noshot 6.0.0__py3-none-any.whl → 8.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +201 -0
- noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +201 -0
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +147 -0
- noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +181 -0
- noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +152 -0
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +117 -0
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +156 -0
- noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +215 -0
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +78 -0
- noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +115 -0
- noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +146 -0
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +130 -0
- noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +112 -0
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +118 -0
- noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
- noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +120 -0
- noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +262 -0
- noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +156 -0
- noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +162 -0
- noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +100 -0
- noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +336 -0
- noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +149 -0
- noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +132 -0
- noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +86 -0
- noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +115 -0
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +196 -0
- noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +98 -0
- noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +109 -0
- noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +195 -0
- noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +189 -0
- noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +197 -0
- noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +1087 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +274 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +170 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +1087 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +178 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +185 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +106 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +177 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +195 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +267 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +104 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +109 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +220 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +99 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +211 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +99 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +118 -0
- noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +603 -0
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
- {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/METADATA +1 -1
- noshot-8.0.0.dist-info/RECORD +60 -0
- {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/WHEEL +1 -1
- noshot/data/ML TS XAI/XAI/Q1.ipynb +0 -377
- noshot/data/ML TS XAI/XAI/Q2.ipynb +0 -362
- noshot/data/ML TS XAI/XAI/Q3.ipynb +0 -637
- noshot/data/ML TS XAI/XAI/Q4.ipynb +0 -206
- noshot/data/ML TS XAI/XAI/Q5.ipynb +0 -1018
- noshot-6.0.0.dist-info/RECORD +0 -14
- {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-6.0.0.dist-info → noshot-8.0.0.dist-info}/top_level.txt +0 -0
@@ -1,637 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "raw",
|
5
|
-
"metadata": {},
|
6
|
-
"source": [
|
7
|
-
"1.\tExplore result visualization of post-hoc analysis methods:- \n",
|
8
|
-
"Perform Partial dependence plot (PDP) on the fetch_california_housing data set and use the following code.\n",
|
9
|
-
"from sklearn.datasets import fetch_california_housing\n",
|
10
|
-
"data = fetch_california_housing(as_frame=True)\n",
|
11
|
-
"df = data.frame\n",
|
12
|
-
"\n",
|
13
|
-
"2.\tPerform a LIME-based explanation for a image classification model using the LIME Text Explainer. \n",
|
14
|
-
"Use the following dataset\n",
|
15
|
-
"from tensorflow.keras.datasets import mnist\n",
|
16
|
-
"# Loads the MNIST dataset\n",
|
17
|
-
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
|
18
|
-
"Perform minimum of five EDA on the above mentioned data set.\n"
|
19
|
-
]
|
20
|
-
},
|
21
|
-
{
|
22
|
-
"cell_type": "markdown",
|
23
|
-
"metadata": {
|
24
|
-
"id": "0cPxrLdh65Uq"
|
25
|
-
},
|
26
|
-
"source": [
|
27
|
-
"**Perform Partial dependence plot (PDP)**"
|
28
|
-
]
|
29
|
-
},
|
30
|
-
{
|
31
|
-
"cell_type": "code",
|
32
|
-
"execution_count": null,
|
33
|
-
"metadata": {
|
34
|
-
"id": "kUCRkjNG6mLx"
|
35
|
-
},
|
36
|
-
"outputs": [],
|
37
|
-
"source": [
|
38
|
-
"from sklearn.datasets import fetch_california_housing\n",
|
39
|
-
"from sklearn.ensemble import RandomForestRegressor\n",
|
40
|
-
"from sklearn.inspection import PartialDependenceDisplay\n",
|
41
|
-
"from sklearn.model_selection import train_test_split\n",
|
42
|
-
"import matplotlib.pyplot as plt\n",
|
43
|
-
"import pandas as pd\n",
|
44
|
-
"import numpy as np"
|
45
|
-
]
|
46
|
-
},
|
47
|
-
{
|
48
|
-
"cell_type": "code",
|
49
|
-
"execution_count": null,
|
50
|
-
"metadata": {
|
51
|
-
"colab": {
|
52
|
-
"base_uri": "https://localhost:8080/",
|
53
|
-
"height": 223
|
54
|
-
},
|
55
|
-
"id": "Q7p6o9_z6qhJ",
|
56
|
-
"outputId": "c04efdf3-948e-42e0-a31c-d6fee03a6d7f",
|
57
|
-
"scrolled": true
|
58
|
-
},
|
59
|
-
"outputs": [],
|
60
|
-
"source": [
|
61
|
-
"df=pd.read_csv('cali.csv')\n",
|
62
|
-
"df.head()"
|
63
|
-
]
|
64
|
-
},
|
65
|
-
{
|
66
|
-
"cell_type": "code",
|
67
|
-
"execution_count": null,
|
68
|
-
"metadata": {},
|
69
|
-
"outputs": [],
|
70
|
-
"source": [
|
71
|
-
"X=df.drop(columns='target')\n",
|
72
|
-
"y=df['target']"
|
73
|
-
]
|
74
|
-
},
|
75
|
-
{
|
76
|
-
"cell_type": "code",
|
77
|
-
"execution_count": null,
|
78
|
-
"metadata": {
|
79
|
-
"colab": {
|
80
|
-
"base_uri": "https://localhost:8080/",
|
81
|
-
"height": 80
|
82
|
