noshot 6.0.0__py3-none-any.whl → 8.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +201 -0
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +201 -0
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +147 -0
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +181 -0
- noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +152 -0
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +117 -0
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +156 -0
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +215 -0
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +78 -0
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +115 -0
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +146 -0
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +130 -0
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +112 -0
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +118 -0
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
- noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +120 -0
- noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +262 -0
- noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +156 -0
- noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +162 -0
- noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +100 -0
- noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +336 -0
- noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +149 -0
- noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +132 -0
- noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +86 -0
- noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +115 -0
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +196 -0
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +98 -0
- noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +109 -0
- noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +195 -0
- noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +189 -0
- noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +197 -0
- noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +1087 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +274 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +170 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +1087 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +178 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +185 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +106 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +177 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +195 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +267 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +104 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +109 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +220 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +99 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +211 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +99 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +118 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +603 -0
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
- {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/METADATA +1 -1
- noshot-8.0.0.dist-info/RECORD +60 -0
- {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/WHEEL +1 -1
- noshot/data/ML TS XAI/XAI/Q1.ipynb +0 -377
- noshot/data/ML TS XAI/XAI/Q2.ipynb +0 -362
- noshot/data/ML TS XAI/XAI/Q3.ipynb +0 -637
- noshot/data/ML TS XAI/XAI/Q4.ipynb +0 -206
- noshot/data/ML TS XAI/XAI/Q5.ipynb +0 -1018
- noshot-6.0.0.dist-info/RECORD +0 -14
- {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/top_level.txt +0 -0
@@ -1,206 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "raw",
|
5
|
-
"metadata": {},
|
6
|
-
"source": [
|
7
|
-
"1.\t Train a Convolutional Neural Network (CNN) on the CIFAR-10 dataset. Then, apply Grad-CAM and Saliency Map techniques to visualize and interpret the model’s predictions.\n",
