noshot 11.0.0__py3-none-any.whl → 12.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (74) hide show
  1. noshot/data/DLE FSD BDA/DLE/1. DNN (Image Classification).ipynb +389 -0
  2. noshot/data/DLE FSD BDA/DLE/2. DNN vs CNN.ipynb +516 -0
  3. noshot/data/DLE FSD BDA/DLE/3. CNN (Object Detecrion).ipynb +259 -0
  4. noshot/data/DLE FSD BDA/DLE/4. FCN (Image Segmentaion).ipynb +274 -0
  5. noshot/main.py +3 -3
  6. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/METADATA +1 -1
  7. noshot-12.0.0.dist-info/RECORD +13 -0
  8. noshot/data/ML TS XAI/ML/CNN(Image_for_Folders_5).ipynb +0 -201
  9. noshot/data/ML TS XAI/ML/CNN(Image_form_Folder_2).ipynb +0 -201
  10. noshot/data/ML TS XAI/ML/Json Codes/ML LAB CIA 2.ipynb +0 -409
  11. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -147
  12. noshot/data/ML TS XAI/ML/ML 1/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  13. noshot/data/ML TS XAI/ML/ML 1/10. HMM Veterbi.ipynb +0 -152
  14. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Balance Scale Dataset).ipynb +0 -117
  15. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Iris Dataset).ipynb +0 -156
  16. noshot/data/ML TS XAI/ML/ML 1/2. KNN (Sobar-72 Dataset).ipynb +0 -215
  17. noshot/data/ML TS XAI/ML/ML 1/3. LDA (Balance Scale Dataset).ipynb +0 -78
  18. noshot/data/ML TS XAI/ML/ML 1/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  19. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Machine Dataset).ipynb +0 -115
  20. noshot/data/ML TS XAI/ML/ML 1/4. Linear Regression (Real Estate Dataset).ipynb +0 -146
  21. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Magic04 Dataset).ipynb +0 -130
  22. noshot/data/ML TS XAI/ML/ML 1/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  23. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -118
  24. noshot/data/ML TS XAI/ML/ML 1/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  25. noshot/data/ML TS XAI/ML/ML 1/7. SVM (Rice Dataset).ipynb +0 -120
  26. noshot/data/ML TS XAI/ML/ML 1/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -262
  27. noshot/data/ML TS XAI/ML/ML 1/9. CNN (Cifar10 Dataset).ipynb +0 -156
  28. noshot/data/ML TS XAI/ML/ML 2/1. PCA.ipynb +0 -162
  29. noshot/data/ML TS XAI/ML/ML 2/10. CNN.ipynb +0 -100
  30. noshot/data/ML TS XAI/ML/ML 2/11. HMM.ipynb +0 -336
  31. noshot/data/ML TS XAI/ML/ML 2/2. KNN.ipynb +0 -149
  32. noshot/data/ML TS XAI/ML/ML 2/3. LDA.ipynb +0 -132
  33. noshot/data/ML TS XAI/ML/ML 2/4. Linear Regression.ipynb +0 -86
  34. noshot/data/ML TS XAI/ML/ML 2/5. Logistic Regression.ipynb +0 -115
  35. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Titanic).ipynb +0 -196
  36. noshot/data/ML TS XAI/ML/ML 2/6. Naive Bayes (Wine).ipynb +0 -98
  37. noshot/data/ML TS XAI/ML/ML 2/7. SVM Linear.ipynb +0 -109
  38. noshot/data/ML TS XAI/ML/ML 2/8. SVM Non-Linear.ipynb +0 -195
  39. noshot/data/ML TS XAI/ML/ML 2/9. FNN With Regularization.ipynb +0 -189
  40. noshot/data/ML TS XAI/ML/ML 2/9. FNN Without Regularization.ipynb +0 -197
  41. noshot/data/ML TS XAI/ML/ML 2/All in One Lab CIA 1 Q.ipynb +0 -1087
  42. noshot/data/ML TS XAI/ML/ML 3 (Latest)/1. PCA EDA.ipynb +0 -274
  43. noshot/data/ML TS XAI/ML/ML 3 (Latest)/10. CNN.ipynb +0 -170
  44. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 2.ipynb +0 -1087
  45. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 3.ipynb +0 -178
  46. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM 4.ipynb +0 -185
  47. noshot/data/ML TS XAI/ML/ML 3 (Latest)/11. HMM.ipynb +0 -106
  48. noshot/data/ML TS XAI/ML/ML 3 (Latest)/2. KNN.ipynb +0 -177
  49. noshot/data/ML TS XAI/ML/ML 3 (Latest)/3. LDA.ipynb +0 -195
  50. noshot/data/ML TS XAI/ML/ML 3 (Latest)/4. Linear Regression.ipynb +0 -267
  51. noshot/data/ML TS XAI/ML/ML 3 (Latest)/5. Logistic Regression.ipynb +0 -104
  52. noshot/data/ML TS XAI/ML/ML 3 (Latest)/6. Bayesian Classifier.ipynb +0 -109
  53. noshot/data/ML TS XAI/ML/ML 3 (Latest)/7. SVM.ipynb +0 -220
  54. noshot/data/ML TS XAI/ML/ML 3 (Latest)/8. MLP.ipynb +0 -99
  55. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge - Lasso.ipynb +0 -211
