noshot 11.0.0__py3-none-any.whl → 12.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (74) hide show
  1. noshot/data/DLE FSD BDA/DLE/1. DNN (Image Classification).ipynb +389 -0
  2. noshot/data/DLE FSD BDA/DLE/2. DNN vs CNN.ipynb +516 -0
  3. noshot/data/DLE FSD BDA/DLE/3. CNN (Object Detecrion).ipynb +259 -0
  4. noshot/data/DLE FSD BDA/DLE/4. FCN (Image Segmentaion).ipynb +274 -0
  5. noshot/main.py +3 -3
  6. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/METADATA +1 -1
  7. noshot-12.0.0.dist-info/RECORD +13 -0
  8. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
  9. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
  10. noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
  11. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
  12. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  13. noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
  14. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
  15. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
  16. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
  17. noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
  18. noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  19. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
  20. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
  21. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
  22. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  23. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
  24. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  25. noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
  26. noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
  27. noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
  28. noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
  29. noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
  30. noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
  31. noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
  32. noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
  33. noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
  34. noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
  35. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
  36. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
  37. noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
  38. noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
  39. noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
  40. noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
  41. noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
  42. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
  43. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
  44. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
  45. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
  46. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
  47. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
  48. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
  49. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
  50. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
  51. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
  52. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
  53. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
  54. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
  55. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
  56. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
  57. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
  58. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
  59. noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
  60. noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
  61. noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
  62. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
  63. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
