noshot 6.0.0__py3-none-any.whl → 8.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +201 -0
  2. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +201 -0
  3. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +147 -0
  4. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +181 -0
  5. noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +152 -0
  6. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +117 -0
  7. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +156 -0
  8. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +215 -0
  9. noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +78 -0
  10. noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
  11. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +115 -0
  12. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +146 -0
  13. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +130 -0
  14. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +112 -0
  15. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +118 -0
  16. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
  17. noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +120 -0
  18. noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +262 -0
  19. noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +156 -0
  20. noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +162 -0
  21. noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +100 -0
  22. noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +336 -0
  23. noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +149 -0
  24. noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +132 -0
  25. noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +86 -0
  26. noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +115 -0
  27. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +196 -0
  28. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +98 -0
  29. noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +109 -0
  30. noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +195 -0
  31. noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +189 -0
  32. noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +197 -0
  33. noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +1087 -0
  34. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +274 -0
  35. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +170 -0
  36. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +1087 -0
  37. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +178 -0
  38. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +185 -0
  39. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +106 -0
  40. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +177 -0
  41. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +195 -0
  42. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +267 -0
  43. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +104 -0
  44. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +109 -0
  45. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +220 -0
  46. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +99 -0
  47. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +211 -0
  48. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +99 -0
  49. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +118 -0
  50. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +603 -0
  51. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
  52. {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/METADATA +1 -1
  53. noshot-8.0.0.dist-info/RECORD +60 -0
  54. {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/WHEEL +1 -1
  55. noshot/data/ML TS XAI/XAI/Q1.ipynb +0 -377
  56. noshot/data/ML TS XAI/XAI/Q2.ipynb +0 -362
  57. noshot/data/ML TS XAI/XAI/Q3.ipynb +0 -637
  58. noshot/data/ML TS XAI/XAI/Q4.ipynb +0 -206