-
},
|
83
|
-
"id": "auzRXSjU6tR8",
|
84
|
-
"outputId": "77452de0-80b8-495a-a3a5-b3a94e1bc17c"
|
85
|
-
},
|
86
|
-
"outputs": [],
|
87
|
-
"source": [
|
88
|
-
"X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)\n",
|
89
|
-
"\n",
|
90
|
-
"model=RandomForestRegressor(n_estimators=100,random_state=42)\n",
|
91
|
-
"model.fit(X_train,y_train)"
|
92
|
-
]
|
93
|
-
},
|
94
|
-
{
|
95
|
-
"cell_type": "code",
|
96
|
-
"execution_count": null,
|
97
|
-
"metadata": {
|
98
|
-
"colab": {
|
99
|
-
"base_uri": "https://localhost:8080/",
|
100
|
-
"height": 449
|
101
|
-
},
|
102
|
-
"id": "a4_Knmz76uyv",
|
103
|
-
"outputId": "801f0a25-c327-4f1f-8825-afdd408e1be9"
|
104
|
-
},
|
105
|
-
"outputs": [],
|
106
|
-
"source": [
|
107
|
-
"PartialDependenceDisplay.from_estimator(model,X_train,features=['MedInc'],feature_names=df.columns)\n",
|
108
|
-
"plt.show()"
|
109
|
-
]
|
110
|
-
},
|
111
|
-
{
|
112
|
-
"cell_type": "code",
|
113
|
-
"execution_count": null,
|
114
|
-
"metadata": {
|
115
|
-
"colab": {
|
116
|
-
"base_uri": "https://localhost:8080/",
|
117
|
-
"height": 449
|
118
|
-
},
|
119
|
-
"id": "OHZdRGxM6w3F",
|
120
|
-
"outputId": "9e8afefc-b1f7-4fe4-82ee-09c62f8eb8f0",
|
121
|
-
"scrolled": true
|
122
|
-
},
|
123
|
-
"outputs": [],
|
124
|
-
"source": [
|
125
|
-
"PartialDependenceDisplay.from_estimator(model,X_train,[('MedInc','HouseAge')],feature_names=df.columns)\n",
|
126
|
-
"plt.show()"
|
127
|
-
]
|
128
|
-
},
|
129
|
-
{
|
130
|
-
"cell_type": "markdown",
|
131
|
-
"metadata": {
|
132
|
-
"id": "GmCsO0lP6-td"
|
133
|
-
},
|
134
|
-
"source": [
|
135
|
-
"**LIME FOR IMAGE**"
|
136
|
-
]
|
137
|
-
},
|
138
|
-
{
|
139
|
-
"cell_type": "code",
|
140
|
-
"execution_count": null,
|
141
|
-
"metadata": {
|
142
|
-
"id": "kKkCLaMW7ANg"
|
143
|
-
},
|
144
|
-
"outputs": [],
|
145
|
-
"source": [
|
146
|
-
"from tensorflow.keras.applications.xception import Xception,decode_predictions\n",
|
147
|
-
"from tensorflow.keras.datasets import mnist\n",
|
148
|
-
"from tensorflow.keras.models import Sequential\n",
|
149
|
-
"from tensorflow.keras.layers import Conv2D,MaxPooling2D,Flatten,Dense\n",
|
150
|
-
"from tensorflow.keras.utils import to_categorical\n",
|
151
|
-
"from lime import lime_image\n",
|
152
|
-
"import seaborn as sns\n",
|
153
|
-
"from skimage.color import label2rgb\n",
|
154
|
-
"import warnings\n",
|
155
|
-
"warnings.filterwarnings('ignore')"
|
156
|
-
]
|
157
|
-
},
|
158
|
-
{
|
159
|
-
"cell_type": "code",
|
160
|
-
"execution_count": null,
|
161
|
-
"metadata": {
|
162
|
-
"id": "GgZ51IgYBnP2"
|
163
|
-
},
|
164
|
-
"outputs": [],
|
165
|
-
"source": [
|
166
|
-
"(x_train,y_train),(x_test,y_test)=mnist.load_data()\n",
|
167
|
-
"\n",
|
168
|
-
"x_train=x_train.astype('float32')/255.0\n",
|
169
|
-
"x_test=x_test.astype('float32')/255.0\n",
|
170
|
-
"\n",
|
171
|
-
"y_train_cat=to_categorical(y_train,10)\n",
|
172
|
-
"y_test_cat=to_categorical(y_test,10)"
|
173
|
-
]
|
174
|
-
},
|
175
|
-
{
|
176
|
-
"cell_type": "code",
|
177
|
-
"execution_count": null,
|
178
|
-
"metadata": {
|
179
|
-
"colab": {
|
180
|
-
"base_uri": "https://localhost:8080/"
|