  64. noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
  65. noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
  66. noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
  67. noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
  68. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
  69. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
  70. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  71. noshot-11.0.0.dist-info/RECORD +0 -72
  72. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/WHEEL +0 -0
  73. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  74. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/top_level.txt +0 -0
@@ -1,409 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "L1Yh9i9SlaTq"
7
- },
8
- "source": [
9
- "***ML LAB CIA 2***"
10
- ]
11
- },
12
- {
13
- "cell_type": "markdown",
14
- "metadata": {
15
- "id": "oEflBCT-lgmq"
16
- },
17
- "source": [
18
- "**Q1**"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": null,
24
- "metadata": {
25
- "colab": {
26
- "base_uri": "https://localhost:8080/"
27
- },
28
- "id": "vjDqH0JGlZlk",
29
- "outputId": "b476e41f-2c27-413b-a6f9-a118f9bc0b05"
30
- },
31
- "outputs": [],
32
- "source": [
33
- "import numpy as np\n",
34
- "import pandas as pd\n",
35
- "from sklearn.model_selection import train_test_split\n",
36
- "from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
37
- "from tensorflow.keras.models import Sequential\n",
38
- "from tensorflow.keras.layers import Dense\n",
39
- "from tensorflow.keras.utils import to_categorical\n",
40
- "\n",
41
- "# Load the Iris dataset\n",
42
- "from sklearn.datasets import load_iris\n",
43
- "iris = load_iris()\n",
44
- "X = iris.data # Features (sepal/petal dimensions)\n",
45
- "y = iris.target # Labels (species: 0, 1, 2)\n",
46
- "\n",
47
- "# Preprocess data\n",
48
- "scaler = StandardScaler()\n",
49
- "X = scaler.fit_transform(X)\n",
50
- "y = to_categorical(y) # One-hot encode labels for SoftMax\n",
51
- "\n",
52
- "# Split data into train/test sets\n",
53
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
54
- "\n",
55
- "# Function to build and evaluate the model\n",
56
- "def train_model(activation='softmax'):\n",
57
- " model = Sequential([\n",
58
- " Dense(16, activation='relu', input_shape=(4,)), # Hidden layer\n",
59
- " Dense(3, activation=activation) # Output layer (SoftMax or Sigmoid)\n",
60
- " ])\n",
61
- "\n",
62
- " # Compile with categorical crossentropy for SoftMax, binary for Sigmoid\n",
63
- " loss = 'categorical_crossentropy' if activation == 'softmax' else 'binary_crossentropy'\n",
64
- " model.compile(optimizer='adam', loss=loss, metrics=['accuracy'])\n",
65
- "\n",
66
- " # Train\n",
67
- " history = model.fit(X_train, y_train, epochs=50, validation_split=0.2, verbose=0)\n",
68
- "\n",
69
- " # Evaluate\n",
70
- " _, accuracy = model.evaluate(X_test, y_test, verbose=0)\n",
71
- " print(f\"Activation: {activation}, Test Accuracy: {accuracy:.4f}\")\n",
72
- "\n",
73
- "# Compare SoftMax vs. Sigmoid\n",
74
- "train_model(activation='softmax') # Use this for multi-class (correct)\n",
75
- "train_model(activation='sigmoid') # Incorrect for multi-class (for comparison)"
76
- ]
77
- },
78
- {
79
- "cell_type": "markdown",
80
- "metadata": {
81
- "id": "SEFVF5sllivC"
82
- },
83
- "source": [
84
- "**Q2**"
85
- ]
86
- },
87
- {
88
- "cell_type": "code",
89
- "execution_count": null,
90
- "metadata": {
91
- "colab": {
92
- "base_uri": "https://localhost:8080/",
93
- "height": 522
94
- },
95
- "id": "pQrKim1ylkGy",
96
- "outputId": "e2c55935-21c9-402a-aa00-03cbcffec7d3"
97
- },
98
- "outputs": [],
99
- "source": [
100
- "import numpy as np\n",
101
- "from sklearn.model_selection import train_test_split\n",
102
- "from sklearn.preprocessing import StandardScaler\n",
103
- "from tensorflow.keras.models import Sequential\n",
104
- "from tensorflow.keras.layers import Dense, Dropout, Input\n",
105