  56. noshot/data/ML TS XAI/ML/ML 3 (Latest)/9. Ridge Lasso 2.ipynb +0 -99
  57. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Image Load Example.ipynb +0 -118
  58. noshot/data/ML TS XAI/ML/ML 3 (Latest)/Updated_Untitled.ipynb +0 -603
  59. noshot/data/ML TS XAI/ML/ML Lab AllinOne.ipynb +0 -961
  60. noshot/data/ML TS XAI/ML/ML Lab H Sec/1. Iris Dataset (Softmax vs Sigmoid).ipynb +0 -231
  61. noshot/data/ML TS XAI/ML/ML Lab H Sec/2. Student Dataset (Overfit vs Regularized).ipynb +0 -269
  62. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Categorical (Overfit vs Regularized).ipynb +0 -274
  63. noshot/data/ML TS XAI/ML/ML Lab H Sec/3. Insurance Target Numerical (Overfit vs Regularized).ipynb +0 -263
  64. noshot/data/ML TS XAI/ML/ML Lab H Sec/4. Smart House System HMM.ipynb +0 -198
  65. noshot/data/ML TS XAI/ML/ML Lab H Sec/5. Fraud Detection System HMM.ipynb +0 -201
  66. noshot/data/ML TS XAI/ML/ML Lab H Sec/insurance.csv +0 -1339
  67. noshot/data/ML TS XAI/ML/ML Lab H Sec/iris1.data +0 -151
  68. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-mat.csv +0 -396
  69. noshot/data/ML TS XAI/ML/ML Lab H Sec/student-por.csv +0 -650
  70. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  71. noshot-11.0.0.dist-info/RECORD +0 -72
  72. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/WHEEL +0 -0
  73. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  74. {noshot-11.0.0.dist-info → noshot-12.0.0.dist-info}/top_level.txt +0 -0
@@ -1,1087 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "R7euuRFaCdIZ"
7
- },
8
- "source": [
9
- "### ***Required Packages***"
10
- ]
11
- },
12
- {
13
- "cell_type": "code",
14
- "execution_count": null,
15
- "metadata": {
16
- "executionInfo": {
17
- "elapsed": 6,
18
- "status": "ok",
19
- "timestamp": 1741051571358,
20
- "user": {
21
- "displayName": "Jaison A",
22
- "userId": "07006398627763032071"
23
- },
24
- "user_tz": -330
25
- },
26
- "id": "c5Fdgw1I3gJP"
27
- },
28
- "outputs": [],
29
- "source": [
30
- "import pandas as pd\n",
31
- "import numpy as np\n",
32
- "import matplotlib.pyplot as plt\n",
33
- "from sklearn.neighbors import KNeighborsClassifier\n",
34
- "from sklearn.linear_model import LogisticRegression,LinearRegression\n",
35
- "from sklearn.cluster import KMeans\n",
36
- "from sklearn.model_selection import train_test_split\n",
37
- "from sklearn.metrics import accuracy_score,confusion_matrix,classification_report,f1_score,r2_score,adjusted_rand_score\n",
38
- "from sklearn.decomposition import PCA\n",
39
- "from sklearn.preprocessing import LabelEncoder,MinMaxScaler,StandardScaler\n",
40
- "from statsmodels.stats.outliers_influence import variance_inflation_factor\n",
41
- "import seaborn as sns"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": null,
47
- "metadata": {
48
- "colab": {
49
- "base_uri": "https://localhost:8080/"
50
- },
51
- "executionInfo": {
52
- "elapsed": 2335,
53
- "status": "ok",
54
- "timestamp": 1741051573697,
55
- "user": {
56
- "displayName": "Jaison A",
57
- "userId": "07006398627763032071"
58
- },
59
- "user_tz": -330
60
- },
61
- "id": "CZiiMp0u4QC1",
62
- "outputId": "a0067b93-e036-4961-e8c6-31a318689332"
63
- },
64
- "outputs": [],
65
- "source": [
66
- "from google.colab import drive\n",
67
- "drive.mount('/content/drive')"
68
- ]
69
- },
70
- {
71
- "cell_type": "markdown",
72
- "metadata": {
73
- "id": "qCogj3nw4UUy"
74
- },
75
- "source": [
76
- "### ***Question_1***"
77
- ]
78
- },
79
- {
80
- "cell_type": "code",
81
- "execution_count": null,
82
- "metadata": {
83
- "colab": {
84
- "base_uri": "https://localhost:8080/",
85
- "height": 0
86
- },
87
- "executionInfo": {
88
- "elapsed": 9,
89
- "status": "ok",
90
- "timestamp": 1741051573708,
91
- "user": {
92
- "displayName": "Jaison A",
93
- "userId": "07006398627763032071"
94
- },
95
- "user_tz": -330
96
- },
97
- "id": "G9xT9oSK4R7q",
98
- "outputId": "e95932f3-44ae-4401-8723-860a9e41dd21"
99
- },
100
- "outputs": [],
101
- "source": [
102