181
|
-
},
|
182
|
-
"id": "rABd-7nYENlT",
|
183
|
-
"outputId": "9441cc1d-b3a0-4f1b-eaec-fd73b26171e3"
|
184
|
-
},
|
185
|
-
"outputs": [],
|
186
|
-
"source": [
|
187
|
-
"model = Sequential([\n",
|
188
|
-
" Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),\n",
|
189
|
-
" MaxPooling2D((2, 2)),\n",
|
190
|
-
" Flatten(),\n",
|
191
|
-
" Dense(64, activation='relu'),\n",
|
192
|
-
" Dense(10, activation='softmax')\n",
|
193
|
-
"])\n",
|
194
|
-
"\n",
|
195
|
-
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
|
196
|
-
"model.fit(x_train, y_train_cat, epochs=2, batch_size=64, validation_split=0.1)\n"
|
197
|
-
]
|
198
|
-
},
|
199
|
-
{
|
200
|
-
"cell_type": "code",
|
201
|
-
"execution_count": null,
|
202
|
-
"metadata": {
|
203
|
-
"colab": {
|
204
|
-
"base_uri": "https://localhost:8080/",
|
205
|
-
"height": 1000,
|
206
|
-
"referenced_widgets": [
|
207
|
-
"af45ee093e934a629a993fba7fe2c10f",
|
208
|
-
"a332c8bbfb0b4fb18133490edd5000cb",
|
209
|
-
"f626defc1d4544b3a8a67c2c792d8c94",
|
210
|
-
"465d9a8a9edd4fccb5f7f88d32b7af3f",
|
211
|
-
"08e685b6dec343808ab7a34a444f049e",
|
212
|
-
"da56cd3d10b741d5a0b383934153357b",
|
213
|
-
"4af04f4f3e24470f93f593f71717ccc1",
|
214
|
-
"69f13969e1e34139aef8c39f40524d64",
|
215
|
-
"9e7e9389e5ff4e2cad706bda44010e1a",
|
216
|
-
"57c6b335e2e942f2b4796548d40aefea",
|
217
|
-
"79fceb113bc045dd81cbd0861750aa80"
|
218
|
-
]
|
219
|
-
},
|
220
|
-
"id": "WN1BnA68FZ3S",
|
221
|
-
"outputId": "5b39ffef-b4d9-41e1-844c-8445d152d736"
|
222
|
-
},
|
223
|
-
"outputs": [],
|
224
|
-
"source": [
|
225
|
-
"from lime import lime_image\n",
|
226
|
-
"from skimage.color import label2rgb\n",
|
227
|
-
"import cv2\n",
|
228
|
-
"import numpy as np\n",
|
229
|
-
"import matplotlib.pyplot as plt\n",
|
230
|
-
"explainer = lime_image.LimeImageExplainer()\n",
|
231
|
-
"idx = 25\n",
|
232
|
-
"test_image = x_test[idx]\n",
|
233
|
-
"\n",
|
234
|
-
"# Convert LIME's RGB input back to grayscale\n",
|
235
|
-
"predict_fn = lambda x: model.predict(\n",
|
236
|
-
" np.array([cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) for img in x])[..., np.newaxis]\n",
|
237
|
-
")\n",
|
238
|
-
"\n",
|
239
|
-
"explanation = explainer.explain_instance(\n",
|
240
|
-
" image=test_image.squeeze(), # shape: (28, 28)\n",
|
241
|
-
" classifier_fn=predict_fn,\n",
|
242
|
-
" top_labels=1,\n",
|
243
|
-
" hide_color=0,\n",
|
244
|
-
" num_samples=1000\n",
|
245
|
-
")\n",
|
246
|
-
"\n",
|
247
|
-
"temp, mask = explanation.get_image_and_mask(\n",
|
248
|
-
" label=explanation.top_labels[0],\n",
|
249
|
-
" positive_only=True,\n",
|
250
|
-
" hide_rest=False\n",
|
251
|
-
")\n",
|
252
|
-
"\n",
|
253
|
-
"plt.imshow(label2rgb(mask, temp, bg_label=0))\n",
|
254
|
-
"plt.title(f\"LIME for label: {y_test[idx]}\")\n",
|
255
|
-
"plt.axis('off')\n",
|
256
|
-
"plt.show()\n"
|
257
|
-
]
|
258
|
-
},
|
259
|
-
{
|
260
|
-
"cell_type": "code",
|
261
|
-
"execution_count": null,
|
262
|
-
"metadata": {},
|
263
|
-
"outputs": [],
|
264
|
-
"source": []
|
265
|
-
}
|
266
|
-
],
|
267
|
-
"metadata": {
|
268
|
-
"colab": {
|
269
|
-
"provenance": []
|
270
|
-
},
|
271
|
-