- "from tensorflow.keras.regularizers import l2\n",
106
- "import matplotlib.pyplot as plt\n",
107
- "\n",
108
- "# Generate synthetic data\n",
109
- "np.random.seed(42)\n",
110
- "X = np.random.rand(1000, 5) # 5 socio-economic features\n",
111
- "y = X.dot(np.random.rand(5)) + np.random.rand(1000) * 0.1 # Grades (0-1 scale)\n",
112
- "\n",
113
- "# Split data\n",
114
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
115
- "\n",
116
- "# Standardize\n",
117
- "scaler = StandardScaler()\n",
118
- "X_train = scaler.fit_transform(X_train)\n",
119
- "X_test = scaler.transform(X_test)\n",
120
- "\n",
121
- "# Build model (with optional regularization)\n",
122
- "def build_model(use_regularization=False):\n",
123
- " model = Sequential()\n",
124
- " model.add(Input(shape=(5,))) # Explicit input layer\n",
125
- "\n",
126
- " # Hidden layers with conditional L2/dropout\n",
127
- " reg = l2(0.01) if use_regularization else None\n",
128
- " model.add(Dense(128, activation='relu', kernel_regularizer=reg))\n",
129
- " model.add(Dense(128, activation='relu', kernel_regularizer=reg))\n",
130
- " if use_regularization:\n",
131
- " model.add(Dropout(0.5)) # Only add dropout if regularization is enabled\n",
132
- "\n",
133
- " model.add(Dense(1)) # Output layer (linear for regression)\n",
134
- " model.compile(optimizer='adam', loss='mse', metrics=['mae'])\n",
135
- " return model\n",
136
- "\n",
137
- "# Train without regularization (overfit)\n",
138
- "model_no_reg = build_model(use_regularization=False)\n",
139
- "history_no_reg = model_no_reg.fit(X_train, y_train, epochs=100,\n",
140
- " validation_split=0.2, verbose=0)\n",
141
- "\n",
142
- "# Train with dropout + L2 (regularized)\n",
143
- "model_with_reg = build_model(use_regularization=True)\n",
144
- "history_with_reg = model_with_reg.fit(X_train, y_train, epochs=100,\n",
145
- " validation_split=0.2, verbose=0)\n",
146
- "\n",
147
- "# Plot results\n",
148
- "plt.figure(figsize=(10, 5))\n",
149
- "plt.plot(history_no_reg.history['val_loss'], label='No Regularization', linestyle='--')\n",
150
- "plt.plot(history_with_reg.history['val_loss'], label='With Dropout + L2', linestyle='--')\n",
151
- "plt.xlabel('Epochs')\n",
152
- "plt.ylabel('Validation Loss (MSE)')\n",
153
- "plt.legend()\n",
154
- "plt.title('Overfitting Mitigation with Regularization')\n",
155
- "plt.show()\n",
156
- "\n",
157
- "# Test performance\n",
158
- "print(\"Test MAE (No Regularization):\", model_no_reg.evaluate(X_test, y_test, verbose=0)[1])\n",
159
- "print(\"Test MAE (With Regularization):\", model_with_reg.evaluate(X_test, y_test, verbose=0)[1])"
160
- ]
161
- },
162
- {
163
- "cell_type": "markdown",
164
- "metadata": {
165
- "id": "nd5WFd9TloOS"
166
- },
167
- "source": [
168
- "**Q3**"
169
- ]
170
- },
171
- {
172
- "cell_type": "code",
173
- "execution_count": null,
174
- "metadata": {
175
- "colab": {
176
- "base_uri": "https://localhost:8080/",
177
- "height": 576
178
- },
179
- "id": "vx4k9Z8-lprC",
180
- "outputId": "6de49e13-d025-453c-f84c-f316bea51680"
181
- },
182
- "outputs": [],
183
- "source": [
184
- "import numpy as np\n",
185
- "import pandas as pd\n",
186
- "from sklearn.model_selection import train_test_split\n",
187
- "from sklearn.preprocessing import StandardScaler\n",
188
- "from tensorflow.keras.models import Sequential\n",
189
- "from tensorflow.keras.layers import Dense, Dropout\n",
190
- "from tensorflow.keras.regularizers import l2\n",
191
- "import matplotlib.pyplot as plt\n",
192
- "\n",
193
- "# Generate synthetic insurance claim data\n",
194
- "np.random.seed(42)\n",
195
- "n_samples = 1000\n",
196
- "X = np.random.rand(n_samples, 10) # 10 features (e.g., age, BMI, medical history)\n",
197
- "y = X.dot(np.random.rand(10)) * 10000 + np.random.randn(n_samples) * 500 # Claim amounts ($)\n",
198
- "\n",
199
- "# Split into train/test\n",
200
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
201