- "df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/KNN/heart_disease_uci.csv')\n",
103
- "display(df.head())"
104
- ]
105
- },
106
- {
107
- "cell_type": "markdown",
108
- "metadata": {
109
- "id": "xDAWQGs54t31"
110
- },
111
- "source": [
112
- "**Handle Missing values**"
113
- ]
114
- },
115
- {
116
- "cell_type": "code",
117
- "execution_count": null,
118
- "metadata": {
119
- "colab": {
120
- "base_uri": "https://localhost:8080/"
121
- },
122
- "executionInfo": {
123
- "elapsed": 16,
124
- "status": "ok",
125
- "timestamp": 1741051573727,
126
- "user": {
127
- "displayName": "Jaison A",
128
- "userId": "07006398627763032071"
129
- },
130
- "user_tz": -330
131
- },
132
- "id": "8w3eecNs4xU8",
133
- "outputId": "24fdd56c-0327-4233-ae56-3e6a7eb41849"
134
- },
135
- "outputs": [],
136
- "source": [
137
- "features=['id','age','sex','dataset','cp','trestbps','chol','fbs','restecg','thalch','exang','oldpeak','slope','ca','thal']\n",
138
- "target=['num']\n",
139
- "\n",
140
- "le=LabelEncoder()\n",
141
- "df['sex']=le.fit_transform(df['sex'])\n",
142
- "df['dataset']=le.fit_transform(df['dataset'])\n",
143
- "df['cp']=le.fit_transform(df['cp'])\n",
144
- "df['fbs']=le.fit_transform(df['fbs'])\n",
145
- "df['restecg']=le.fit_transform(df['restecg'])\n",
146
- "df['exang']=le.fit_transform(df['exang'])\n",
147
- "df['slope']=le.fit_transform(df['slope'])\n",
148
- "df['thal']=le.fit_transform(df['thal'])\n",
149
- "\n",
150
- "\n",
151
- "\n",
152
- "df['trestbps']=df['trestbps'].fillna(df['trestbps'].mean())\n",
153
- "df['chol']=df['chol'].fillna(df['chol'].mean())\n",
154
- "df['fbs']=df['fbs'].fillna(df['fbs'])\n",
155
- "df['restecg']=df['restecg'].fillna(df['restecg'])\n",
156
- "df['thalch']=df['thalch'].fillna(df['thalch'].mean())\n",
157
- "df['exang']=df['exang'].fillna(df['exang'])\n",
158
- "df['oldpeak']=df['oldpeak'].fillna(df['oldpeak'].mean())\n",
159
- "df['thal']=df['thal'].fillna(df['thal'].mean())\n",
160
- "df['ca']=df['ca'].fillna(df['ca'].mean())\n",
161
- "df['slope']=df['slope'].fillna(df['slope'].mean())\n",
162
- "\n",
163
- "print(df.isnull().sum())"
164
- ]
165
- },
166
- {
167
- "cell_type": "markdown",
168
- "metadata": {
169
- "id": "zCvcMIjt7jaL"
170
- },
171
- "source": [
172
- "**Data Split ,Scaling ,KNN Model and Metrics**"
173
- ]
174
- },
175
- {
176
- "cell_type": "code",
177
- "execution_count": null,
178
- "metadata": {
179
- "colab": {
180
- "base_uri": "https://localhost:8080/"
181
- },
182
- "executionInfo": {
183
- "elapsed": 285,
184
- "status": "ok",
185
- "timestamp": 1741051574014,
186
- "user": {
187
- "displayName": "Jaison A",
188
- "userId": "07006398627763032071"
189
- },
190
- "user_tz": -330
191
- },
192
- "id": "8e2BPGlM7fGJ",
193
- "outputId": "a135b7ff-b7d2-4872-b54f-c6910e75c2d8"
194
- },
195
- "outputs": [],
196
- "source": [
197
- "x=df[features]\n",
198
- "y=df[target]\n",
199
- "\n",
200
- "X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)\n",
201
- "\n",
202
- "\n",
203
- "scalers={'MinMax':MinMaxScaler(),'Standard':StandardScaler()}\n",
204
- "\n",
205
- "for name,scaler in scalers.items():\n",
206
- " print(f'Applying {name} Scaling : ')\n",
207
- " scaled_x_train=scaler.fit_transform(X_train)\n",
208
- " scaled_x_test=scaler.transform(X_test)\n",
209
- " for k in [3,5,7,9]:\n",
210
- " knn=KNeighborsClassifier(n_neighbors=k)\n",
211
- " knn.fit(scaled_x_train,y_train)\n",
212
- " y_pred=knn.predict(scaled_x_test)\n",
213
- " print(f\"K : {k}\")\n",
214
- " print(f'Accuracy Score : {accuracy_score(y_test,y_pred)}')\n",
215
- " print(f'Confusion Matrix : \\n{confusion_matrix(y_test,y_pred)}')\n",
216
- " print(f'Classification Report : \\n{classification_report(y_test,y_pred)}')"
217
- ]
218
- },
219
- {
220
- "cell_type": "markdown",
221
- "metadata": {
222
- "id": "ytnBNsap7xZZ"
223
- },
224
- "source": [
225
- "### ***Question_2***"
226
- ]
227
- },
228
- {
229
- "cell_type": "code",
230
- "execution_count": null,
231
- "metadata": {
232
- "colab": {
233
- "base_uri": "https://localhost:8080/",
234
- "height": 0
235
- },
236
- "executionInfo": {
237