"kernelspec": {
|
272
|
-
"display_name": "Python 3 (ipykernel)",
|
273
|
-
"language": "python",
|
274
|
-
"name": "python3"
|
275
|
-
},
|
276
|
-
"language_info": {
|
277
|
-
"codemirror_mode": {
|
278
|
-
"name": "ipython",
|
279
|
-
"version": 3
|
280
|
-
},
|
281
|
-
"file_extension": ".py",
|
282
|
-
"mimetype": "text/x-python",
|
283
|
-
"name": "python",
|
284
|
-
"nbconvert_exporter": "python",
|
285
|
-
"pygments_lexer": "ipython3",
|
286
|
-
"version": "3.12.4"
|
287
|
-
},
|
288
|
-
"widgets": {
|
289
|
-
"application/vnd.jupyter.widget-state+json": {
|
290
|
-
"08e685b6dec343808ab7a34a444f049e": {
|
291
|
-
"model_module": "@jupyter-widgets/base",
|
292
|
-
"model_module_version": "1.2.0",
|
293
|
-
"model_name": "LayoutModel",
|
294
|
-
"state": {
|
295
|
-
"_model_module": "@jupyter-widgets/base",
|
296
|
-
"_model_module_version": "1.2.0",
|
297
|
-
"_model_name": "LayoutModel",
|
298
|
-
"_view_count": null,
|
299
|
-
"_view_module": "@jupyter-widgets/base",
|
300
|
-
"_view_module_version": "1.2.0",
|
301
|
-
"_view_name": "LayoutView",
|
302
|
-
"align_content": null,
|
303
|
-
"align_items": null,
|
304
|
-
"align_self": null,
|
305
|
-
"border": null,
|
306
|
-
"bottom": null,
|
307
|
-
"display": null,
|
308
|
-
"flex": null,
|
309
|
-
"flex_flow": null,
|
310
|
-
"grid_area": null,
|
311
|
-
"grid_auto_columns": null,
|
312
|
-
"grid_auto_flow": null,
|
313
|
-
"grid_auto_rows": null,
|
314
|
-
"grid_column": null,
|
315
|
-
"grid_gap": null,
|
316
|
-
"grid_row": null,
|
317
|
-
"grid_template_areas": null,
|
318
|
-
"grid_template_columns": null,
|
319
|
-
"grid_template_rows": null,
|
320
|
-
"height": null,
|
321
|
-
"justify_content": null,
|
322
|
-
"justify_items": null,
|
323
|
-
"left": null,
|
324
|
-
"margin": null,
|
325
|
-
"max_height": null,
|
326
|
-
"max_width": null,
|
327
|
-
"min_height": null,
|
328
|
-
"min_width": null,
|
329
|
-
"object_fit": null,
|
330
|
-
"object_position": null,
|
331
|
-
"order": null,
|
332
|
-
"overflow": null,
|
333
|
-
"overflow_x": null,
|
334
|
-
"overflow_y": null,
|
335
|
-
"padding": null,
|
336
|
-
"right": null,
|
337
|
-
"top": null,
|
338
|
-
"visibility": null,
|
339
|
-
"width": null
|
340
|
-
}
|
341
|
-
},
|
342
|
-
"465d9a8a9edd4fccb5f7f88d32b7af3f": {
|
343
|
-
"model_module": "@jupyter-widgets/controls",
|
344
|
-
"model_module_version": "1.5.0",
|
345
|
-
"model_name": "HTMLModel",
|
346
|
-
"state": {
|
347
|
-
"_dom_classes": [],
|
348
|
-
"_model_module": "@jupyter-widgets/controls",
|
349
|
-
"_model_module_version": "1.5.0",
|
350
|
-
"_model_name": "HTMLModel",
|
351
|
-
"_view_count": null,
|
352
|
-
"_view_module": "@jupyter-widgets/controls",
|
353
|
-
"_view_module_version": "1.5.0",
|
354
|
-
"_view_name": "HTMLView",
|
355
|
-
"description": "",
|
356
|
-
"description_tooltip": null,
|
357
|
-
"layout": "IPY_MODEL_57c6b335e2e942f2b4796548d40aefea",
|
358
|
-
"placeholder": "",
|
359
|
-
"style": "IPY_MODEL_79fceb113bc045dd81cbd0861750aa80",
|
360
|
-
"value": " 1000/1000 [00:16<00:00, 64.22it/s]"
|
361
|
-
}
|
362
|
-
},
|
363
|
-
"4af04f4f3e24470f93f593f71717ccc1": {
|
364
|
-