- "\n",
202
- "# Standardize features\n",
203
- "scaler = StandardScaler()\n",
204
- "X_train = scaler.fit_transform(X_train)\n",
205
- "X_test = scaler.transform(X_test)\n",
206
- "\n",
207
- "# Function to build and train the model\n",
208
- "def train_model(use_regularization=False):\n",
209
- " model = Sequential()\n",
210
- " model.add(Dense(256, activation='relu', input_shape=(X_train.shape[1],)))\n",
211
- " model.add(Dense(256, activation='relu'))\n",
212
- " model.add(Dense(128, activation='relu'))\n",
213
- "\n",
214
- " if use_regularization:\n",
215
- " model.add(Dropout(0.5))\n",
216
- " model.add(Dense(64, activation='relu', kernel_regularizer=l2(0.01)))\n",
217
- " else:\n",
218
- " model.add(Dense(64, activation='relu'))\n",
219
- "\n",
220
- " model.add(Dense(1)) # Output layer for regression\n",
221
- "\n",
222
- " model.compile(optimizer='adam', loss='mse', metrics=['mae'])\n",
223
- "\n",
224
- " history = model.fit(X_train, y_train, epochs=100,\n",
225
- " validation_split=0.2, verbose=0)\n",
226
- " return model, history\n",
227
- "\n",
228
- "# Intentionally overfit (no regularization)\n",
229
- "model_overfit, history_overfit = train_model(use_regularization=False)\n",
230
- "\n",
231
- "# Apply regularization (dropout + L2)\n",
232
- "model_reg, history_reg = train_model(use_regularization=True)\n",
233
- "\n",
234
- "# Plot training vs validation loss\n",
235
- "plt.figure(figsize=(10, 5))\n",
236
- "plt.plot(history_overfit.history['loss'], label='Train (Overfit)')\n",
237
- "plt.plot(history_overfit.history['val_loss'], label='Validation (Overfit)', linestyle='--')\n",
238
- "plt.plot(history_reg.history['val_loss'], label='Validation (Regularized)', linestyle='--')\n",
239
- "plt.xlabel('Epochs')\n",
240
- "plt.ylabel('Loss (MSE)')\n",
241
- "plt.legend()\n",
242
- "plt.title('Overfitting vs. Regularization')\n",
243
- "plt.show()\n",
244
- "\n",
245
- "# Evaluate on test data\n",
246
- "print(\"Test MAE (Overfit Model): ${:,.2f}\".format(model_overfit.evaluate(X_test, y_test, verbose=0)[1]))\n",
247
- "print(\"Test MAE (Regularized Model): ${:,.2f}\".format(model_reg.evaluate(X_test, y_test, verbose=0)[1]))"
248
- ]
249
- },
250
- {
251
- "cell_type": "markdown",
252
- "metadata": {
253
- "id": "yNu_4025lsQZ"
254
- },
255
- "source": [
256
- "**Q4**"
257
- ]
258
- },
259
- {
260
- "cell_type": "code",
261
- "execution_count": null,
262
- "metadata": {
263
- "colab": {
264
- "base_uri": "https://localhost:8080/"
265
- },
266
- "id": "d0uyyJUlltZy",
267
- "outputId": "fa5a6938-fd8e-4873-b45c-974b776b3eaf"
268
- },
269
- "outputs": [],
270
- "source": [
271
- "import numpy as np\n",
272
- "from hmmlearn import hmm\n",
273
- "import matplotlib.pyplot as plt\n",
274
- "\n",
275
- "# Define the hidden states and observations\n",
276
- "states = [\"Cooking\", \"Sleeping\", \"Watching TV\"]\n",
277
- "observations = [\"kitchen\", \"bedroom\", \"living room\"]\n",
278
- "\n",
279
- "# Create simulated sensor data sequences\n",
280
- "# Each sequence is a day's worth of room observations\n",
281
- "room_sequences = [\n",
282
- " ['kitchen', 'bedroom', 'living room', 'kitchen', 'bedroom'],\n",
283
- " ['kitchen', 'living room', 'living room', 'bedroom', 'bedroom'],\n",
284
- " ['living room', 'kitchen', 'bedroom', 'kitchen', 'bedroom'],\n",
285
- " ['bedroom', 'bedroom', 'living room', 'kitchen', 'living room']\n",
286
- "]\n",
287
- "\n",
288
- "# Convert observations to numerical values\n",
289
- "obs_map = {obs: i for i, obs in enumerate(observations)}\n",
290
- "num_sequences = len(room_sequences)\n",
291
- "sequence_lengths = [len(seq) for seq in room_sequences]\n",
292
- "X = np.concatenate([[obs_map[obs] for obs in seq] for seq in room_sequences]).reshape(-1, 1)\n",
293
- "\n",
294
- "# Build and train the HMM\n",
295
- "model = hmm.CategoricalHMM(n_components=len(states), random_state=42)\n",
296