  59. noshot/data/ML TS XAI/XAI/Q5.ipynb +0 -1018
  60. noshot-6.0.0.dist-info/RECORD +0 -14
  61. {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  62. {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/top_level.txt +0 -0
@@ -1,637 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "raw",
5
- "metadata": {},
6
- "source": [
7
- "1.\tExplore result visualization of post-hoc analysis methods:- \n",
8
- "Perform Partial dependence plot (PDP) on the fetch_california_housing data set and use the following code.\n",
9
- "from sklearn.datasets import fetch_california_housing\n",
10
- "data = fetch_california_housing(as_frame=True)\n",
11
- "df = data.frame\n",
12
- "\n",
13
- "2.\tPerform a LIME-based explanation for a image classification model using the LIME Text Explainer. \n",
14
- "Use the following dataset\n",
15
- "from tensorflow.keras.datasets import mnist\n",
16
- "# Loads the MNIST dataset\n",
17
- "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
18
- "Perform minimum of five EDA on the above mentioned data set.\n"
19
- ]
20
- },
21
- {
22
- "cell_type": "markdown",
23
- "metadata": {
24
- "id": "0cPxrLdh65Uq"
25
- },
26
- "source": [
27
- "**Perform Partial dependence plot (PDP)**"
28
- ]
29
- },
30
- {
31
- "cell_type": "code",
32
- "execution_count": null,
33
- "metadata": {
34
- "id": "kUCRkjNG6mLx"
35
- },
36
- "outputs": [],
37
- "source": [
38
- "from sklearn.datasets import fetch_california_housing\n",
39
- "from sklearn.ensemble import RandomForestRegressor\n",
40
- "from sklearn.inspection import PartialDependenceDisplay\n",
41
- "from sklearn.model_selection import train_test_split\n",
42
- "import matplotlib.pyplot as plt\n",
43
- "import pandas as pd\n",
44
- "import numpy as np"
45
- ]
46
- },
47
- {
48
- "cell_type": "code",
49
- "execution_count": null,
50
- "metadata": {
51
- "colab": {
52
- "base_uri": "https://localhost:8080/",
53
- "height": 223
54
- },
55
- "id": "Q7p6o9_z6qhJ",
56
- "outputId": "c04efdf3-948e-42e0-a31c-d6fee03a6d7f",
57
- "scrolled": true
58
- },
59
- "outputs": [],
60
- "source": [
61
- "df=pd.read_csv('cali.csv')\n",
62
- "df.head()"
63
- ]
64
- },
65
- {
66
- "cell_type": "code",
67
- "execution_count": null,
68
- "metadata": {},
69
- "outputs": [],
70
- "source": [
71
- "X=df.drop(columns='target')\n",
72
- "y=df['target']"
73
- ]
74
- },
75
- {
76
- "cell_type": "code",
77
- "execution_count": null,
78
- "metadata": {
79
- "colab": {
80
- "base_uri": "https://localhost:8080/",
81
- "height": 80
82
- },
83
- "id": "auzRXSjU6tR8",
84
- "outputId": "77452de0-80b8-495a-a3a5-b3a94e1bc17c"
85
- },
86
- "outputs": [],
87
- "source": [
88
- "X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)\n",
89
- "\n",
90
- "model=RandomForestRegressor(n_estimators=100,random_state=42)\n",
91
- "model.fit(X_train,y_train)"
92
- ]
93
- },
94
- {
95
- "cell_type": "code",
96
- "execution_count": null,
97
- "metadata": {
98
- "colab": {
99
- "base_uri": "https://localhost:8080/",
100
- "height": 449
101
- },
102
- "id": "a4_Knmz76uyv",
103
- "outputId": "801f0a25-c327-4f1f-8825-afdd408e1be9"
104
- },
105
- "outputs": [],
106
- "source": [
107
- "PartialDependenceDisplay.from_estimator(model,X_train,features=['MedInc'],feature_names=df.columns)\n",
108
- "plt.show()"
109
- ]
110
- },
111
- {
112
- "cell_type": "code",
113
- "execution_count": null,
114
- "metadata": {
115
- "colab": {
116
- "base_uri": "https://localhost:8080/",
117
- "height": 449
118
- },
119
- "id": "OHZdRGxM6w3F",
120
- "outputId": "9e8afefc-b1f7-4fe4-82ee-09c62f8eb8f0",
121
- "scrolled": true
122
- },
123
- "outputs": [],
124
- "source": [
125
- "PartialDependenceDisplay.from_estimator(model,X_train,[('MedInc','HouseAge')],feature_names=df.columns)\n",
126
- "plt.show()"
127
- ]
128
- },
129
- {
130
- "cell_type": "markdown",
131
- "metadata": {