- "elapsed": 3491,
238
- "status": "ok",
239
- "timestamp": 1741051577507,
240
- "user": {
241
- "displayName": "Jaison A",
242
- "userId": "07006398627763032071"
243
- },
244
- "user_tz": -330
245
- },
246
- "id": "wdzmD1O-7wm7",
247
- "outputId": "b3424de8-6d74-4f0c-f0e8-eaad63772df9"
248
- },
249
- "outputs": [],
250
- "source": [
251
- "df=pd.read_excel('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/KNN/Telco_customer_churn.xlsx')\n",
252
- "display(df.head())"
253
- ]
254
- },
255
- {
256
- "cell_type": "markdown",
257
- "metadata": {
258
- "id": "AjA-tcxd-12r"
259
- },
260
- "source": [
261
- "**Handle Missing Values**"
262
- ]
263
- },
264
- {
265
- "cell_type": "code",
266
- "execution_count": null,
267
- "metadata": {
268
- "colab": {
269
- "base_uri": "https://localhost:8080/"
270
- },
271
- "executionInfo": {
272
- "elapsed": 9,
273
- "status": "ok",
274
- "timestamp": 1741051577509,
275
- "user": {
276
- "displayName": "Jaison A",
277
- "userId": "07006398627763032071"
278
- },
279
- "user_tz": -330
280
- },
281
- "id": "YWaaBkbf85Qp",
282
- "outputId": "2a526a88-5be8-4e91-b6a5-80f36f48f8de"
283
- },
284
- "outputs": [],
285
- "source": [
286
- "df.drop(columns=['Churn Reason','CustomerID'],inplace=True)\n",
287
- "print(df.isnull().sum())"
288
- ]
289
- },
290
- {
291
- "cell_type": "markdown",
292
- "metadata": {
293
- "id": "S-OTOJ83-twv"
294
- },
295
- "source": [
296
- "**Encode Data**"
297
- ]
298
- },
299
- {
300
- "cell_type": "code",
301
- "execution_count": null,
302
- "metadata": {
303
- "colab": {
304
- "base_uri": "https://localhost:8080/",
305
- "height": 0
306
- },
307
- "executionInfo": {
308
- "elapsed": 61,
309
- "status": "ok",
310
- "timestamp": 1741051577564,
311
- "user": {
312
- "displayName": "Jaison A",
313
- "userId": "07006398627763032071"
314
- },
315
- "user_tz": -330
316
- },
317
- "id": "gcWGzUiV9g1l",
318
- "outputId": "5d78e4e4-d3dc-4609-ccfc-df783d1de7ed"
319
- },
320
- "outputs": [],
321
- "source": [
322
- "le=LabelEncoder()\n",
323
- "for col in df.select_dtypes(include=['object']).columns:\n",
324
- " df[col]=df[col].astype('str')\n",
325
- " df[col]=le.fit_transform(df[col])\n",
326
- "\n",
327
- "display(df.head())"
328
- ]
329
- },
330
- {
331
- "cell_type": "markdown",
332
- "metadata": {
333
- "id": "hO_W1tgT-3MV"
334
- },
335
- "source": [
336
- "**Data Split , Model Training and Metrics**"
337
- ]
338
- },
339
- {
340
- "cell_type": "code",
341
- "execution_count": null,
342
- "metadata": {
343
- "colab": {
344
- "base_uri": "https://localhost:8080/"
345
- },
346
- "executionInfo": {
347
- "elapsed": 239,
348
- "status": "ok",
349
- "timestamp": 1741051577801,
350
- "user": {
351
- "displayName": "Jaison A",
352
- "userId": "07006398627763032071"
353
- },
354
- "user_tz": -330
355
- },
356
- "id": "-8dwgDMc-95x",
357
- "outputId": "725916d8-f062-4bf7-b3e4-57b91e7a3f51"
358
- },
359
- "outputs": [],
360
- "source": [
361
- "X_train,X_test,y_train,y_test=train_test_split(df.drop(columns=['Churn Value']),df['Churn Value'],test_size=0.2,random_state=42)\n",
362
- "\n",
363
- "scalers=StandardScaler()\n",
364
- "\n",
365
- "X_train_Scaled=scalers.fit_transform(X_train)\n",
366
- "X_test_Scaled=scalers.transform(X_test)\n",
367
- "\n",
368
- "knn=KNeighborsClassifier(n_neighbors=5)\n",
369
- "knn.fit(X_train_Scaled,y_train)\n",
370
- "y_pred_knn=knn.predict(X_test_Scaled)\n",
371
- "\n",
372
- "logreg=LogisticRegression()\n",
373
- "logreg.fit(X_train_Scaled,y_train)\n",
374
- "y_pred_logreg=logreg.predict(X_test_Scaled)\n",
375
- "\n",
376
- "print(f'KNN Accuracy : {accuracy_score(y_test,y_pred_knn)}')\n",
377
- "print(f'Logistic Regression Accuracy : {accuracy_score(y_test,y_pred_logreg)}')\n",
378
- "\n",
379
- "print(f\"KNN f1 Score : {f1_score(y_test,y_pred_knn)}\")\n",
380
- "print(f\"Logistic Regression f1 Score : {f1_score(y_test,y_pred_logreg)}\")\n",
381
- "\n",
382
- "print(f\"KNN Classification Report : \\n{classification_report(y_test,y_pred_knn)}\")\n",
383
- "print(f\"Logistic Regression Classification Report : \\n{classification_report(y_test,y_pred_logreg)}\")"