|
8
|
-
"\n",
|
9
|
-
"from tensorflow.keras.datasets import cifar10\n",
|
10
|
-
"# Load the dataset\n",
|
11
|
-
"(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n",
|
12
|
-
"\n",
|
13
|
-
"3.\tPerform a SHAP -based explanation for an image classification model using the SHAP model. \n",
|
14
|
-
"Use the following dataset\n",
|
15
|
-
"from tensorflow.keras.datasets import mnist\n",
|
16
|
-
"# Loads the MNIST dataset\n",
|
17
|
-
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n"
|
18
|
-
]
|
19
|
-
},
|
20
|
-
{
|
21
|
-
"cell_type": "code",
|
22
|
-
"execution_count": null,
|
23
|
-
"metadata": {
|
24
|
-
"colab": {
|
25
|
-
"base_uri": "https://localhost:8080/",
|
26
|
-
"height": 1000
|
27
|
-
},
|
28
|
-
"id": "ZsDuI4okVUFU",
|
29
|
-
"outputId": "9422b070-b240-4f9d-e3d3-c8f211f15c4a"
|
30
|
-
},
|
31
|
-
"outputs": [],
|
32
|
-
"source": [
|
33
|
-
"# Step 1: Install TensorFlow (if not already installed)\n",
|
34
|
-
"\n",
|
35
|
-
"# Step 2: Import Libraries\n",
|
36
|
-
"import numpy as np\n",
|
37
|
-
"import matplotlib.pyplot as plt\n",
|
38
|
-
"import tensorflow as tf\n",
|
39
|
-
"from tensorflow.keras.datasets import cifar10\n",
|
40
|
-
"from tensorflow.keras.utils import to_categorical\n",
|
41
|
-
"from tensorflow.keras import Input, Model\n",
|
42
|
-
"from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout\n",
|
43
|
-
"import warnings\n",
|
44
|
-
"warnings.filterwarnings('ignore')\n",
|
45
|
-
"\n",
|
46
|
-
"# Step 3: Load and Preprocess CIFAR-10 Data\n",
|
47
|
-
"(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n",
|
48
|
-
"x_train, x_test = x_train / 255.0, x_test / 255.0\n",
|
49
|
-
"y_train_cat = to_categorical(y_train, 10)\n",
|
50
|
-
"y_test_cat = to_categorical(y_test, 10)\n",
|
51
|
-
"\n",
|
52
|
-
"# Step 4: Define Model using Functional API\n",
|
53
|
-
"inputs = Input(shape=(32, 32, 3))\n",
|
54
|
-
"x = Conv2D(32, (3, 3), activation='relu', name='conv1')(inputs)\n",
|
55
|
-
"x = MaxPooling2D((2, 2))(x)\n",
|
56
|
-
"x = Conv2D(64, (3, 3), activation='relu', name='conv2')(x)\n",
|
57
|
-
"x = MaxPooling2D((2, 2))(x)\n",
|
58
|
-
"x = Flatten()(x)\n",
|
59
|
-
"x = Dense(64, activation='relu')(x)\n",
|
60
|
-
"x = Dropout(0.5)(x)\n",
|
61
|
-
"outputs = Dense(10, activation='softmax')(x)\n",
|
62
|
-
"\n",
|
63
|
-
"model = Model(inputs=inputs, outputs=outputs)\n",
|
64
|
-
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
|
65
|
-
"\n",
|
66
|
-
"# Step 5: Train the Model\n",
|
67
|
-
"model.fit(x_train, y_train_cat, epochs=3, validation_split=0.2)\n",
|
68
|
-
"\n",
|
69
|
-
"# Step 6: Grad-CAM Visualization\n",
|
70
|
-
"img = x_test[1]\n",
|
71
|
-
"img_tensor = tf.expand_dims(img, axis=0)\n",
|
72
|
-
"\n",
|
73
|
-
"# Predict once to build model\n",
|
74
|
-
"_ = model.predict(img_tensor)\n",
|
75
|
-
"\n",
|
76
|
-
"# Create Grad-CAM model\n",
|
77
|
-
"grad_model = tf.keras.models.Model(\n",
|
78
|
-
" [model.inputs],\n",
|
79
|
-
" [model.get_layer('conv2').output, model.output]\n",
|
80
|
-
")\n",
|
81
|
-
"\n",
|
82
|
-
"# Compute Gradients\n",
|
83
|
-
"with tf.GradientTape() as tape:\n",
|
84
|
-
" conv_outputs, predictions = grad_model(img_tensor)\n",
|
85
|
-
" pred_class = tf.argmax(predictions[0])\n",
|
86
|
-
" loss = predictions[:, pred_class]\n",
|
87
|
-
"\n",
|
88
|
-
"grads = tape.gradient(loss, conv_outputs)\n",
|
89
|
-
"pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))\n",
|
90
|
-
"\n",
|
91
|
-
"# Generate Heatmap\n",
|
92
|
-
"heatmap = tf.reduce_sum(tf.multiply(pooled_grads, conv_outputs), axis=-1)[0]\n",
|
93
|
-
"heatmap = np.maximum(heatmap, 0) / np.max(heatmap)\n",
|
94
|
-
"\n",
|
95
|
-
"# Show Grad-CAM\n",
|
96
|
-
"plt.imshow(img)\n",
|
97
|
-