132
- "id": "GmCsO0lP6-td"
133
- },
134
- "source": [
135
- "**LIME FOR IMAGE**"
136
- ]
137
- },
138
- {
139
- "cell_type": "code",
140
- "execution_count": null,
141
- "metadata": {
142
- "id": "kKkCLaMW7ANg"
143
- },
144
- "outputs": [],
145
- "source": [
146
- "from tensorflow.keras.applications.xception import Xception,decode_predictions\n",
147
- "from tensorflow.keras.datasets import mnist\n",
148
- "from tensorflow.keras.models import Sequential\n",
149
- "from tensorflow.keras.layers import Conv2D,MaxPooling2D,Flatten,Dense\n",
150
- "from tensorflow.keras.utils import to_categorical\n",
151
- "from lime import lime_image\n",
152
- "import seaborn as sns\n",
153
- "from skimage.color import label2rgb\n",
154
- "import warnings\n",
155
- "warnings.filterwarnings('ignore')"
156
- ]
157
- },
158
- {
159
- "cell_type": "code",
160
- "execution_count": null,
161
- "metadata": {
162
- "id": "GgZ51IgYBnP2"
163
- },
164
- "outputs": [],
165
- "source": [
166
- "(x_train,y_train),(x_test,y_test)=mnist.load_data()\n",
167
- "\n",
168
- "x_train=x_train.astype('float32')/255.0\n",
169
- "x_test=x_test.astype('float32')/255.0\n",
170
- "\n",
171
- "y_train_cat=to_categorical(y_train,10)\n",
172
- "y_test_cat=to_categorical(y_test,10)"
173
- ]
174
- },
175
- {
176
- "cell_type": "code",
177
- "execution_count": null,
178
- "metadata": {
179
- "colab": {
180
- "base_uri": "https://localhost:8080/"
181
- },
182
- "id": "rABd-7nYENlT",
183
- "outputId": "9441cc1d-b3a0-4f1b-eaec-fd73b26171e3"
184
- },
185
- "outputs": [],
186
- "source": [
187
- "model = Sequential([\n",
188
- " Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),\n",
189
- " MaxPooling2D((2, 2)),\n",
190
- " Flatten(),\n",
191
- " Dense(64, activation='relu'),\n",
192
- " Dense(10, activation='softmax')\n",
193
- "])\n",
194
- "\n",
195
- "model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
196
- "model.fit(x_train, y_train_cat, epochs=2, batch_size=64, validation_split=0.1)\n"
197
- ]
198
- },
199
- {
200
- "cell_type": "code",
201
- "execution_count": null,
202
- "metadata": {
203
- "colab": {
204
- "base_uri": "https://localhost:8080/",
205
- "height": 1000,
206
- "referenced_widgets": [
207
- "af45ee093e934a629a993fba7fe2c10f",
208
- "a332c8bbfb0b4fb18133490edd5000cb",
209
- "f626defc1d4544b3a8a67c2c792d8c94",
210
- "465d9a8a9edd4fccb5f7f88d32b7af3f",
211
- "08e685b6dec343808ab7a34a444f049e",
212
- "da56cd3d10b741d5a0b383934153357b",
213
- "4af04f4f3e24470f93f593f71717ccc1",
214
- "69f13969e1e34139aef8c39f40524d64",
215
- "9e7e9389e5ff4e2cad706bda44010e1a",
216
- "57c6b335e2e942f2b4796548d40aefea",
217
- "79fceb113bc045dd81cbd0861750aa80"
218
- ]
219
- },
220
- "id": "WN1BnA68FZ3S",
221
- "outputId": "5b39ffef-b4d9-41e1-844c-8445d152d736"
222
- },
223
- "outputs": [],
224
- "source": [
225
- "from lime import lime_image\n",
226
- "from skimage.color import label2rgb\n",
227
- "import cv2\n",
228
- "import numpy as np\n",
229
- "import matplotlib.pyplot as plt\n",
230
- "explainer = lime_image.LimeImageExplainer()\n",
231
- "idx = 25\n",
232
- "test_image = x_test[idx]\n",
233
- "\n",
234
- "# Convert LIME's RGB input back to grayscale\n",
235
- "predict_fn = lambda x: model.predict(\n",
236
- " np.array([cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) for img in x])[..., np.newaxis]\n",
237
- ")\n",
238
- "\n",
239
- "explanation = explainer.explain_instance(\n",
240
- " image=test_image.squeeze(), # shape: (28, 28)\n",
241
- " classifier_fn=predict_fn,\n",
242
- " top_labels=1,\n",
243
- " hide_color=0,\n",
244
- " num_samples=1000\n",
245
- ")\n",
246
- "\n",
247
- "temp, mask = explanation.get_image_and_mask(\n",
248
- " label=explanation.top_labels[0],\n",
249
- " positive_only=True,\n",
250
- " hide_rest=False\n",
251
- ")\n",
252
- "\n",
253