384
- ]
385
- },
386
- {
387
- "cell_type": "markdown",
388
- "metadata": {
389
- "id": "FU9VMoYaByfs"
390
- },
391
- "source": [
392
- "### ***Question 3***"
393
- ]
394
- },
395
- {
396
- "cell_type": "code",
397
- "execution_count": null,
398
- "metadata": {
399
- "colab": {
400
- "base_uri": "https://localhost:8080/",
401
- "height": 0
402
- },
403
- "executionInfo": {
404
- "elapsed": 2763,
405
- "status": "ok",
406
- "timestamp": 1741051580562,
407
- "user": {
408
- "displayName": "Jaison A",
409
- "userId": "07006398627763032071"
410
- },
411
- "user_tz": -330
412
- },
413
- "id": "WnZ6_jhgB1I7",
414
- "outputId": "73b756b8-0fc3-45aa-c067-22ca9d42cefa"
415
- },
416
- "outputs": [],
417
- "source": [
418
- "df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/PCA/all_stocks_5yr.csv')\n",
419
- "display(df.head())"
420
- ]
421
- },
422
- {
423
- "cell_type": "code",
424
- "execution_count": null,
425
- "metadata": {
426
- "executionInfo": {
427
- "elapsed": 126,
428
- "status": "ok",
429
- "timestamp": 1741051580686,
430
- "user": {
431
- "displayName": "Jaison A",
432
- "userId": "07006398627763032071"
433
- },
434
- "user_tz": -330
435
- },
436
- "id": "3nU3DybvD0kt"
437
- },
438
- "outputs": [],
439
- "source": [
440
- "features = ['open', 'high', 'low', 'close', 'volume']\n",
441
- "data = df[features]\n",
442
- "\n",
443
- "# Handle missing values if any\n",
444
- "data = data.dropna()\n",
445
- "\n",
446
- "# Standardize the data\n",
447
- "scaler = StandardScaler()\n",
448
- "data_scaled = scaler.fit_transform(data)\n"
449
- ]
450
- },
451
- {
452
- "cell_type": "code",
453
- "execution_count": null,
454
- "metadata": {
455
- "colab": {
456
- "base_uri": "https://localhost:8080/"
457
- },
458
- "executionInfo": {
459
- "elapsed": 83,
460
- "status": "ok",
461
- "timestamp": 1741051580771,
462
- "user": {
463
- "displayName": "Jaison A",
464
- "userId": "07006398627763032071"
465
- },
466
- "user_tz": -330
467
- },
468
- "id": "PPghwxj_D3QT",
469
- "outputId": "d4c39545-9879-4464-fc35-3d57ec0e9763"
470
- },
471
- "outputs": [],
472
- "source": [
473
- "# Perform PCA and retain 90% variance\n",
474
- "pca = PCA(n_components=0.90)\n",
475
- "data_pca = pca.fit_transform(data_scaled)\n",
476
- "\n",
477
- "# Number of components required to retain 90% variance\n",
478
- "num_components = pca.n_components_\n",
479
- "print(f'Number of components to retain 90% variance: {num_components}')"
480
- ]
481
- },
482
- {
483
- "cell_type": "code",
484
- "execution_count": null,
485
- "metadata": {
486
- "colab": {
487
- "base_uri": "https://localhost:8080/",
488
- "height": 0
489
- },
490
- "executionInfo": {
491
- "elapsed": 393,
492
- "status": "ok",
493
- "timestamp": 1741051581177,
494
- "user": {
495
- "displayName": "Jaison A",
496
- "userId": "07006398627763032071"
497
- },
498
- "user_tz": -330
499
- },
500
- "id": "WfqAFub0EAhg",
501
- "outputId": "54331b4c-87fe-40f5-a68c-1673bdacdc9d"
502
- },
503
- "outputs": [],
504
- "source": [
505
- "# Plot variance explained by each component\n",
506
- "plt.figure(figsize=(8, 5))\n",
507
- "plt.plot(range(1, num_components + 1), np.cumsum(pca.explained_variance_ratio_), marker='o', linestyle='--')\n",
508
- "plt.xlabel('Number of Components')\n",
509
- "plt.ylabel('Cumulative Explained Variance')\n",
510
- "plt.title('Explained Variance by Components')\n",
511
- "plt.show()"
512
- ]
513
- },
514
- {
515
- "cell_type": "code",
516
- "execution_count": null,
517
- "metadata": {
518
- "colab": {
519
- "base_uri": "https://localhost:8080/",
520
- "height": 0
521
- },
522
- "executionInfo": {
523
- "elapsed": 52676,
524
- "status": "ok",
525
- "timestamp": 1741051633865,
526
- "user": {
527
- "displayName": "Jaison A",
528
- "userId": "07006398627763032071"
529
- },
530
- "user_tz": -330
531
- },
532
- "id": "bzEs9MZnEENb",
533
- "outputId": "073b9e4a-fd78-4086-92fa-70dad35ed944"
534
- },
535
- "outputs": [],
536
- "source": [
537
- "# Scatter plot before PCA\n",
538
