noshot 6.0.0__py3-none-any.whl → 8.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +201 -0
  2. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +201 -0
  3. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +147 -0
  4. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +181 -0
  5. noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +152 -0
  6. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +117 -0
  7. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +156 -0
  8. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +215 -0
  9. noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +78 -0
  10. noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
  11. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +115 -0
  12. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +146 -0
  13. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +130 -0
  14. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +112 -0
  15. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +118 -0
  16. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
  17. noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +120 -0
  18. noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +262 -0
  19. noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +156 -0
  20. noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +162 -0
  21. noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +100 -0
  22. noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +336 -0
  23. noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +149 -0
  24. noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +132 -0
  25. noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +86 -0
  26. noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +115 -0
  27. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +196 -0
  28. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +98 -0
  29. noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +109 -0
  30. noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +195 -0
  31. noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +189 -0
  32. noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +197 -0
  33. noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +1087 -0
  34. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +274 -0
  35. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +170 -0
  36. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +1087 -0
  37. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +178 -0
  38. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +185 -0
  39. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +106 -0
  40. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +177 -0
  41. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +195 -0
  42. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +267 -0
  43. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +104 -0
  44. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +109 -0
  45. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +220 -0
  46. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +99 -0
  47. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +211 -0
  48. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +99 -0
  49. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +118 -0
  50. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +603 -0
  51. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
