QFGA2pGEaiFJRakQwxTTs0,23326
134
+ pytcl/navigation/ins.py,sha256=OIi8_RjrgEYl0MFpJEFMjIlpgX8DYGTEhdLEvqG-ABU,31151
135
+ pytcl/navigation/ins_gnss.py,sha256=euKF5JGgwmVBsw3jBf7_wa2z1BpZeVbSNmBuwzhGS6c,30157
136
+ pytcl/navigation/rhumb.py,sha256=lr1c3iEXfoOSfIyyXSRWv6He5TlaxEHbJy-dhqM1gRw,18224
137
+ pytcl/performance_evaluation/__init__.py,sha256=tM2pnBfDb2XbnLt4Y5MQ6w6XBwFy_5bf_y0toZmxx88,1859
138
+ pytcl/performance_evaluation/estimation_metrics.py,sha256=X1ZCpp8m6DV14N2wbMvlRwfORRKga8DgKmG3dROyJqA,12351
139
+ pytcl/performance_evaluation/track_metrics.py,sha256=Nd3royJkAelZV-Qggl8i72e7WocCxWomgliArvVAEkc,13342
140
+ pytcl/physical_values/__init__.py,sha256=SGbg6b0d4dWebE3baW4OlJshL00grG5E4wABw6jxl20,44
141
+ pytcl/plotting/__init__.py,sha256=YtYnKYHL5lN6EaT_bwwR3h89NW0HSMToIWHhHBxcidY,3126
142
+ pytcl/plotting/coordinates.py,sha256=lTNBwlq_4hnQx_w6RIX6X35Ke3YMFvqV_huJrcFCvNs,17362
143
+ pytcl/plotting/ellipses.py,sha256=bcns6dfNK4bwA_QBshscYhbAz_5wegwyqjDzzoUdWsQ,12465
144
+ pytcl/plotting/metrics.py,sha256=zbJr5P2kQg7-rGpGHsN7rC02S0JLOpPUZeoscQem7uQ,18148
145
+ pytcl/plotting/tracks.py,sha256=3V_78oPEGi7lsTNk-lhYRffXWNHH0-Lj2oNw2HIKRJQ,23054
146
+ pytcl/scheduling/__init__.py,sha256=jTqMSKcsCrWU_Fh6WaT6BW5WatNHyyEYjFbsv6X18Oc,39
147
+ pytcl/static_estimation/__init__.py,sha256=sSEhqq35jq_MpRLnBtWjKXwGZ9dqIw71iwji-TNwXmc,2222
148
+ pytcl/static_estimation/least_squares.py,sha256=8ouOyRGC7K-W8fynZMWlc2-KAFojvTbuzcqi5uS_sVA,13432
149
+ pytcl/static_estimation/maximum_likelihood.py,sha256=nt1WShfZ0PlT_eA4gu2WcLiz9zZO9r90m_1PhWqDDgY,21821
150
+ pytcl/static_estimation/robust.py,sha256=mpDUcc3-8F42SVGxXMv20huzekoGWattAa4px9tAZNM,18623
151
+ pytcl/terrain/__init__.py,sha256=e7plNQI5Y_jpZ24r82AgqdX0ChmmyYoeT7HReclnGXc,3228
152
+ pytcl/terrain/dem.py,sha256=rg2o0h0ZDrfxvtYhnE2A5tdzRnCmqcihu4w1uNJdH3Y,20814
153
+ pytcl/terrain/loaders.py,sha256=FGRnyzKh03LrpXICocbIK3MhTW7o9nsVvsm3iuIUqK4,27066
154
+ pytcl/terrain/visibility.py,sha256=nIJr9AVk7C8GCpJV4UDvUjhmAieycWD8BLepAMUBMIQ,22739
155
+ pytcl/trackers/__init__.py,sha256=Gw79xlSIUzdPV8bN1slNWUlGxE3d-NsVmbMygkYVV20,1151
156
+ pytcl/trackers/hypothesis.py,sha256=ubK-q89cYayahSHIw5sVYD1fpRUEB0XvC6rQnI1WACA,17361
157
+ pytcl/trackers/mht.py,sha256=osEOXMaCeTt1eVn_E08dLRhEvBroVmf8b81zO5Zp1lU,20720
158
+ pytcl/trackers/multi_target.py,sha256=RDITa0xnbgtVYAMj5XXp4lljo5lZ2zAAc02KZlOjxbQ,10526
159
+ pytcl/trackers/single_target.py,sha256=Yy3FwaNTArMWcaod-0HVeiioNV4xLWxNDn_7ZPVqQYs,6562
160
+ pytcl/transponders/__init__.py,sha256=5fL4u3lKCYgPLo5uFeuZbtRZkJPABntuKYGUvVgMMEI,41
161
+ nrl_tracker-1.7.5.dist-info/LICENSE,sha256=rB5G4WppIIUzMOYr2N6uyYlNJ00hRJqE5tie6BMvYuE,1612
162
+ nrl_tracker-1.7.5.dist-info/METADATA,sha256=VaT708s9KWzDJuK9iwP-dqOVZ-CLp0T2IDLXfXWoFRw,12452
163
+ nrl_tracker-1.7.5.dist-info/WHEEL,sha256=pL8R0wFFS65tNSRnaOVrsw9EOkOqxLrlUPenUYnJKNo,91
164
+ nrl_tracker-1.7.5.dist-info/top_level.txt,sha256=17megxcrTPBWwPZTh6jTkwTKxX7No-ZqRpyvElnnO-s,6
165
+ nrl_tracker-1.7.5.dist-info/RECORD,,
pytcl/__init__.py CHANGED
@@ -6,7 +6,8 @@ systems, dynamic models, estimation algorithms, and mathematical functions.
6
6
 