- "sns.pairplot(pd.DataFrame(data_scaled, columns=features), diag_kind='kde')\n",
539
- "plt.suptitle('Stock Data Before PCA')\n",
540
- "plt.show()\n"
541
- ]
542
- },
543
- {
544
- "cell_type": "code",
545
- "execution_count": null,
546
- "metadata": {
547
- "colab": {
548
- "base_uri": "https://localhost:8080/",
549
- "height": 0
550
- },
551
- "executionInfo": {
552
- "elapsed": 1697,
553
- "status": "ok",
554
- "timestamp": 1741051635567,
555
- "user": {
556
- "displayName": "Jaison A",
557
- "userId": "07006398627763032071"
558
- },
559
- "user_tz": -330
560
- },
561
- "id": "LvNwIOpeEImM",
562
- "outputId": "16fcf1f3-b788-4ead-c672-b8c25dddd7e6"
563
- },
564
- "outputs": [],
565
- "source": [
566
- "# Scatter plot after PCA\n",
567
- "plt.scatter(data_pca[:, 0], data_pca[:, 1], alpha=0.5)\n",
568
- "plt.xlabel('Principal Component 1')\n",
569
- "plt.ylabel('Principal Component 2')\n",
570
- "plt.title('Stock Data After PCA')\n",
571
- "plt.show()"
572
- ]
573
- },
574
- {
575
- "cell_type": "code",
576
- "execution_count": null,
577
- "metadata": {
578
- "colab": {
579
- "base_uri": "https://localhost:8080/"
580
- },
581
- "executionInfo": {
582
- "elapsed": 7873,
583
- "status": "ok",
584
- "timestamp": 1741051643443,
585
- "user": {
586
- "displayName": "Jaison A",
587
- "userId": "07006398627763032071"
588
- },
589
- "user_tz": -330
590
- },
591
- "id": "V1WmxZ0lEl99",
592
- "outputId": "7eff00e8-16ed-4879-f56e-8905540a0fee"
593
- },
594
- "outputs": [],
595
- "source": [
596
- "# Create binary classification target (1 if price increases, 0 if it decreases)\n",
597
- "df['price_movement'] = np.where(df['close'].shift(-1) > df['close'], 1, 0)\n",
598
- "df = df.dropna() # Remove NaNs that result from shift operation\n",
599
- "y = df['price_movement'].values\n",
600
- "\n",
601
- "# Split data into train and test sets\n",
602
- "X_train, X_test, y_train, y_test = train_test_split(data_pca, y, test_size=0.2, random_state=42)\n",
603
- "\n",
604
- "# Apply KNN classification\n",
605
- "knn = KNeighborsClassifier(n_neighbors=5)\n",
606
- "knn.fit(X_train, y_train)\n",
607
- "y_pred = knn.predict(X_test)\n",
608
- "\n",
609
- "# Evaluate KNN classification performance\n",
610
- "accuracy = accuracy_score(y_test, y_pred)\n",
611
- "print(f'KNN Classification Accuracy: {accuracy}')\n",
612
- "print('Classification Report:\\n', classification_report(y_test, y_pred))"
613
- ]
614
- },
615
- {
616
- "cell_type": "markdown",
617
- "metadata": {
618
- "id": "vugOPwlBFzmb"
619
- },
620
- "source": [
621
- "### ***Question 4***"
622
- ]
623
- },
624
- {
625
- "cell_type": "code",
626
- "execution_count": null,
627
- "metadata": {
628
- "colab": {
629
- "base_uri": "https://localhost:8080/",
630
- "height": 0
631
- },
632
- "executionInfo": {
633
- "elapsed": 9,
634
- "status": "ok",
635
- "timestamp": 1741051643450,
636
- "user": {
637
- "displayName": "Jaison A",
638
- "userId": "07006398627763032071"
639
- },
640
- "user_tz": -330
641
- },
642
- "id": "T7-4PahjFzED",
643
- "outputId": "90198191-aa59-469a-c25f-c2784588917e"
644
- },
645
- "outputs": [],
646
- "source": [
647
- "df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/KNN/heart_disease_uci.csv')\n",
648
- "display(df.head())\n",
649
- "df.info()"
650
- ]
651
- },
652
- {
653
- "cell_type": "code",
654
- "execution_count": null,
655
- "metadata": {
656
- "colab": {
657
- "base_uri": "https://localhost:8080/",
658
- "height": 0
659
- },
660
- "executionInfo": {
661
- "elapsed": 28,
662
- "status": "ok",
663
- "timestamp": 1741051643481,
664
- "user": {
665
- "displayName": "Jaison A",
666
- "userId": "07006398627763032071"
667
- },
668
- "user_tz": -330
669
- },
670
- "id": "kRJLOdSDnaH3",
671
- "outputId": "7f4ca5b9-dd81-4b25-f449-7ab5837dd475"
672
- },
673
- "outputs": [],
674
- "source": [
675
- "df=df.drop(columns=['id','ca'])\n",
676
- "display(df.head())\n",
677
- "\n",
678
- "for col in df.select_dtypes(include=['object']).columns:\n",
679
- " df[col]=df[col].astype('str')\n",
680
- " df[col]=LabelEncoder().fit_transform(df[col])\n",
681
- "\n",
682