  52. {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/METADATA +1 -1
  53. noshot-8.0.0.dist-info/RECORD +60 -0
  54. {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/WHEEL +1 -1
  55. noshot/data/ML TS XAI/XAI/Q1.ipynb +0 -377
  56. noshot/data/ML TS XAI/XAI/Q2.ipynb +0 -362
  57. noshot/data/ML TS XAI/XAI/Q3.ipynb +0 -637
  58. noshot/data/ML TS XAI/XAI/Q4.ipynb +0 -206
  59. noshot/data/ML TS XAI/XAI/Q5.ipynb +0 -1018
  60. noshot-6.0.0.dist-info/RECORD +0 -14
  61. {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  62. {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,86 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "cb7109b3-2133-4346-99cd-af7ed09252be",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import sys\n",
11
+ "import pandas as pd\n",
12
+ "df2 = pd.read_csv (\"E:/126156055/dataset4.csv\")\n",
13
+ "df2.to_csv ('machine.csv', index=None)\n",
14
+ "x=df2.iloc[:,3:4].values\n",
15
+ "y=df2.iloc[:,8].values\n",
16
+ "\n",
17
+ "\n",
18
+ "from sklearn.model_selection import train_test_split\n",
19
+ "X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2,\n",
20
+ "random_state = 0)\n",
21
+ "from sklearn.linear_model import LinearRegression\n",
22
+ "regressor = LinearRegression()\n",
23
+ "regressor.fit(X_train, y_train)\n",
24
+ "#LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,normalize=False)\n",
25
+ "y_pred = regressor.predict(X_test)\n",
26
+ "y_pred_train = regressor.predict(X_train)\n",
27
+ "print(\"Model Score: \", regressor.score(X_test, y_test))\n",
28
+ "from sklearn.metrics import r2_score\n",
29
+ "print(\"R_square score: \", r2_score(y_test,y_pred))\n",
30
+ "import matplotlib.pyplot as plt\n",
31
+ "plt.scatter(X_train, y_train, color = 'red')\n",
32
+ "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
33
+ "plt.title('Y vs X (Training set)')\n",
34
+ "plt.xlabel('X')\n",
35
+ "plt.ylabel('Y')\n",
36
+ "plt.show()\n",
37
+ "plt.scatter(X_test, y_test, color = 'red')\n",
38
+ "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
39
+ "plt.title('Y vs X (Test set)')\n",
40
+ "plt.xlabel('X')\n",
41
+ "\n",
42
+ "\n",
43
+ "plt.ylabel('Y')\n",
44
+ "plt.show()\n",
45
+ "X_future_expereince = [[2],[4]]\n",
46
+ "print (\"Prediction :\", regressor.predict(X_future_expereince))\n",
47
+ "plt.scatter(X_future_expereince, regressor.predict(X_future_expereince),\n",
48
+ "color = 'red')\n",
49
+ "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
50
+ "plt.title('Y vs X (Test set)')\n",
51
+ "plt.xlabel('X')\n",
52
+ "plt.ylabel('Y')\n",
53
+ "plt.show()"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": null,
59
+ "id": "a39458d3-d8b7-44c9-8dfd-931a004a898a",
60
+ "metadata": {},
61
+ "outputs": [],
62
+ "source": []
63
+ }
64
+ ],
65
+ "metadata": {
66
+ "kernelspec": {
67
+ "display_name": "Python 3 (ipykernel)",
68
+ "language": "python",
69
+ "name": "python3"
70
+ },
71
+ "language_info": {
72
+ "codemirror_mode": {
73
+ "name": "ipython",
74
+ "version": 3
75
+ },
76
+ "file_extension": ".py",
77
+ "mimetype": "text/x-python",
78
+ "name": "python",
79
+ "nbconvert_exporter": "python",
80
+ "pygments_lexer": "ipython3",
81
+ "version": "3.12.4"
82
+ }
83
+ },
84
+ "nbformat": 4,
85
+ "nbformat_minor": 5
86
+ }
@@ -0,0 +1,115 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "a305f157-3894-4887-a6e7-8f62d4269f69",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "from sklearn import linear_model,datasets\n",
11