- "model.fit(X, lengths=sequence_lengths)\n",
297
- "\n",
298
- "# Print learned parameters\n",
299
- "print(\"Start Probabilities:\", model.startprob_)\n",
300
- "print(\"\\nTransition Matrix:\")\n",
301
- "print(model.transmat_)\n",
302
- "print(\"\\nEmission Probabilities:\")\n",
303
- "print(model.emissionprob_)\n",
304
- "\n",
305
- "# Predict activities for a new sequence\n",
306
- "new_sequence = ['kitchen', 'living room', 'bedroom', 'kitchen']\n",
307
- "numeric_seq = np.array([obs_map[obs] for obs in new_sequence]).reshape(-1, 1)\n",
308
- "predicted_states = model.predict(numeric_seq)\n",
309
- "\n",
310
- "print(\"\\nPredicted Activities:\")\n",
311
- "for obs, state in zip(new_sequence, predicted_states):\n",
312
- " print(f\"{obs} -> {states[state]}\")"
313
- ]
314
- },
315
- {
316
- "cell_type": "markdown",
317
- "metadata": {
318
- "id": "mbmjRZU6lvOB"
319
- },
320
- "source": [
321
- "**Q5**"
322
- ]
323
- },
324
- {
325
- "cell_type": "code",
326
- "execution_count": null,
327
- "metadata": {
328
- "colab": {
329
- "base_uri": "https://localhost:8080/"
330
- },
331
- "id": "c4WLDsM_lyk6",
332
- "outputId": "5c54c8ac-8e0b-4c81-c5a0-b77cdb01af4f"
333
- },
334
- "outputs": [],
335
- "source": [
336
- "import numpy as np\n",
337
- "from hmmlearn import hmm\n",
338
- "\n",
339
- "# Define states and observations\n",
340
- "states = [\"Genuine\", \"Intruder\"]\n",
341
- "observations = [\"early\", \"mid\", \"late\"] # Login times\n",
342
- "\n",
343
- "# Simulated login sequences (each sequence is a separate user's login pattern)\n",
344
- "sequences = [\n",
345
- " ['early', 'early', 'mid', 'early', 'mid'], # Genuine user 1\n",
346
- " ['late', 'late', 'early', 'late', 'late'], # Intruder 1\n",
347
- " ['early', 'mid', 'early', 'mid', 'early'], # Genuine user 2\n",
348
- " ['mid', 'late', 'late', 'mid', 'late'], # Intruder 2\n",
349
- " ['early', 'early', 'early', 'mid', 'early'], # Genuine user 3\n",
350
- " ['late', 'mid', 'late', 'late', 'mid'] # Intruder 3\n",
351
- "]\n",
352
- "\n",
353
- "# Convert to numerical values and proper format\n",
354
- "obs_map = {obs: i for i, obs in enumerate(observations)}\n",
355
- "X = np.concatenate([[[obs_map[obs]] for obs in seq] for seq in sequences])\n",
356
- "lengths = [len(seq) for seq in sequences] # All lengths are 5 in this case\n",
357
- "\n",
358
- "# Train HMM\n",
359
- "model = hmm.CategoricalHMM(\n",
360
- " n_components=len(states),\n",
361
- " random_state=42 # Increased iterations for better convergence\n",
362
- ")\n",
363
- "model.fit(X, lengths=lengths)\n",
364
- "\n",
365
- "# Print learned parameters\n",
366
- "print(\"Start Probabilities (Genuine vs Intruder):\\n\", model.startprob_)\n",
367
- "print(\"\\nTransition Matrix:\\n\", model.transmat_)\n",
368
- "print(\"\\nEmission Probabilities (Time of Day):\\n\", model.emissionprob_)\n",
369
- "\n",
370
- "# Predict on new sequences\n",
371
- "test_sequences = [\n",
372
- " ['early', 'mid', 'early', 'mid', 'early'], # Likely genuine\n",
373
- " ['late', 'late', 'mid', 'late', 'late'], # Likely intruder\n",
374
- "]\n",
375
- "\n",
376
- "for seq in test_sequences:\n",
377
- " numeric_seq = np.array([[obs_map[obs]] for obs in seq])\n",
378
- " logprob, state_sequence = model.decode(numeric_seq)\n",
379
- " print(f\"\\nSequence: {seq}\")\n",
380
- " print(\"Predicted States:\", [states[i] for i in state_sequence])\n",
381
- " print(\"Log Probability:\", logprob)"
382
- ]
383
- }
384
- ],
385
- "metadata": {
386
- "colab": {
387
- "provenance": []
388
- },
389
- "kernelspec": {
390
- "display_name": "Python 3 (ipykernel)",
391
- "language": "python",
392
- "name": "python3"
393
- },
394
- "language_info": {
395
- "codemirror_mode": {
396
- "name": "ipython",
397
- "version": 3
398
- },
399
- "file_extension": ".py",
400
- "mimetype": "text/x-python",
401
- "name": "python",
402
- "nbconvert_exporter": "python",
403
- "pygments_lexer": "ipython3",