- "plt.imshow(label2rgb(mask, temp, bg_label=0))\n",
254
- "plt.title(f\"LIME for label: {y_test[idx]}\")\n",
255
- "plt.axis('off')\n",
256
- "plt.show()\n"
257
- ]
258
- },
259
- {
260
- "cell_type": "code",
261
- "execution_count": null,
262
- "metadata": {},
263
- "outputs": [],
264
- "source": []
265
- }
266
- ],
267
- "metadata": {
268
- "colab": {
269
- "provenance": []
270
- },
271
- "kernelspec": {
272
- "display_name": "Python 3 (ipykernel)",
273
- "language": "python",
274
- "name": "python3"
275
- },
276
- "language_info": {
277
- "codemirror_mode": {
278
- "name": "ipython",
279
- "version": 3
280
- },
281
- "file_extension": ".py",
282
- "mimetype": "text/x-python",
283
- "name": "python",
284
- "nbconvert_exporter": "python",
285
- "pygments_lexer": "ipython3",
286
- "version": "3.12.4"
287
- },
288
- "widgets": {
289
- "application/vnd.jupyter.widget-state+json": {
290
- "08e685b6dec343808ab7a34a444f049e": {
291
- "model_module": "@jupyter-widgets/base",
292
- "model_module_version": "1.2.0",
293
- "model_name": "LayoutModel",
294
- "state": {
295
- "_model_module": "@jupyter-widgets/base",
296
- "_model_module_version": "1.2.0",
297
- "_model_name": "LayoutModel",
298
- "_view_count": null,
299
- "_view_module": "@jupyter-widgets/base",
300
- "_view_module_version": "1.2.0",
301
- "_view_name": "LayoutView",
302
- "align_content": null,
303
- "align_items": null,
304
- "align_self": null,
305
- "border": null,
306
- "bottom": null,
307
- "display": null,
308
- "flex": null,
309
- "flex_flow": null,
310
- "grid_area": null,
311
- "grid_auto_columns": null,
312
- "grid_auto_flow": null,
313
- "grid_auto_rows": null,
314
- "grid_column": null,
315
- "grid_gap": null,
316
- "grid_row": null,
317
- "grid_template_areas": null,
318
- "grid_template_columns": null,
319
- "grid_template_rows": null,
320
- "height": null,
321
- "justify_content": null,
322
- "justify_items": null,
323
- "left": null,
324
- "margin": null,
325
- "max_height": null,
326
- "max_width": null,
327
- "min_height": null,
328
- "min_width": null,
329
- "object_fit": null,
330
- "object_position": null,
331
- "order": null,
332
- "overflow": null,
333
- "overflow_x": null,
334
- "overflow_y": null,
335
- "padding": null,
336
- "right": null,
337
- "top": null,
338
- "visibility": null,
339
- "width": null
340
- }
341
- },
342
- "465d9a8a9edd4fccb5f7f88d32b7af3f": {
343
- "model_module": "@jupyter-widgets/controls",
344
- "model_module_version": "1.5.0",
345
- "model_name": "HTMLModel",
346
- "state": {
347
- "_dom_classes": [],
348
- "_model_module": "@jupyter-widgets/controls",
349
- "_model_module_version": "1.5.0",
350
- "_model_name": "HTMLModel",
351
- "_view_count": null,
352
- "_view_module": "@jupyter-widgets/controls",
353
- "_view_module_version": "1.5.0",
354
- "_view_name": "HTMLView",
355
- "description": "",
356
- "description_tooltip": null,
357
- "layout": "IPY_MODEL_57c6b335e2e942f2b4796548d40aefea",
358
- "placeholder": "​",
359
- "style": "IPY_MODEL_79fceb113bc045dd81cbd0861750aa80",
360
- "value": " 1000/1000 [00:16<00:00, 64.22it/s]"
361
- }
362
- },
363
- "4af04f4f3e24470f93f593f71717ccc1": {
364
- "model_module": "@jupyter-widgets/controls",
365
- "model_module_version": "1.5.0",
366
- "model_name": "DescriptionStyleModel",
367
- "state": {
368
- "_model_module": "@jupyter-widgets/controls",
369
- "_model_module_version": "1.5.0",
370
- "_model_name": "DescriptionStyleModel",
371
- "_view_count": null,
372
- "_view_module": "@jupyter-widgets/base",
373
- "_view_module_version": "1.2.0",
374
- "_view_name": "StyleView",
375
- "description_width": ""
376
- }
377
- },
378
- "57c6b335e2e942f2b4796548d40aefea": {
379
- "model_module": "@jupyter-widgets/base",
380
- "model_module_version": "1.2.0",
381
- "model_name": "LayoutModel",
382
- "state": {
383