7
7
  This is a Python port of the U.S. Naval Research Laboratory's Tracker Component
8
8
  Library originally written in MATLAB.
9
-
9
+ **Current Version:** 1.7.4 (January 4, 2026)
10
+ **Status:** Production-ready, 2,057 tests passing, 76% line coverage
10
11
  Examples
11
12
  --------
12
13
  >>> import pytcl as pytcl
@@ -20,7 +21,7 @@ References
20
21
  no. 5, pp. 18-27, May 2017.
21
22
  """
22
23
 
23
- __version__ = "0.21.4"
24
+ __version__ = "1.7.5"
24
25
  __author__ = "Python Port Contributors"
25
26
  __original_author__ = "David F. Crouse, Naval Research Laboratory"
26
27
 
@@ -44,7 +45,7 @@ from pytcl import (
44
45
 
45
46
  # Version tuple for programmatic access
46
47
  # Handle dev/alpha/beta/rc suffixes by extracting only numeric parts
47
- def _parse_version(version_str):
48
+ def _parse_version(version_str: str) -> tuple[int, ...]:
48
49
  """Parse version string into tuple of integers."""
49
50
  import re
50
51
 
@@ -32,6 +32,21 @@ from pytcl.assignment_algorithms.jpda import (
32
32
  jpda_probabilities,
33
33
  jpda_update,
34
34
  )
35
+ from pytcl.assignment_algorithms.nd_assignment import (
36
+ AssignmentNDResult,
37
+ auction_assignment_nd,
38
+ detect_dimension_conflicts,
39
+ greedy_assignment_nd,
40
+ relaxation_assignment_nd,
41
+ validate_cost_tensor,
42
+ )
43
+ from pytcl.assignment_algorithms.network_flow import (
44
+ FlowStatus,
45
+ MinCostFlowResult,
46
+ assignment_to_flow_network,
47
+ min_cost_assignment_via_flow,
48
+ min_cost_flow_successive_shortest_paths,
49
+ )
35
50
  from pytcl.assignment_algorithms.three_dimensional import (
36
51
  Assignment3DResult,
37
52
  assign3d,
@@ -91,4 +106,17 @@ __all__ = [
91
106
  "jpda_update",
92
107
  "jpda_probabilities",
93
108
  "compute_likelihood_matrix",
109
+ # N-Dimensional Assignment (4D+)
110
+ "AssignmentNDResult",
111
+ "validate_cost_tensor",
112
+ "greedy_assignment_nd",
113
+ "relaxation_assignment_nd",
114
+ "auction_assignment_nd",
115
+ "detect_dimension_conflicts",
116
+ # Network Flow-Based Assignment
117
+ "FlowStatus",
118
+ "MinCostFlowResult",
119
+ "assignment_to_flow_network",
120
+ "min_cost_flow_successive_shortest_paths",
121
+ "min_cost_assignment_via_flow",
94
122
  ]
@@ -10,13 +10,8 @@ from typing import List, NamedTuple, Optional
10
10
  import numpy as np
11
11
  from numpy.typing import ArrayLike, NDArray
12
12
 