+ "from sklearn.model_selection import train_test_split\n",
12
+ "from sklearn.metrics import confusion_matrix\n",
13
+ "import numpy as np\n",
14
+ "import matplotlib.pyplot as plt\n",
15
+ "import itertools"
16
+ ]
17
+ },
18
+ {
19
+ "cell_type": "code",
20
+ "execution_count": null,
21
+ "id": "edf3ad16-3eab-47e8-9424-155e2702f607",
22
+ "metadata": {},
23
+ "outputs": [],
24
+ "source": [
25
+ "win = datasets.load_wine()\n",
26
+ "type(win)\n",
27
+ "win.data[:5,:]"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "id": "1070132c-d4c7-474d-b569-481b63209e84",
34
+ "metadata": {},
35
+ "outputs": [],
36
+ "source": [
37
+ "print(type(win.feature_names))\n",
38
+ "win.feature_names\n",
39
+ "X_train,X_test,y_train,y_test =train_test_split(win.data,win.target,test_size=0.30,random_state=7)"
40
+ ]
41
+ },
42
+ {
43
+ "cell_type": "code",
44
+ "execution_count": null,
45
+ "id": "9b53bde4-67e3-45ff-a733-5d4856cc8a6a",
46
+ "metadata": {},
47
+ "outputs": [],
48
+ "source": [
49
+ "log_reg_model = linear_model.LogisticRegression()\n",
50
+ "log_reg_model.fit(X_train,y_train)\n",
51
+ "log_reg_base_score = log_reg_model.score(X_test,y_test)\n",
52
+ "print(\"The score for the Logistic Regression Model is : \",log_reg_base_score)"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "id": "f9f0c932-0ea8-4c0d-9c09-fdf14b6b10d2",
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "cm = confusion_matrix(y_test,log_reg_model.predict(X_test))\n",
63
+ "print(cm)\n",
64
+ "X = win.data[:,:2]\n",
65
+ "Y = win.target\n",
66
+ "log_reg_model.fit(X,Y)\n",
67
+ "x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\n",
68
+ "y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\n",
69
+ "xx, yy = np.meshgrid(np.arange(x_min, x_max, .01), np.arange(y_min, y_max,\n",
70
+ ".01))\n",
71
+ "Z = log_reg_model.predict(np.c_[xx.ravel(), yy.ravel()])\n",
72
+ "Z = Z.reshape(xx.shape)\n",
73
+ "plt.figure(1, figsize=(4, 3))\n",
74
+ "plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)\n",
75
+ "plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)\n",
76
+ "plt.xlabel('X')\n",
77
+ "plt.ylabel('Y')\n",
78
+ "plt.xlim(xx.min(), xx.max())\n",
79
+ "plt.ylim(yy.min(), yy.max())\n",
80
+ "plt.xticks(())\n",
81
+ "plt.yticks(())\n",
82
+ "plt.show()"
83
+ ]
84
+ },
85
+ {
86
+ "cell_type": "code",
87
+ "execution_count": null,
88
+ "id": "4739ed30-654d-4b0f-82eb-fafa8cf857d7",
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": []
92
+ }
93
+ ],
94
+ "metadata": {
95
+ "kernelspec": {
96
+ "display_name": "Python 3 (ipykernel)",
97
+ "language": "python",
98
+ "name": "python3"
99
+ },
100
+ "language_info": {
101
+ "codemirror_mode": {
102
+ "name": "ipython",
103
+ "version": 3
104
+ },
105
+ "file_extension": ".py",
106
+ "mimetype": "text/x-python",
107
+ "name": "python",
108
+ "nbconvert_exporter": "python",
109
+ "pygments_lexer": "ipython3",
110
+ "version": "3.12.4"
111
+ }
112
+ },
113
+ "nbformat": 4,
114
+ "nbformat_minor": 5
115
+ }
@@ -0,0 +1,196 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "id": "ZiSQi85mwJak"
7
+ },
8
+ "source": [
9
+ "## ***Reqiuired Packages***"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": null,
15
+ "metadata": {
16
+ "executionInfo": {
17
+ "elapsed": 6,
18
+ "status": "ok",
19
+ "timestamp": 1740466961205,
20
+ "user": {
21
+ "displayName": "Jaison A",
22
+ "userId": "07006398627763032071"
23
+ },
24
+ "user_tz": -330
25
+ },
26