- "_model_module": "@jupyter-widgets/base",
384
- "_model_module_version": "1.2.0",
385
- "_model_name": "LayoutModel",
386
- "_view_count": null,
387
- "_view_module": "@jupyter-widgets/base",
388
- "_view_module_version": "1.2.0",
389
- "_view_name": "LayoutView",
390
- "align_content": null,
391
- "align_items": null,
392
- "align_self": null,
393
- "border": null,
394
- "bottom": null,
395
- "display": null,
396
- "flex": null,
397
- "flex_flow": null,
398
- "grid_area": null,
399
- "grid_auto_columns": null,
400
- "grid_auto_flow": null,
401
- "grid_auto_rows": null,
402
- "grid_column": null,
403
- "grid_gap": null,
404
- "grid_row": null,
405
- "grid_template_areas": null,
406
- "grid_template_columns": null,
407
- "grid_template_rows": null,
408
- "height": null,
409
- "justify_content": null,
410
- "justify_items": null,
411
- "left": null,
412
- "margin": null,
413
- "max_height": null,
414
- "max_width": null,
415
- "min_height": null,
416
- "min_width": null,
417
- "object_fit": null,
418
- "object_position": null,
419
- "order": null,
420
- "overflow": null,
421
- "overflow_x": null,
422
- "overflow_y": null,
423
- "padding": null,
424
- "right": null,
425
- "top": null,
426
- "visibility": null,
427
- "width": null
428
- }
429
- },
430
- "69f13969e1e34139aef8c39f40524d64": {
431
- "model_module": "@jupyter-widgets/base",
432
- "model_module_version": "1.2.0",
433
- "model_name": "LayoutModel",
434
- "state": {
435
- "_model_module": "@jupyter-widgets/base",
436
- "_model_module_version": "1.2.0",
437
- "_model_name": "LayoutModel",
438
- "_view_count": null,
439
- "_view_module": "@jupyter-widgets/base",
440
- "_view_module_version": "1.2.0",
441
- "_view_name": "LayoutView",
442
- "align_content": null,
443
- "align_items": null,
444
- "align_self": null,
445
- "border": null,
446
- "bottom": null,
447
- "display": null,
448
- "flex": null,
449
- "flex_flow": null,
450
- "grid_area": null,
451
- "grid_auto_columns": null,
452
- "grid_auto_flow": null,
453
- "grid_auto_rows": null,
454
- "grid_column": null,
455
- "grid_gap": null,
456
- "grid_row": null,
457
- "grid_template_areas": null,
458
- "grid_template_columns": null,
459
- "grid_template_rows": null,
460
- "height": null,
461
- "justify_content": null,
462
- "justify_items": null,
463
- "left": null,
464
- "margin": null,
465
- "max_height": null,
466
- "max_width": null,
467
- "min_height": null,
468
- "min_width": null,
469
- "object_fit": null,
470
- "object_position": null,
471
- "order": null,
472
- "overflow": null,
473
- "overflow_x": null,
474
- "overflow_y": null,
475
- "padding": null,
476
- "right": null,
477
- "top": null,
478
- "visibility": null,
479
- "width": null
480
- }
481
- },
482
- "79fceb113bc045dd81cbd0861750aa80": {
483
- "model_module": "@jupyter-widgets/controls",
484
- "model_module_version": "1.5.0",
485
- "model_name": "DescriptionStyleModel",
486
- "state": {
487
- "_model_module": "@jupyter-widgets/controls",
488
- "_model_module_version": "1.5.0",
489
- "_model_name": "DescriptionStyleModel",
490
- "_view_count": null,
491
- "_view_module": "@jupyter-widgets/base",
492
- "_view_module_version": "1.2.0",
493
- "_view_name": "StyleView",
494
- "description_width": ""
495
- }
496
- },
497
- "9e7e9389e5ff4e2cad706bda44010e1a": {
498
- "model_module": "@jupyter-widgets/controls",
499
- "model_module_version": "1.5.0",
500
- "model_name": "ProgressStyleModel",
501
- "state": {
502
- "_model_module": "@jupyter-widgets/controls",
503
- "_model_module_version": "1.5.0",
504
- "_model_name": "ProgressStyleModel",
505
- "_view_count": null,
506
- "_view_module": "@jupyter-widgets/base",
507
- "_view_module_version": "1.2.0",
508
- "_view_name": "StyleView",
509
- "bar_color": null,
510
- "description_width": ""
511
- }
512
- },
513
- "a332c8bbfb0b4fb18133490edd5000cb": {