13
- from pytcl.assignment_algorithms.gating import (
14
- mahalanobis_batch,
15
- mahalanobis_distance,
16
- )
17
- from pytcl.assignment_algorithms.two_dimensional import (
18
- assign2d,
19
- )
13
+ from pytcl.assignment_algorithms.gating import mahalanobis_batch, mahalanobis_distance
14
+ from pytcl.assignment_algorithms.two_dimensional import assign2d
20
15
 
21
16
 
22
17
  class AssociationResult(NamedTuple):
@@ -5,7 +5,7 @@ This module provides gating methods to determine which measurements
5
5
  fall within a validation region around predicted track states.
6
6
  """
7
7
 
8
- from typing import List, Tuple
8
+ from typing import Any, List, Tuple
9
9
 
10
10
  import numpy as np
11
11
  from numba import njit
@@ -15,8 +15,8 @@ from scipy.stats import chi2
15
15
 
16
16
  @njit(cache=True, fastmath=True)
17
17
  def _mahalanobis_distance_2d(
18
- innovation: np.ndarray,
19
- S_inv: np.ndarray,
18
+ innovation: np.ndarray[Any, Any],
19
+ S_inv: np.ndarray[Any, Any],
20
20
  ) -> float:
21
21
  """JIT-compiled Mahalanobis distance for 2D innovations."""
22
22
  return innovation[0] * (
@@ -26,8 +26,8 @@ def _mahalanobis_distance_2d(
26
26
 
27
27
  @njit(cache=True, fastmath=True)
28
28
  def _mahalanobis_distance_3d(
29
- innovation: np.ndarray,
30
- S_inv: np.ndarray,
29
+ innovation: np.ndarray[Any, Any],
30
+ S_inv: np.ndarray[Any, Any],
31
31
  ) -> float:
32
32
  """JIT-compiled Mahalanobis distance for 3D innovations."""
33
33
  result = 0.0
@@ -39,8 +39,8 @@ def _mahalanobis_distance_3d(
39
39
 
40
40
  @njit(cache=True, fastmath=True)
41
41
  def _mahalanobis_distance_general(
42
- innovation: np.ndarray,
43
- S_inv: np.ndarray,
42
+ innovation: np.ndarray[Any, Any],
43
+ S_inv: np.ndarray[Any, Any],
44
44
  ) -> float:
45
45
  """JIT-compiled Mahalanobis distance for general dimension."""
46
46
  n = len(innovation)
@@ -341,9 +341,9 @@ def compute_gate_volume(
341
341
 
342
342
  @njit(cache=True, fastmath=True, parallel=False)
343
343
  def mahalanobis_batch(
344
- innovations: np.ndarray,
345
- S_inv: np.ndarray,
346
- output: np.ndarray,
344
+ innovations: np.ndarray[Any, Any],
345
+ S_inv: np.ndarray[Any, Any],
346
+ output: np.ndarray[Any, Any],
347
347
  ) -> None:
348
348
  """
349
349
  Compute Mahalanobis distances for a batch of innovations.
@@ -9,7 +9,7 @@ This is more sophisticated than GNN which makes hard assignment decisions,
9
9
  as JPDA can handle measurement origin uncertainty in cluttered environments.
10
10
  """
11
11
 
12
- from typing import List, NamedTuple, Optional, Tuple
12
+ from typing import Any, List, NamedTuple, Optional
13
13
 
14
14
  import numpy as np
15
15
  from numba import njit
@@ -24,7 +24,7 @@ class JPDAResult(NamedTuple):
24
24
 
25
25
  Attributes
26
26
  ----------
27
- association_probs : ndarray
27
+ association_probs : ndarray[Any]
28
28
  Association probability matrix of shape (n_tracks, n_measurements + 1).
29
29
  association_probs[i, j] is the probability that track i is associated
30
30
  with measurement j. The last column (j = n_measurements) represents
@@ -32,9 +32,9 @@ class JPDAResult(NamedTuple):
32
32
  marginal_probs : list of ndarray
33
33
  List of marginal association probabilities for each track.
34
34
  marginal_probs[i][j] = P(measurement j originated from track i).
35
- likelihood_matrix : ndarray
35
+ likelihood_matrix : ndarray[Any]
36
36
  Measurement likelihood matrix of shape (n_tracks, n_measurements).
37
- gated : ndarray
37
+ gated : ndarray[Any]
38
38
  Boolean matrix indicating which track-measurement pairs passed gating.
39
39
  """
40
40
 