404
- "version": "3.12.4"
405
- }
406
- },
407
- "nbformat": 4,
408
- "nbformat_minor": 4
409
- }
@@ -1,147 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "b96a1a1c-b14e-409e-ab95-075ba7b80df3",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import seaborn as sns\n",
13
- "import matplotlib.pyplot as plt\n",
14
- "from sklearn.preprocessing import StandardScaler\n",
15
- "from sklearn.decomposition import PCA\n",
16
- "\n",
17
- "import warnings\n",
18
- "warnings.filterwarnings('ignore')"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": null,
24
- "id": "a27b3cce-5a43-4443-a2c0-964a15d4d5fc",
25
- "metadata": {},
26
- "outputs": [],
27
- "source": [
28
- "cols = ['class name', 'left-weight', 'left-distance', 'right-weight', 'right-distance']\n",
29
- "df = pd.read_table('data/balance-scale.txt', delimiter=',', names=cols)\n",
30
- "print(\"Shape:\", df.shape)\n",
31
- "df.head()"
32
- ]
33
- },
34
- {
35
- "cell_type": "code",
36
- "execution_count": null,
37
- "id": "b9f866da-69f2-44d9-a628-431cdb81d41e",
38
- "metadata": {},
39
- "outputs": [],
40
- "source": [
41
- "df.describe()"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": null,
47
- "id": "f23c78cb-422f-492d-ab8c-00ba1ac8a4b2",
48
- "metadata": {},
49
- "outputs": [],
50
- "source": [
51
- "df.info()"
52
- ]
53
- },
54
- {
55
- "cell_type": "code",
56
- "execution_count": null,
57
- "id": "d2a5b059-df8f-4495-bee8-57031cce0a78",
58
- "metadata": {},
59
- "outputs": [],
60
- "source": [
61
- "sns.countplot(df, x='class name', hue='class name')\n",
62
- "plt.title(\"Count Plot ['B', 'R', 'L']\")\n",
63
- "plt.show()"
64
- ]
65
- },
66
- {
67
- "cell_type": "code",
68
- "execution_count": null,
69
- "id": "5da4b529-7f9f-4fa4-b251-7daf2a285c15",
70
- "metadata": {},
71
- "outputs": [],
72
- "source": [
73
- "features = ['left-weight', 'left-distance', 'right-weight', 'right-distance']\n",
74
- "x = df.loc[:, features]\n",
75
- "y = df.loc[:, 'class name']"
76
- ]
77
- },
78
- {
79
- "cell_type": "code",
80
- "execution_count": null,
81
- "id": "bacac77a-5b5f-480c-8e4d-8172980baea7",
82
- "metadata": {},
83
- "outputs": [],
84
- "source": [
85
- "x = StandardScaler().fit_transform(x)\n",
86
- "pca = PCA(n_components=2)\n",
87
- "pct = pca.fit_transform(x)"
88
- ]
89
- },
90
- {
91
- "cell_type": "code",
92
- "execution_count": null,
93
- "id": "ffdcdf85-56c8-4b02-bad8-05f9654805ef",
94
- "metadata": {},
95
- "outputs": [],
96
- "source": [
97
- "principal_df = pd.DataFrame(pct, columns=['pc1', 'pc2'])\n",
98
- "principal_df['class name'] = df['class name']\n",
99
- "principal_df.head()"
100
- ]
101
- },
102
- {
103
- "cell_type": "code",
104
- "execution_count": null,
105
- "id": "db3dae54-3134-4d41-998e-0cf46ae16714",
106
- "metadata": {},
107
- "outputs": [],
108
- "source": [
109
- "fig = plt.figure(figsize=(8,8))\n",
110
- "ax = fig.add_subplot(1, 1, 1)\n",
111
- "\n",
112
- "targets = ['L','B','R']\n",
113
- "colors = ['r', 'g','b']\n",
114
- "for target, color in zip(targets, colors):\n",
115
- " selected = principal_df[principal_df['class name'] == target]\n",
116
- " ax.scatter(selected['pc1'], selected['pc2'], c=color, s=50)\n",
117
- "\n",
118
- "ax.set_xlabel('Principal Component 1')\n",
119
- "ax.set_ylabel('Principal Component 2')\n",
120
- "ax.set_title('2 component PCA')\n",
121
- "ax.legend(targets)\n",
122
- "ax.grid()"
123
- ]
124
- }
125
- ],
126
- "metadata": {
127
- "kernelspec": {
128
- "display_name": "Python 3 (ipykernel)",
129
- "language": "python",
130
- "name": "python3"
131
- },
132
- "language_info": {
133
- "codemirror_mode": {
134
- "name": "ipython",
135
- "version": 3
136
- },
137
- "file_extension": ".py",
138
- "mimetype": "text/x-python",
139
- "name": "python",
140
- "nbconvert_exporter": "python",
141
- "pygments_lexer": "ipython3",
142
- "version": "3.12.4"
143
- }
144
- },
145
- "nbformat": 4,
146
- "nbformat_minor": 5
147
- }