514
- "model_module": "@jupyter-widgets/controls",
515
- "model_module_version": "1.5.0",
516
- "model_name": "HTMLModel",
517
- "state": {
518
- "_dom_classes": [],
519
- "_model_module": "@jupyter-widgets/controls",
520
- "_model_module_version": "1.5.0",
521
- "_model_name": "HTMLModel",
522
- "_view_count": null,
523
- "_view_module": "@jupyter-widgets/controls",
524
- "_view_module_version": "1.5.0",
525
- "_view_name": "HTMLView",
526
- "description": "",
527
- "description_tooltip": null,
528
- "layout": "IPY_MODEL_da56cd3d10b741d5a0b383934153357b",
529
- "placeholder": "​",
530
- "style": "IPY_MODEL_4af04f4f3e24470f93f593f71717ccc1",
531
- "value": "100%"
532
- }
533
- },
534
- "af45ee093e934a629a993fba7fe2c10f": {
535
- "model_module": "@jupyter-widgets/controls",
536
- "model_module_version": "1.5.0",
537
- "model_name": "HBoxModel",
538
- "state": {
539
- "_dom_classes": [],
540
- "_model_module": "@jupyter-widgets/controls",
541
- "_model_module_version": "1.5.0",
542
- "_model_name": "HBoxModel",
543
- "_view_count": null,
544
- "_view_module": "@jupyter-widgets/controls",
545
- "_view_module_version": "1.5.0",
546
- "_view_name": "HBoxView",
547
- "box_style": "",
548
- "children": [
549
- "IPY_MODEL_a332c8bbfb0b4fb18133490edd5000cb",
550
- "IPY_MODEL_f626defc1d4544b3a8a67c2c792d8c94",
551
- "IPY_MODEL_465d9a8a9edd4fccb5f7f88d32b7af3f"
552
- ],
553
- "layout": "IPY_MODEL_08e685b6dec343808ab7a34a444f049e"
554
- }
555
- },
556
- "da56cd3d10b741d5a0b383934153357b": {
557
- "model_module": "@jupyter-widgets/base",
558
- "model_module_version": "1.2.0",
559
- "model_name": "LayoutModel",
560
- "state": {
561
- "_model_module": "@jupyter-widgets/base",
562
- "_model_module_version": "1.2.0",
563
- "_model_name": "LayoutModel",
564
- "_view_count": null,
565
- "_view_module": "@jupyter-widgets/base",
566
- "_view_module_version": "1.2.0",
567
- "_view_name": "LayoutView",
568
- "align_content": null,
569
- "align_items": null,
570
- "align_self": null,
571
- "border": null,
572
- "bottom": null,
573
- "display": null,
574
- "flex": null,
575
- "flex_flow": null,
576
- "grid_area": null,
577
- "grid_auto_columns": null,
578
- "grid_auto_flow": null,
579
- "grid_auto_rows": null,
580
- "grid_column": null,
581
- "grid_gap": null,
582
- "grid_row": null,
583
- "grid_template_areas": null,
584
- "grid_template_columns": null,
585
- "grid_template_rows": null,
586
- "height": null,
587
- "justify_content": null,
588
- "justify_items": null,
589
- "left": null,
590
- "margin": null,
591
- "max_height": null,
592
- "max_width": null,
593
- "min_height": null,
594
- "min_width": null,
595
- "object_fit": null,
596
- "object_position": null,
597
- "order": null,
598
- "overflow": null,
599
- "overflow_x": null,
600
- "overflow_y": null,
601
- "padding": null,
602
- "right": null,
603
- "top": null,
604
- "visibility": null,
605
- "width": null
606
- }
607
- },
608
- "f626defc1d4544b3a8a67c2c792d8c94": {
609
- "model_module": "@jupyter-widgets/controls",
610
- "model_module_version": "1.5.0",
611
- "model_name": "FloatProgressModel",
612
- "state": {
613
- "_dom_classes": [],
614
- "_model_module": "@jupyter-widgets/controls",
615
- "_model_module_version": "1.5.0",
616
- "_model_name": "FloatProgressModel",
617
- "_view_count": null,
618
- "_view_module": "@jupyter-widgets/controls",
619
- "_view_module_version": "1.5.0",
620
- "_view_name": "ProgressView",
621
- "bar_style": "success",
622
- "description": "",
623
- "description_tooltip": null,
624
- "layout": "IPY_MODEL_69f13969e1e34139aef8c39f40524d64",
625
- "max": 1000,
626
- "min": 0,
627
- "orientation": "horizontal",
628
- "style": "IPY_MODEL_9e7e9389e5ff4e2cad706bda44010e1a",
629
- "value": 1000
630
- }
631
- }
632
- }
633
- }
634
- },
635
- "nbformat": 4,
636
- "nbformat_minor": 4
637
- }