"model_module": "@jupyter-widgets/controls",
|
365
|
-
"model_module_version": "1.5.0",
|
366
|
-
"model_name": "DescriptionStyleModel",
|
367
|
-
"state": {
|
368
|
-
"_model_module": "@jupyter-widgets/controls",
|
369
|
-
"_model_module_version": "1.5.0",
|
370
|
-
"_model_name": "DescriptionStyleModel",
|
371
|
-
"_view_count": null,
|
372
|
-
"_view_module": "@jupyter-widgets/base",
|
373
|
-
"_view_module_version": "1.2.0",
|
374
|
-
"_view_name": "StyleView",
|
375
|
-
"description_width": ""
|
376
|
-
}
|
377
|
-
},
|
378
|
-
"57c6b335e2e942f2b4796548d40aefea": {
|
379
|
-
"model_module": "@jupyter-widgets/base",
|
380
|
-
"model_module_version": "1.2.0",
|
381
|
-
"model_name": "LayoutModel",
|
382
|
-
"state": {
|
383
|
-
"_model_module": "@jupyter-widgets/base",
|
384
|
-
"_model_module_version": "1.2.0",
|
385
|
-
"_model_name": "LayoutModel",
|
386
|
-
"_view_count": null,
|
387
|
-
"_view_module": "@jupyter-widgets/base",
|
388
|
-
"_view_module_version": "1.2.0",
|
389
|
-
"_view_name": "LayoutView",
|
390
|
-
"align_content": null,
|
391
|
-
"align_items": null,
|
392
|
-
"align_self": null,
|
393
|
-
"border": null,
|
394
|
-
"bottom": null,
|
395
|
-
"display": null,
|
396
|
-
"flex": null,
|
397
|
-
"flex_flow": null,
|
398
|
-
"grid_area": null,
|
399
|
-
"grid_auto_columns": null,
|
400
|
-
"grid_auto_flow": null,
|
401
|
-
"grid_auto_rows": null,
|
402
|
-
"grid_column": null,
|
403
|
-
"grid_gap": null,
|
404
|
-
"grid_row": null,
|
405
|
-
"grid_template_areas": null,
|
406
|
-
"grid_template_columns": null,
|
407
|
-
"grid_template_rows": null,
|
408
|
-
"height": null,
|
409
|
-
"justify_content": null,
|
410
|
-
"justify_items": null,
|
411
|
-
"left": null,
|
412
|
-
"margin": null,
|
413
|
-
"max_height": null,
|
414
|
-
"max_width": null,
|
415
|
-
"min_height": null,
|
416
|
-
"min_width": null,
|
417
|
-
"object_fit": null,
|
418
|
-
"object_position": null,
|
419
|
-
"order": null,
|
420
|
-
"overflow": null,
|
421
|
-
"overflow_x": null,
|
422
|
-
"overflow_y": null,
|
423
|
-
"padding": null,
|
424
|
-
"right": null,
|
425
|
-
"top": null,
|
426
|
-
"visibility": null,
|
427
|
-
"width": null
|
428
|
-
}
|
429
|
-
},
|
430
|
-
"69f13969e1e34139aef8c39f40524d64": {
|
431
|
-
"model_module": "@jupyter-widgets/base",
|
432
|
-
"model_module_version": "1.2.0",
|
433
|
-
"model_name": "LayoutModel",
|
434
|
-
"state": {
|
435
|
-
"_model_module": "@jupyter-widgets/base",
|
436
|
-
"_model_module_version": "1.2.0",
|
437
|
-
"_model_name": "LayoutModel",
|
438
|
-
"_view_count": null,
|
439
|
-
"_view_module": "@jupyter-widgets/base",
|
440
|
-
"_view_module_version": "1.2.0",
|
441
|
-
"_view_name": "LayoutView",
|
442
|
-
"align_content": null,
|
443
|
-
"align_items": null,
|
444
|
-
"align_self": null,
|
445
|
-
"border": null,
|
446
|
-
"bottom": null,
|
447
|
-
"display": null,
|
448
|
-
"flex": null,
|
449
|
-
"flex_flow": null,
|
450
|
-
"grid_area": null,
|
451
|
-
"grid_auto_columns": null,
|
452
|
-
"grid_auto_flow": null,
|
453
|
-
"grid_auto_rows": null,
|
454
|
-
"grid_column": null,
|
455
|
-
"grid_gap": null,
|
456
|
-
"grid_row": null,