+ "id": "s0sHSKMhwF4e"
27
+ },
28
+ "outputs": [],
29
+ "source": [
30
+ "import pandas as pd\n",
31
+ "import numpy as np\n",
32
+ "from sklearn.model_selection import train_test_split\n",
33
+ "from sklearn.metrics import confusion_matrix\n",
34
+ "from sklearn.preprocessing import LabelEncoder\n"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "markdown",
39
+ "metadata": {
40
+ "id": "xNrDbVDgwSc0"
41
+ },
42
+ "source": [
43
+ "## ***Load Dataset***"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": null,
49
+ "metadata": {
50
+ "colab": {
51
+ "base_uri": "https://localhost:8080/"
52
+ },
53
+ "executionInfo": {
54
+ "elapsed": 1905,
55
+ "status": "ok",
56
+ "timestamp": 1740466963116,
57
+ "user": {
58
+ "displayName": "Jaison A",
59
+ "userId": "07006398627763032071"
60
+ },
61
+ "user_tz": -330
62
+ },
63
+ "id": "MtmRoNj4wYOr",
64
+ "outputId": "0dc7b706-181e-4bb2-f37e-9fd1f7220c51"
65
+ },
66
+ "outputs": [],
67
+ "source": [
68
+ "from google.colab import drive\n",
69
+ "drive.mount('/content/drive')"
70
+ ]
71
+ },
72
+ {
73
+ "cell_type": "markdown",
74
+ "metadata": {
75
+ "id": "_lLnxu9a4vsX"
76
+ },
77
+ "source": [
78
+ "## ***Create Input Data and Output Data***"
79
+ ]
80
+ },
81
+ {
82
+ "cell_type": "code",
83
+ "execution_count": null,
84
+ "metadata": {
85
+ "colab": {
86
+ "base_uri": "https://localhost:8080/",
87
+ "height": 1000
88
+ },
89
+ "executionInfo": {
90
+ "elapsed": 123,
91
+ "status": "ok",
92
+ "timestamp": 1740466963241,
93
+ "user": {
94
+ "displayName": "Jaison A",
95
+ "userId": "07006398627763032071"
96
+ },
97
+ "user_tz": -330
98
+ },
99
+ "id": "g99uRIRSxLer",
100
+ "outputId": "250bfcff-a08d-420a-b72d-c297f9108cb2"
101
+ },
102
+ "outputs": [],
103
+ "source": [
104
+ "data=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/Lab 6/titanic.csv')\n",
105
+ "display(data.head())\n",
106
+ "\n",
107
+ "\n",
108
+ "inputs=data.get(['Pclass','Sex','Age','SibSp','Fare','Cabin','Parch'])\n",
109
+ "\n",
110
+ "\n",
111
+ "inputs['Sex'].replace(['male','female'],[1,2],inplace=True)\n",
112
+ "\n",
113
+ "le=LabelEncoder()\n",
114
+ "inputs['Cabin']=le.fit_transform(inputs['Cabin'].astype(str))\n",
115
+ "#inputs['Embarked']=le.fit_transform(inputs['Embarked'].astype(str))\n",
116
+ "inputs['Age'].fillna(inputs['Age'].mean(),inplace=True)\n",
117
+ "inputs['Cabin'].fillna(inputs['Cabin'].mean(),inplace=True)\n",
118
+ "#inputs['Embarked'].fillna(inputs['Embarked'].mean(),inplace=True)\n",
119
+ "display(inputs.head())\n",
120
+ "\n",
121
+ "\n",
122
+ "targets=data.get(['Survived'])\n",
123
+ "display(targets)"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "markdown",
128
+ "metadata": {
129
+ "id": "xRVUOPSQ41xw"
130
+ },
131
+ "source": [
132
+ "## ***Perform Naive Bayes***"
133
+ ]
134
+ },
135
+ {
136
+ "cell_type": "code",
137
+ "execution_count": null,
138
+ "metadata": {
139
+ "colab": {
140
+ "base_uri": "https://localhost:8080/"
141
+ },
142
+ "executionInfo": {
143
+ "elapsed": 9,
144
+ "status": "ok",
145
+ "timestamp": 1740466963249,
146
+ "user": {
147
+ "displayName": "Jaison A",
148
+ "userId": "07006398627763032071"
149
+ },
150
+ "user_tz": -330
151
+ },
152
+ "id": "fjoKWEbI4e_H",
153
+ "outputId": "a5bb1d20-21ea-4f32-9c46-5a2f91abee91"
154
+ },
155
+ "outputs": [],
156
+ "source": [
157
+ "X=inputs\n",
158
+ "y=targets\n",
159
+ "\n",
160
+ "X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3, random_state =42)\n",