- "display(df.head())"
683
- ]
684
- },
685
- {
686
- "cell_type": "code",
687
- "execution_count": null,
688
- "metadata": {
689
- "colab": {
690
- "base_uri": "https://localhost:8080/"
691
- },
692
- "executionInfo": {
693
- "elapsed": 7,
694
- "status": "ok",
695
- "timestamp": 1741051643490,
696
- "user": {
697
- "displayName": "Jaison A",
698
- "userId": "07006398627763032071"
699
- },
700
- "user_tz": -330
701
- },
702
- "id": "FPX8T0AUo4Fq",
703
- "outputId": "3fc16702-dbb5-4472-b04c-7993d26aa753"
704
- },
705
- "outputs": [],
706
- "source": [
707
- "print(df.isnull().sum())"
708
- ]
709
- },
710
- {
711
- "cell_type": "code",
712
- "execution_count": null,
713
- "metadata": {
714
- "executionInfo": {
715
- "elapsed": 2,
716
- "status": "ok",
717
- "timestamp": 1741051643494,
718
- "user": {
719
- "displayName": "Jaison A",
720
- "userId": "07006398627763032071"
721
- },
722
- "user_tz": -330
723
- },
724
- "id": "MfxJ653BpOt7"
725
- },
726
- "outputs": [],
727
- "source": [
728
- "df['trestbps']=df['trestbps'].fillna(df['trestbps'].mean())\n",
729
- "df['chol']=df['chol'].fillna(df['chol'].mean())\n",
730
- "df['thalch']=df['thalch'].fillna(df['thalch'].mean())\n",
731
- "df['oldpeak']=df['oldpeak'].fillna(df['oldpeak'].mean())"
732
- ]
733
- },
734
- {
735
- "cell_type": "markdown",
736
- "metadata": {
737
- "id": "vYZLZ6dyp0uy"
738
- },
739
- "source": [
740
- "**Without PCA**"
741
- ]
742
- },
743
- {
744
- "cell_type": "code",
745
- "execution_count": null,
746
- "metadata": {
747
- "colab": {
748
- "base_uri": "https://localhost:8080/"
749
- },
750
- "executionInfo": {
751
- "elapsed": 48,
752
- "status": "ok",
753
- "timestamp": 1741051643551,
754
- "user": {
755
- "displayName": "Jaison A",
756
- "userId": "07006398627763032071"
757
- },
758
- "user_tz": -330
759
- },
760
- "id": "tKjY9CGjtW_Q",
761
- "outputId": "506e2397-7fc4-4332-f7ac-581ba4a91be7"
762
- },
763
- "outputs": [],
764
- "source": [
765
- "kmeans=KMeans(n_clusters=5,random_state=42,n_init=10)\n",
766
- "y_pred_kmeans=kmeans.fit_predict(df.drop(columns=['num']))\n",
767
- "\n",
768
- "ari=adjusted_rand_score(df['num'],y_pred_kmeans)\n",
769
- "print(ari)"
770
- ]
771
- },
772
- {
773
- "cell_type": "markdown",
774
- "metadata": {
775
- "id": "deVfVji5uPnB"
776
- },
777
- "source": [
778
- "**With PCA**"
779
- ]
780
- },
781
- {
782
- "cell_type": "code",
783
- "execution_count": null,
784
- "metadata": {
785
- "colab": {
786
- "base_uri": "https://localhost:8080/"
787
- },
788
- "executionInfo": {
789
- "elapsed": 48,
790
- "status": "ok",
791
- "timestamp": 1741051643607,
792
- "user": {
793
- "displayName": "Jaison A",
794
- "userId": "07006398627763032071"
795
- },
796
- "user_tz": -330
797
- },
798
- "id": "_DuzNnwAuRkQ",
799
- "outputId": "8027f17a-f0a2-4737-b390-32ee25bbda7c"
800
- },
801
- "outputs": [],
802
- "source": [
803
- "pca=PCA(n_components=2)\n",
804
- "pca_x=pca.fit_transform(df.drop(columns=['num']))\n",
805
- "y_pred_kmeans=kmeans.fit_predict(pca_x)\n",
806
- "ari=adjusted_rand_score(df['num'],y_pred_kmeans)\n",
807
- "print(ari)"
808
- ]
809
- },
810
- {
811
- "cell_type": "code",
812
- "execution_count": null,
813
- "metadata": {
814
- "colab": {
815
- "base_uri": "https://localhost:8080/",
816
- "height": 0
817
- },
818
- "executionInfo": {
819
- "elapsed": 423,
820
- "status": "ok",
821
- "timestamp": 1741051644051,
822
- "user": {
823
- "displayName": "Jaison A",
824
- "userId": "07006398627763032071"
825
- },
826
- "user_tz": -330
827
- },
828
- "id": "kcofB6n_skcD",
829
- "outputId": "f55e545c-6fe9-4f19-cc1b-1513d89caabc"
830
- },
831
- "outputs": [],
832
- "source": [
833
- "plt.figure(figsize=(8, 6))\n",
834
- "scatter = plt.scatter(pca_x[:, 0], pca_x[:, 1], c=y_pred_kmeans, cmap='viridis', alpha=0.6)\n",
835
- "plt.colorbar(scatter, label='Digit Label')\n",
836
- "plt.xlabel('Principal Component 1')\n",
837
- "plt.ylabel('Principal Component 2')\n",
838
- "plt.title('K Means Clustering')\n",
839
- "plt.show()"
840
- ]
841
- },
842
- {
843
- "cell_type": "code",
844
- "execution_count": null,