@@ -53,7 +53,7 @@ class JPDAUpdate(NamedTuple):
53
53
  Updated state estimates for each track.
54
54
  covariances : list of ndarray
55
55
  Updated covariances for each track (includes spread of means).
56
- association_probs : ndarray
56
+ association_probs : ndarray[Any]
57
57
  Association probability matrix.
58
58
  innovations : list of ndarray
59
59
  Combined weighted innovations for each track.
@@ -66,8 +66,8 @@ class JPDAUpdate(NamedTuple):
66
66
 
67
67
 
68
68
  def compute_measurement_likelihood(
69
- innovation: NDArray,
70
- innovation_cov: NDArray,
69
+ innovation: NDArray[Any],
70
+ innovation_cov: NDArray[Any],
71
71
  detection_prob: float = 1.0,
72
72
  ) -> float:
73
73
  """
@@ -75,9 +75,9 @@ def compute_measurement_likelihood(
75
75
 
76
76
  Parameters
77
77
  ----------
78
- innovation : ndarray
78
+ innovation : ndarray[Any]
79
79
  Measurement innovation (residual), shape (m,).
80
- innovation_cov : ndarray
80
+ innovation_cov : ndarray[Any]
81
81
  Innovation covariance, shape (m, m).
82
82
  detection_prob : float
83
83
  Probability of detection (Pd).
@@ -102,14 +102,14 @@ def compute_measurement_likelihood(
102
102
 
103
103
 
104
104
  def compute_likelihood_matrix(
105
- track_states: List[NDArray],
106
- track_covariances: List[NDArray],
107
- measurements: NDArray,
108
- H: NDArray,
109
- R: NDArray,
105
+ track_states: list[NDArray[Any]],
106
+ track_covariances: list[NDArray[Any]],
107
+ measurements: NDArray[Any],
108
+ H: NDArray[Any],
109
+ R: NDArray[Any],
110
110
  detection_prob: float = 1.0,
111
111
  gate_threshold: Optional[float] = None,
112
- ) -> Tuple[NDArray, NDArray]:
112
+ ) -> tuple[NDArray[Any], NDArray[Any]]:
113
113
  """
114
114
  Compute likelihood matrix for all track-measurement pairs.
115
115
 
@@ -119,11 +119,11 @@ def compute_likelihood_matrix(
119
119
  State estimates for each track.
120
120
  track_covariances : list of ndarray
121
121
  Covariances for each track.
122
- measurements : ndarray
122
+ measurements : ndarray[Any]
123
123
  Measurements, shape (n_meas, m).
124
- H : ndarray
124
+ H : ndarray[Any]
125
125
  Measurement matrix, shape (m, n).
126
- R : ndarray
126
+ R : ndarray[Any]
127
127
  Measurement noise covariance, shape (m, m).
128
128
  detection_prob : float
129
129
  Probability of detection.
@@ -132,9 +132,9 @@ def compute_likelihood_matrix(
132
132
 
133
133
  Returns
134
134
  -------
135
- likelihood_matrix : ndarray
135
+ likelihood_matrix : ndarray[Any]
136
136
  Likelihood values, shape (n_tracks, n_meas).
137
- gated : ndarray
137
+ gated : ndarray[Any]
138
138
  Boolean gating matrix, shape (n_tracks, n_meas).
139
139
  """
140
140
  n_tracks = len(track_states)
@@ -163,11 +163,11 @@ def compute_likelihood_matrix(
163
163
 
164
164
 
165
165
  def jpda_probabilities(
166
- likelihood_matrix: NDArray,
167
- gated: NDArray,
166
+ likelihood_matrix: NDArray[Any],
167
+ gated: NDArray[Any],
168
168
  detection_prob: float = 1.0,
169
169
  clutter_density: float = 1e-6,
170
- ) -> NDArray:
170
+ ) -> NDArray[Any]:
171
171
  """
172
172
  Compute JPDA association probabilities.
173
173
 