"plt.imshow(heatmap, cmap='jet', alpha=0.5)\n",
|
98
|
-
"plt.axis('off')\n",
|
99
|
-
"plt.title('Grad-CAM')\n",
|
100
|
-
"plt.show()\n",
|
101
|
-
"\n",
|
102
|
-
"# Step 7: Saliency Map\n",
|
103
|
-
"img_tensor = tf.convert_to_tensor(img_tensor)\n",
|
104
|
-
"\n",
|
105
|
-
"with tf.GradientTape() as tape:\n",
|
106
|
-
" tape.watch(img_tensor)\n",
|
107
|
-
" predictions = model(img_tensor)\n",
|
108
|
-
" loss = predictions[:, pred_class]\n",
|
109
|
-
"\n",
|
110
|
-
"grads = tape.gradient(loss, img_tensor)[0]\n",
|
111
|
-
"saliency = np.max(np.abs(grads), axis=-1)\n",
|
112
|
-
"\n",
|
113
|
-
"# Show Saliency Map\n",
|
114
|
-
"plt.imshow(saliency, cmap='hot')\n",
|
115
|
-
"plt.axis('off')\n",
|
116
|
-
"plt.title('Saliency Map')\n",
|
117
|
-
"plt.show()\n"
|
118
|
-
]
|
119
|
-
},
|
120
|
-
{
|
121
|
-
"cell_type": "code",
|
122
|
-
"execution_count": null,
|
123
|
-
"metadata": {
|
124
|
-
"colab": {
|
125
|
-
"base_uri": "https://localhost:8080/",
|
126
|
-
"height": 1000
|
127
|
-
},
|
128
|
-
"id": "E6DueKo2e1PX",
|
129
|
-
"outputId": "edfc534c-90af-4e4e-9479-4147cc974474"
|
130
|
-
},
|
131
|
-
"outputs": [],
|
132
|
-
"source": [
|
133
|
-
"import numpy as np\n",
|
134
|
-
"import tensorflow as tf\n",
|
135
|
-
"import shap\n",
|
136
|
-
"import matplotlib.pyplot as plt\n",
|
137
|
-
"\n",
|
138
|
-
"# Load and preprocess MNIST data\n",
|
139
|
-
"from tensorflow.keras.datasets import mnist\n",
|
140
|
-
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
|
141
|
-
"\n",
|
142
|
-
"# Normalize and reshape data\n",
|
143
|
-
"x_train = x_train / 255.0\n",
|
144
|
-
"x_test = x_test / 255.0\n",
|
145
|
-
"x_train = np.expand_dims(x_train, -1)\n",
|
146
|
-
"x_test = np.expand_dims(x_test, -1)\n",
|
147
|
-
"\n",
|
148
|
-
"# Define a simple CNN model\n",
|
149
|
-
"model = tf.keras.models.Sequential([\n",
|
150
|
-
" tf.keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),\n",
|
151
|
-
" tf.keras.layers.MaxPooling2D((2, 2)),\n",
|
152
|
-
" tf.keras.layers.Flatten(),\n",
|
153
|
-
" tf.keras.layers.Dense(64, activation='relu'),\n",
|
154
|
-
" tf.keras.layers.Dense(10, activation='softmax')\n",
|
155
|
-
"])\n",
|
156
|
-
"\n",
|
157
|
-
"# Compile the model\n",
|
158
|
-
"model.compile(optimizer='adam',\n",
|
159
|
-
" loss='sparse_categorical_crossentropy',\n",
|
160
|
-
" metrics=['accuracy'])\n",
|
161
|
-
"\n",
|
162
|
-
"# Train the model\n",
|
163
|
-
"model.fit(x_train, y_train, epochs=3, batch_size=128, validation_split=0.1)\n",
|
164
|
-
"\n",
|
165
|
-
"# Prepare SHAP explainer\n",
|
166
|
-
"background = x_train[np.random.choice(x_train.shape[0], 100, replace=False)]\n",
|
167
|
-
"\n",
|
168
|
-
"# Wrap the model prediction function\n",
|
169
|
-
"explainer = shap.GradientExplainer(model, background)\n",
|
170
|
-
"\n",
|
171
|
-
"# Select a few test samples for explanation\n",
|
172
|
-
"test_images = x_test[:10]\n",
|
173
|
-
"\n",
|
174
|
-
"# Compute SHAP values\n",
|
175
|
-
"shap_values = explainer.shap_values(test_images)\n",
|
176
|
-
"\n",
|
177
|
-
"# Visualize SHAP values\n",
|
178
|
-
"shap.image_plot(shap_values, test_images)\n"
|
179
|
-
]
|
180
|
-
}
|
181
|
-
],
|
182
|
-
"metadata": {
|
183
|
-
"colab": {
|
184
|
-
"provenance": []
|
185
|
-
},
|
186
|
-
"kernelspec": {
|
187
|
-
"display_name": "Python 3 (ipykernel)",
|
188
|
-
"language": "python",
|
189
|
-
"name": "python3"
|
190
|
-
},
|
191
|
-
"language_info": {
|
192
|
-
"codemirror_mode": {
|
193
|
-
"name": "ipython",
|
194
|
-
"version": 3
|
195
|
-
},
|
196
|
-
"file_extension": ".py",
|
197
|
-
"mimetype": "text/x-python",
|
198
|
-
"name": "python",
|
199
|
-
"nbconvert_exporter": "python",
|
200
|
-
"pygments_lexer": "ipython3",
|
201
|
-
"version": "3.12.4"
|
202
|
-
}
|
203
|
-
},
|
204
|
-
"nbformat": 4,
|
205
|
-
"nbformat_minor": 4
|
206
|
-
}
|