161
+ "from sklearn.naive_bayes import GaussianNB\n",
162
+ "gnb = GaussianNB().fit(X_train, y_train)\n",
163
+ "gnb_predictions = gnb.predict(X_test)\n",
164
+ "accuracy = gnb.score(X_test, y_test)\n",
165
+ "print(f'Accuracy : {accuracy}')\n",
166
+ "cm = confusion_matrix(y_test, gnb_predictions)\n",
167
+ "print(f'\\n\\nConfusion Matrix : \\n{cm}')"
168
+ ]
169
+ }
170
+ ],
171
+ "metadata": {
172
+ "colab": {
173
+ "authorship_tag": "ABX9TyP8FfIQ/MJ/dOh6Q/ByMUQd",
174
+ "provenance": []
175
+ },
176
+ "kernelspec": {
177
+ "display_name": "Python 3 (ipykernel)",
178
+ "language": "python",
179
+ "name": "python3"
180
+ },
181
+ "language_info": {
182
+ "codemirror_mode": {
183
+ "name": "ipython",
184
+ "version": 3
185
+ },
186
+ "file_extension": ".py",
187
+ "mimetype": "text/x-python",
188
+ "name": "python",
189
+ "nbconvert_exporter": "python",
190
+ "pygments_lexer": "ipython3",
191
+ "version": "3.12.4"
192
+ }
193
+ },
194
+ "nbformat": 4,
195
+ "nbformat_minor": 4
196
+ }
@@ -0,0 +1,98 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "colab": {
8
+ "base_uri": "https://localhost:8080/",
9
+ "height": 468
10
+ },
11
+ "executionInfo": {
12
+ "elapsed": 35,
13
+ "status": "ok",
14
+ "timestamp": 1740464645333,
15
+ "user": {
16
+ "displayName": "Jaison A",
17
+ "userId": "07006398627763032071"
18
+ },
19
+ "user_tz": -330
20
+ },
21
+ "id": "v_4SXAGau-F-",
22
+ "outputId": "a4d3c4c5-4e90-4d7c-d82e-743600472c63"
23
+ },
24
+ "outputs": [],
25
+ "source": [
26
+ "from sklearn import datasets\n",
27
+ "from sklearn.metrics import confusion_matrix\n",
28
+ "from sklearn.model_selection import train_test_split\n",
29
+ "win = datasets.load_wine()\n",
30
+ "X = win.data\n",
31
+ "display(X)\n",
32
+ "y = win.target\n",
33
+ "display(y)\n",
34
+ "\n",
35
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state =0)\n",
36
+ "from sklearn.naive_bayes import GaussianNB\n",
37
+ "gnb = GaussianNB().fit(X_train, y_train)\n",
38
+ "gnb_predictions = gnb.predict(X_test)\n",
39
+ "accuracy = gnb.score(X_test, y_test)\n",
40
+ "display(accuracy)\n",
41
+ "cm = confusion_matrix(y_test, gnb_predictions)\n",
42
+ "print(cm)"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "metadata": {
49
+ "colab": {
50
+ "base_uri": "https://localhost:8080/",
51
+ "height": 989
52
+ },
53
+ "executionInfo": {
54
+ "elapsed": 50,
55
+ "status": "ok",
56
+ "timestamp": 1740464655299,
57
+ "user": {
58
+ "displayName": "Jaison A",
59
+ "userId": "07006398627763032071"
60
+ },
61
+ "user_tz": -330
62
+ },
63
+ "id": "EhHE3W9Rxlrr",
64
+ "outputId": "cdb28b95-d0b8-496a-97c8-59190599363f"
65
+ },
66
+ "outputs": [],
67
+ "source": [
68
+ "win=datasets.load_wine()\n",
69
+ "display(win)"
70
+ ]
71
+ }
72
+ ],
73
+ "metadata": {
74
+ "colab": {
75
+ "authorship_tag": "ABX9TyMW6RGa7T9gSVJv4lb9rc4X",
76
+ "provenance": []
77
+ },
78
+ "kernelspec": {
79
+ "display_name": "Python 3 (ipykernel)",
80
+ "language": "python",
81
+ "name": "python3"
82
+ },
83
+ "language_info": {
84
+ "codemirror_mode": {
85
+ "name": "ipython",
86
+ "version": 3
87
+ },
88
+ "file_extension": ".py",
89
+ "mimetype": "text/x-python",
90
+ "name": "python",
91
+ "nbconvert_exporter": "python",
92
+ "pygments_lexer": "ipython3",
93
+ "version": "3.12.4"
94
+ }
95
+ },
96
+ "nbformat": 4,
97
+ "nbformat_minor": 4
98
+ }
@@ -0,0 +1,109 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {
7
+ "colab": {
8
