noshot 11.0.0__py3-none-any.whl → 12.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (74) hide show
  1. noshot/data/DLE FSD BDA/DLE/1. DNN (Image Classification).ipynb +389 -0
  2. noshot/data/DLE FSD BDA/DLE/2. DNN vs CNN.ipynb +516 -0
  3. noshot/data/DLE FSD BDA/DLE/3. CNN (Object Detecrion).ipynb +259 -0
  4. noshot/data/DLE FSD BDA/DLE/4. FCN (Image Segmentaion).ipynb +274 -0
  5. noshot/main.py +3 -3
  6. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/METADATA +1 -1
  7. noshot-12.0.0.dist-info/RECORD +13 -0
  8. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
  9. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
  10. noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
  11. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
  12. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  13. noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
  14. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
  15. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
  16. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
  17. noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
  18. noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  19. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
  20. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
  21. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
  22. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  23. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
  24. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  25. noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
  26. noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
  27. noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
  28. noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
  29. noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
  30. noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
  31. noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
  32. noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
  33. noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
  34. noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
  35. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
  36. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
  37. noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
  38. noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
  39. noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
  40. noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
  41. noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
  42. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
  43. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
  44. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
  45. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
  46. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
  47. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
  48. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
  49. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
  50. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
  51. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
  52. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
  53. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
  54. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
  55. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
  56. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
  57. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
  58. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
  59. noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
  60. noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
  61. noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
  62. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
  63. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
  64. noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
  65. noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
  66. noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
  67. noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
  68. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
  69. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
  70. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  71. noshot-11.0.0.dist-info/RECORD +0 -72
  72. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/WHEEL +0 -0
  73. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  74. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/top_level.txt +0 -0
@@ -1,118 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "1543e45d-329e-424f-81fd-ac03a07933d2",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import os, struct, gzip, numpy as np\n",
11
- "\n",
12
- "def _smart_open(path):\n",
13
- " # transparently handle .gz files\n",
14
- " return gzip.open(path, 'rb') if path.endswith('.gz') else open(path, 'rb')\n",
15
- "\n",
16
- "def find_file(base_path, fname):\n",
17
- " \"\"\"Return the real file, no matter how Kaggle wrapped it.\"\"\"\n",
18
- " direct = os.path.join(base_path, fname) # /…/fname\n",
19
- " wrapped = os.path.join(base_path, fname, fname) # /…/fname/fname\n",
20
- " for p in (direct, direct + '.gz', wrapped, wrapped + '.gz'):\n",
21
- " if os.path.isfile(p):\n",
22
- " return p\n",
23
- " raise FileNotFoundError(f'{fname} not found under {base_path}')\n",
24
- "\n",
25
- "def load_images(path):\n",
26
- " with _smart_open(path) as f:\n",
27
- " magic, size = struct.unpack(\">II\", f.read(8))\n",
28
- " rows, cols = struct.unpack(\">II\", f.read(8))\n",
29
- " data = np.frombuffer(f.read(rows * cols * size), dtype=np.uint8)\n",
30
- " return data.reshape(size, rows * cols)\n",
31
- "\n",
32
- "def load_labels(path):\n",
33
- " with _smart_open(path) as f:\n",
34
- " _, size = struct.unpack(\">II\", f.read(8))\n",
35
- " return np.frombuffer(f.read(size), dtype=np.uint8)\n",
36
- "\n",
37
- "def load_mnist_data(base_path):\n",
38
- " X_train = load_images(find_file(base_path, 'train-images-idx3-ubyte'))\n",
39
- " y_train = load_labels(find_file(base_path, 'train-labels-idx1-ubyte'))\n",
40
- " X_test = load_images(find_file(base_path, 't10k-images-idx3-ubyte'))\n",
41
- " y_test = load_labels(find_file(base_path, 't10k-labels-idx1-ubyte'))\n",
42
- " return X_train, y_train, X_test, y_test\n",
43
- "\n",
44
- "X_train, y_train, X_test, y_test = load_mnist_data(mnist_dataset_path)\n",
45
- "print(X_train.shape, y_train.shape) # (60000, 784) (60000,)\n",
46
- "\n",
47
- "import os\n",
48
- "import numpy as np\n",
49
- "from sklearn.model_selection import train_test_split\n",
50
- "from tensorflow.keras.preprocessing import image\n",
51
- "from tensorflow.keras.preprocessing.image import img_to_array, load_img\n",
52
- "\n",
53
- "def load_images_from_folder(folder_path, img_size=(128, 128)):\n",
54
- " images = []\n",
55
- " labels = []\n",
56
- " class_names = sorted(os.listdir(folder_path)) # Assuming one folder per class\n",
57
- "\n",
58
- " for label_idx, class_name in enumerate(class_names):\n",
59
- " class_folder = os.path.join(folder_path, class_name)\n",
60
- " if not os.path.isdir(class_folder):\n",
61
- " continue\n",
62
- "\n",
63
- " for filename in os.listdir(class_folder):\n",
64
- " img_path = os.path.join(class_folder, filename)\n",
65
- " try:\n",
66
- " img = load_img(img_path, target_size=img_size)\n",
67
- " img_array = img_to_array(img)\n",
68
- " images.append(img_array)\n",
69
- " labels.append(label_idx)\n",
70
- " except Exception as e:\n",
71
- " print(f\"Error loading {img_path}: {e}\")\n",
72
- "\n",
73
- " images = np.array(images, dtype=\"float32\") / 255.0 # Normalize to [0,1]\n",
74
- " labels = np.array(labels)\n",
75
- " return images, labels, class_names\n",
76
- "\n",
77
- "def split_data(images, labels, test_size=0.2, random_state=42):\n",
78
- " X_train, X_test, y_train, y_test = train_test_split(\n",
79
- " images, labels, test_size=test_size, random_state=random_state, stratify=labels\n",
80
- " )\n",
81
- " return X_train, X_test, y_train, y_test\n",
82
- "\n",
83
- "# Example usage:\n",
84
- "folder_path = 'your/folder/path' # 🔥 Example: './dataset/'\n",
85
- "img_size = (128, 128) # 🔥 Resize images to 128x128\n",
86
- "\n",
87
- "images, labels, class_names = load_images_from_folder(folder_path, img_size)\n",
88
- "X_train, X_test, y_train, y_test = split_data(images, labels)\n",
89
- "\n",
90
- "print(f\"Train set size: {X_train.shape[0]}\")\n",
91
- "print(f\"Test set size: {X_test.shape[0]}\")\n",
92
- "print(f\"Number of classes: {len(class_names)}\")\n",
93
- "print(f\"Class names: {class_names}\")\n"
94
- ]
95
- }
96
- ],
97
- "metadata": {
98
- "kernelspec": {
99
- "display_name": "Python 3 (ipykernel)",
100
- "language": "python",
101
- "name": "python3"
102
- },
103
- "language_info": {
104
- "codemirror_mode": {
105
- "name": "ipython",
106
- "version": 3
107
- },
108
- "file_extension": ".py",
109
- "mimetype": "text/x-python",
110
- "name": "python",
111
- "nbconvert_exporter": "python",
112
- "pygments_lexer": "ipython3",
113
- "version": "3.12.4"
114
- }
115
- },
116
- "nbformat": 4,
117
- "nbformat_minor": 5
118
- }