|
457
|
-
"grid_template_areas": null,
|
458
|
-
"grid_template_columns": null,
|
459
|
-
"grid_template_rows": null,
|
460
|
-
"height": null,
|
461
|
-
"justify_content": null,
|
462
|
-
"justify_items": null,
|
463
|
-
"left": null,
|
464
|
-
"margin": null,
|
465
|
-
"max_height": null,
|
466
|
-
"max_width": null,
|
467
|
-
"min_height": null,
|
468
|
-
"min_width": null,
|
469
|
-
"object_fit": null,
|
470
|
-
"object_position": null,
|
471
|
-
"order": null,
|
472
|
-
"overflow": null,
|
473
|
-
"overflow_x": null,
|
474
|
-
"overflow_y": null,
|
475
|
-
"padding": null,
|
476
|
-
"right": null,
|
477
|
-
"top": null,
|
478
|
-
"visibility": null,
|
479
|
-
"width": null
|
480
|
-
}
|
481
|
-
},
|
482
|
-
"79fceb113bc045dd81cbd0861750aa80": {
|
483
|
-
"model_module": "@jupyter-widgets/controls",
|
484
|
-
"model_module_version": "1.5.0",
|
485
|
-
"model_name": "DescriptionStyleModel",
|
486
|
-
"state": {
|
487
|
-
"_model_module": "@jupyter-widgets/controls",
|
488
|
-
"_model_module_version": "1.5.0",
|
489
|
-
"_model_name": "DescriptionStyleModel",
|
490
|
-
"_view_count": null,
|
491
|
-
"_view_module": "@jupyter-widgets/base",
|
492
|
-
"_view_module_version": "1.2.0",
|
493
|
-
"_view_name": "StyleView",
|
494
|
-
"description_width": ""
|
495
|
-
}
|
496
|
-
},
|
497
|
-
"9e7e9389e5ff4e2cad706bda44010e1a": {
|
498
|
-
"model_module": "@jupyter-widgets/controls",
|
499
|
-
"model_module_version": "1.5.0",
|
500
|
-
"model_name": "ProgressStyleModel",
|
501
|
-
"state": {
|
502
|
-
"_model_module": "@jupyter-widgets/controls",
|
503
|
-
"_model_module_version": "1.5.0",
|
504
|
-
"_model_name": "ProgressStyleModel",
|
505
|
-
"_view_count": null,
|
506
|
-
"_view_module": "@jupyter-widgets/base",
|
507
|
-
"_view_module_version": "1.2.0",
|
508
|
-
"_view_name": "StyleView",
|
509
|
-
"bar_color": null,
|
510
|
-
"description_width": ""
|
511
|
-
}
|
512
|
-
},
|
513
|
-
"a332c8bbfb0b4fb18133490edd5000cb": {
|
514
|
-
"model_module": "@jupyter-widgets/controls",
|
515
|
-
"model_module_version": "1.5.0",
|
516
|
-
"model_name": "HTMLModel",
|
517
|
-
"state": {
|
518
|
-
"_dom_classes": [],
|
519
|
-
"_model_module": "@jupyter-widgets/controls",
|
520
|
-
"_model_module_version": "1.5.0",
|
521
|
-
"_model_name": "HTMLModel",
|
522
|
-
"_view_count": null,
|
523
|
-
"_view_module": "@jupyter-widgets/controls",
|
524
|
-
"_view_module_version": "1.5.0",
|
525
|
-
"_view_name": "HTMLView",
|
526
|
-
"description": "",
|
527
|
-
"description_tooltip": null,
|
528
|
-
"layout": "IPY_MODEL_da56cd3d10b741d5a0b383934153357b",
|
529
|
-
"placeholder": "",
|
530
|
-
"style": "IPY_MODEL_4af04f4f3e24470f93f593f71717ccc1",
|
531
|
-
"value": "100%"
|
532
|
-
}
|
533
|
-
},
|
534
|
-
"af45ee093e934a629a993fba7fe2c10f": {
|
535
|
-
"model_module": "@jupyter-widgets/controls",
|
536
|
-
"model_module_version": "1.5.0",
|
537
|
-
"model_name": "HBoxModel",
|
538
|
-
"state": {
|
539
|
-
"_dom_classes": [],
|
540
|
-
"_model_module": "@jupyter-widgets/controls",
|
541
|
-
"_model_module_version": "1.5.0",
|
542
|
-
"_model_name": "HBoxModel",
|
543
|
-
"_view_count": null,
|
544