+ "base_uri": "https://localhost:8080/",
9
+ "height": 1000
10
+ },
11
+ "executionInfo": {
12
+ "elapsed": 14185,
13
+ "status": "ok",
14
+ "timestamp": 1743393909812,
15
+ "user": {
16
+ "displayName": "Jaison A",
17
+ "userId": "07006398627763032071"
18
+ },
19
+ "user_tz": -330
20
+ },
21
+ "id": "TLczBA7kx_ck",
22
+ "outputId": "062f709d-6dab-4287-b47a-75e93d3aa086"
23
+ },
24
+ "outputs": [],
25
+ "source": [
26
+ "import pandas as pd\n",
27
+ "import numpy as np\n",
28
+ "import matplotlib.pyplot as plt\n",
29
+ "from sklearn.model_selection import train_test_split\n",
30
+ "from sklearn.preprocessing import StandardScaler\n",
31
+ "from sklearn.svm import SVC\n",
32
+ "from sklearn.decomposition import PCA\n",
33
+ "from sklearn.metrics import classification_report, accuracy_score,confusion_matrix, ConfusionMatrixDisplay\n",
34
+ "\n",
35
+ "df =pd.read_csv('/content/heart_disease_uci.csv')\n",
36
+ "print(df.isnull().sum())\n",
37
+ "\n",
38
+ "for col in df.columns:\n",
39
+ " if df[col].dtype == 'object':\n",
40
+ " df[col].fillna(df[col].mode()[0], inplace=True)\n",
41
+ " else:\n",
42
+ " df[col].fillna(df[col].mean(), inplace=True)\n",
43
+ "\n",
44
+ "df = pd.get_dummies(df, drop_first=True)\n",
45
+ "X = df.drop('num', axis=1)\n",
46
+ "y = df['num']\n",
47
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
48
+ "scaler = StandardScaler()\n",
49
+ "X_train = scaler.fit_transform(X_train)\n",
50
+ "X_test = scaler.transform(X_test)\n",
51
+ "\n",
52
+ "# Reduce to 2D using PCA\n",
53
+ "pca = PCA(n_components=2)\n",
54
+ "X_train_2d = pca.fit_transform(X_train)\n",
55
+ "X_test_2d = pca.transform(X_test)\n",
56
+ "\n",
57
+ "# Train SVM on 2D data\n",
58
+ "svm_model = SVC(kernel='linear')\n",
59
+ "svm_model.fit(X_train_2d, y_train)\n",
60
+ "y_pred = svm_model.predict(X_test_2d)\n",
61
+ "print(\"Classification Report:\")\n",
62
+ "print(classification_report(y_test, y_pred))\n",
63
+ "print(\"Accuracy Score:\", accuracy_score(y_test, y_pred))\n",
64
+ "ConfusionMatrixDisplay(confusion_matrix(y_test, y_pred)).plot()\n",
65
+ "plt.show()\n",
66
+ "\n",
67
+ "# Plot decision boundary\n",
68
+ "def plot_decision_boundary(X, y, model):\n",
69
+ " x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n",
70
+ " y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n",
71
+ " xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))\n",
72
+ " Z = model.predict(np.c_[xx.ravel(), yy.ravel()])\n",
73
+ " Z = Z.reshape(xx.shape)\n",
74
+ " plt.contourf(xx, yy, Z, alpha=0.8, cmap=plt.cm.coolwarm)\n",
75
+ " plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o', cmap=plt.cm.coolwarm)\n",
76
+ " plt.xlabel('PCA Component 1')\n",
77
+ " plt.ylabel('PCA Component 2')\n",
78
+ " plt.title('SVM Decision Boundary (2D)')\n",
79
+ " plt.show()\n",
80
+ "\n",
81
+ "plot_decision_boundary(X_train_2d, y_train, svm_model)"
82
+ ]
83
+ }
84
+ ],
85
+ "metadata": {
86
+ "colab": {
87
+ "provenance": []
88
+ },
89
+ "kernelspec": {
90
+ "display_name": "Python 3 (ipykernel)",
91
+ "language": "python",
92
+ "name": "python3"
93
+ },
94
+ "language_info": {
95
+ "codemirror_mode": {
96
+ "name": "ipython",
97
+ "version": 3
98
+ },
99
+ "file_extension": ".py",
100
+ "mimetype": "text/x-python",
101
+ "name": "python",
102
+ "nbconvert_exporter": "python",
103
+ "pygments_lexer": "ipython3",
104
+ "version": "3.12.4"
105
+ }
106
+ },
107
+ "nbformat": 4,
108
+ "nbformat_minor": 4
109
+ }