@@ -176,9 +176,9 @@ def jpda_probabilities(
176
176
 
177
177
  Parameters
178
178
  ----------
179
- likelihood_matrix : ndarray
179
+ likelihood_matrix : ndarray[Any]
180
180
  Likelihood values, shape (n_tracks, n_meas).
181
- gated : ndarray
181
+ gated : ndarray[Any]
182
182
  Boolean gating matrix, shape (n_tracks, n_meas).
183
183
  detection_prob : float
184
184
  Probability of detection (Pd).
@@ -187,7 +187,7 @@ def jpda_probabilities(
187
187
 
188
188
  Returns
189
189
  -------
190
- beta : ndarray
190
+ beta : ndarray[Any]
191
191
  Association probability matrix, shape (n_tracks, n_meas + 1).
192
192
  beta[i, j] = P(measurement j is from track i) for j < n_meas.
193
193
  beta[i, n_meas] = P(track i has no measurement).
@@ -218,11 +218,11 @@ def jpda_probabilities(
218
218
 
219
219
 
220
220
  def _jpda_exact(
221
- likelihood_matrix: NDArray,
222
- gated: NDArray,
221
+ likelihood_matrix: NDArray[Any],
222
+ gated: NDArray[Any],
223
223
  detection_prob: float,
224
224
  clutter_density: float,
225
- ) -> NDArray:
225
+ ) -> NDArray[Any]:
226
226
  """
227
227
  Exact JPDA computation via hypothesis enumeration.
228
228
 
@@ -241,8 +241,8 @@ def _jpda_exact(
241
241
  def generate_hypotheses(
242
242
  meas_idx: int,
243
243
  current_assignment: List[int],
244
- used_tracks: set,
245
- ):
244
+ used_tracks: set[Any],
245
+ ) -> Any:
246
246
  """Recursively generate valid hypotheses."""
247
247
  if meas_idx == n_meas:
248
248
  yield current_assignment.copy()
@@ -268,11 +268,11 @@ def _jpda_exact(
268
268
  hypothesis_probs = []
269
269
  hypothesis_assignments = []
270
270
 
271
- for assignment in generate_hypotheses(0, [], set()):
271
+ for assignment in generate_hypotheses(0, [], set[Any]()):
272
272
  # Compute probability of this hypothesis
273
273
  prob = 1.0
274
274
 
275
- detected_tracks = set()
275
+ detected_tracks = set[Any]()
276
276
  for j, track_idx in enumerate(assignment):
277
277
  if track_idx == -1:
278
278
  # Measurement j is clutter
@@ -301,7 +301,7 @@ def _jpda_exact(
301
301
  for h_idx, (assignment, prob) in enumerate(
302
302
  zip(hypothesis_assignments, hypothesis_probs)
303
303
  ):
304
- detected_tracks = set()
304
+ detected_tracks = set[Any]()
305
305
  for j, track_idx in enumerate(assignment):
306
306
  if track_idx >= 0:
307
307
  beta[track_idx, j] += prob
@@ -317,11 +317,11 @@ def _jpda_exact(
317
317
 
318
318
  @njit(cache=True)
319
319
  def _jpda_approximate_core(
320
- likelihood_matrix: np.ndarray,
321
- gated: np.ndarray,
320
+ likelihood_matrix: np.ndarray[Any, Any],
321
+ gated: np.ndarray[Any, Any],
322
322
  detection_prob: float,
323
323
  clutter_density: float,
324
- ) -> np.ndarray:
324
+ ) -> np.ndarray[Any, Any]:
325
325
  """JIT-compiled core of approximate JPDA computation."""
326
326
  n_tracks = likelihood_matrix.shape[0]
327
327
  n_meas = likelihood_matrix.shape[1]
@@ -369,11 +369,11 @@ def _jpda_approximate_core(
369
369
 
370
370
 
371
371
  def _jpda_approximate(
372
- likelihood_matrix: NDArray,
373
- gated: NDArray,
372
+ likelihood_matrix: NDArray[Any],
373
+ gated: NDArray[Any],
374
374
  detection_prob: float,
375
375
  clutter_density: float,
376
- ) -> NDArray:
376
+ ) -> NDArray[Any]:
377
377
  """
378
378
  Approximate JPDA using parametric approach.
379
379