|
-
"_view_module": "@jupyter-widgets/controls",
|
545
|
-
"_view_module_version": "1.5.0",
|
546
|
-
"_view_name": "HBoxView",
|
547
|
-
"box_style": "",
|
548
|
-
"children": [
|
549
|
-
"IPY_MODEL_a332c8bbfb0b4fb18133490edd5000cb",
|
550
|
-
"IPY_MODEL_f626defc1d4544b3a8a67c2c792d8c94",
|
551
|
-
"IPY_MODEL_465d9a8a9edd4fccb5f7f88d32b7af3f"
|
552
|
-
],
|
553
|
-
"layout": "IPY_MODEL_08e685b6dec343808ab7a34a444f049e"
|
554
|
-
}
|
555
|
-
},
|
556
|
-
"da56cd3d10b741d5a0b383934153357b": {
|
557
|
-
"model_module": "@jupyter-widgets/base",
|
558
|
-
"model_module_version": "1.2.0",
|
559
|
-
"model_name": "LayoutModel",
|
560
|
-
"state": {
|
561
|
-
"_model_module": "@jupyter-widgets/base",
|
562
|
-
"_model_module_version": "1.2.0",
|
563
|
-
"_model_name": "LayoutModel",
|
564
|
-
"_view_count": null,
|
565
|
-
"_view_module": "@jupyter-widgets/base",
|
566
|
-
"_view_module_version": "1.2.0",
|
567
|
-
"_view_name": "LayoutView",
|
568
|
-
"align_content": null,
|
569
|
-
"align_items": null,
|
570
|
-
"align_self": null,
|
571
|
-
"border": null,
|
572
|
-
"bottom": null,
|
573
|
-
"display": null,
|
574
|
-
"flex": null,
|
575
|
-
"flex_flow": null,
|
576
|
-
"grid_area": null,
|
577
|
-
"grid_auto_columns": null,
|
578
|
-
"grid_auto_flow": null,
|
579
|
-
"grid_auto_rows": null,
|
580
|
-
"grid_column": null,
|
581
|
-
"grid_gap": null,
|
582
|
-
"grid_row": null,
|
583
|
-
"grid_template_areas": null,
|
584
|
-
"grid_template_columns": null,
|
585
|
-
"grid_template_rows": null,
|
586
|
-
"height": null,
|
587
|
-
"justify_content": null,
|
588
|
-
"justify_items": null,
|
589
|
-
"left": null,
|
590
|
-
"margin": null,
|
591
|
-
"max_height": null,
|
592
|
-
"max_width": null,
|
593
|
-
"min_height": null,
|
594
|
-
"min_width": null,
|
595
|
-
"object_fit": null,
|
596
|
-
"object_position": null,
|
597
|
-
"order": null,
|
598
|
-
"overflow": null,
|
599
|
-
"overflow_x": null,
|
600
|
-
"overflow_y": null,
|
601
|
-
"padding": null,
|
602
|
-
"right": null,
|
603
|
-
"top": null,
|
604
|
-
"visibility": null,
|
605
|
-
"width": null
|
606
|
-
}
|
607
|
-
},
|
608
|
-
"f626defc1d4544b3a8a67c2c792d8c94": {
|
609
|
-
"model_module": "@jupyter-widgets/controls",
|
610
|
-
"model_module_version": "1.5.0",
|
611
|
-
"model_name": "FloatProgressModel",
|
612
|
-
"state": {
|
613
|
-
"_dom_classes": [],
|
614
|
-
"_model_module": "@jupyter-widgets/controls",
|
615
|
-
"_model_module_version": "1.5.0",
|
616
|
-
"_model_name": "FloatProgressModel",
|
617
|
-
"_view_count": null,
|
618
|
-
"_view_module": "@jupyter-widgets/controls",
|
619
|
-
"_view_module_version": "1.5.0",
|
620
|
-
"_view_name": "ProgressView",
|
621
|
-
"bar_style": "success",
|
622
|
-
"description": "",
|
623
|
-
"description_tooltip": null,
|
624
|
-
"layout": "IPY_MODEL_69f13969e1e34139aef8c39f40524d64",
|
625
|
-
"max": 1000,
|
626
|
-
"min": 0,
|
627
|
-
"orientation": "horizontal",
|
628
|
-
"style": "IPY_MODEL_9e7e9389e5ff4e2cad706bda44010e1a",
|
629
|
-
"value": 1000
|
630
|
-
}
|
631
|
-
}
|
632
|
-
}
|
633
|
-
}
|
634
|
-
},
|
635
|
-
"nbformat": 4,
|
636
|
-
"nbformat_minor": 4
|
637
|
-
}
|