845
- "metadata": {
846
- "colab": {
847
- "base_uri": "https://localhost:8080/"
848
- },
849
- "executionInfo": {
850
- "elapsed": 9,
851
- "status": "ok",
852
- "timestamp": 1741051644055,
853
- "user": {
854
- "displayName": "Jaison A",
855
- "userId": "07006398627763032071"
856
- },
857
- "user_tz": -330
858
- },
859
- "id": "pmdXFh2Pslhu",
860
- "outputId": "1f864500-b714-4c40-db6e-c10bf593fbb4"
861
- },
862
- "outputs": [],
863
- "source": [
864
- "X=df.drop(columns=['num'])\n",
865
- "X_reconstructed = pca.inverse_transform(pca_x)\n",
866
- "reconstruction_error = np.mean(np.square(X - X_reconstructed))\n",
867
- "print(f\"Reconstruction error: {reconstruction_error:.4f}\")"
868
- ]
869
- },
870
- {
871
- "cell_type": "markdown",
872
- "metadata": {
873
- "id": "z5iVUmUvF3mZ"
874
- },
875
- "source": [
876
- "### ***Question 5***"
877
- ]
878
- },
879
- {
880
- "cell_type": "code",
881
- "execution_count": null,
882
- "metadata": {
883
- "colab": {
884
- "base_uri": "https://localhost:8080/",
885
- "height": 206
886
- },
887
- "executionInfo": {
888
- "elapsed": 394,
889
- "status": "ok",
890
- "timestamp": 1741051644442,
891
- "user": {
892
- "displayName": "Jaison A",
893
- "userId": "07006398627763032071"
894
- },
895
- "user_tz": -330
896
- },
897
- "id": "CJ7Y5gaLF6LQ",
898
- "outputId": "3cbf424b-07ba-4fef-a73f-c000a5e9c074"
899
- },
900
- "outputs": [],
901
- "source": [
902
- "df=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/SOC_LAB1/dataset/Regression/Housing.csv')\n",
903
- "le=LabelEncoder()\n",
904
- "for col in df.select_dtypes(include=['object']).columns:\n",
905
- " df[col]=le.fit_transform(df[col])\n",
906
- "display(df.head())"
907
- ]
908
- },
909
- {
910
- "cell_type": "code",
911
- "execution_count": null,
912
- "metadata": {
913
- "colab": {
914
- "base_uri": "https://localhost:8080/",
915
- "height": 465
916
- },
917
- "executionInfo": {
918
- "elapsed": 193,
919
- "status": "ok",
920
- "timestamp": 1741051644636,
921
- "user": {
922
- "displayName": "Jaison A",
923
- "userId": "07006398627763032071"
924
- },
925
- "user_tz": -330
926
- },
927
- "id": "W0cMte6vGo91",
928
- "outputId": "f9299ed7-2902-484a-a2c5-5c085dfc7bcb"
929
- },
930
- "outputs": [],
931
- "source": [
932
- "plt.scatter(x=df['area'],y=df['price'])\n",
933
- "plt.xlabel('area')\n",
934
- "plt.ylabel('price')\n",
935
- "plt.show()"
936
- ]
937
- },
938
- {
939
- "cell_type": "code",
940
- "execution_count": null,
941
- "metadata": {
942
- "colab": {
943
- "base_uri": "https://localhost:8080/"
944
- },
945
- "executionInfo": {
946
- "elapsed": 14,
947
- "status": "ok",
948
- "timestamp": 1741051644653,
949
- "user": {
950
- "displayName": "Jaison A",
951
- "userId": "07006398627763032071"
952
- },
953
- "user_tz": -330
954
- },
955
- "id": "tBRb-1x2G8cM",
956
- "outputId": "a915ec62-947d-4805-f162-22a2ea2d3c45"
957
- },
958
- "outputs": [],
959
- "source": [
960
- "features=[\n",
961
- " \"area\", \"bedrooms\", \"bathrooms\", \"stories\", \"mainroad\", \"guestroom\",\n",
962
- " \"basement\", \"hotwaterheating\", \"airconditioning\", \"parking\",\n",
963
- " \"prefarea\", \"furnishingstatus\"\n",
964
- "]\n",
965
- "\n",
966
- "\n",
967
- "x=df[['area']]\n",
968
- "y=df['price']\n",
969
- "\n",
970
- "X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)\n",
971
- "\n",
972
- "lg=LinearRegression()\n",
973
- "lg.fit(X_train,y_train)\n",
974
- "\n",
975
- "y_pred=lg.predict(X_test)\n",
976
- "\n",
977
- "print(f'r2_Score : {r2_score(y_test,y_pred)}')"
978
- ]
979
- },
980
- {
981
- "cell_type": "code",
982
- "execution_count": null,
983
- "metadata": {
984
- "colab": {
985
- "base_uri": "https://localhost:8080/"
986
- },
987
- "executionInfo": {
988
- "elapsed": 18,
989
- "status": "ok",
990
- "timestamp": 1741051644668,
991
- "user": {
992
- "displayName": "Jaison A",
993
- "userId": "07006398627763032071"
994
- },
995
- "user_tz": -330
996
- },
997
- "id": "d92QBRPwHIPD",
998
- "outputId": "24a67bdc-2b7f-4cbb-a177-0281cd54dff6"
999
- },
1000
- "outputs": [],
1001
- "source": [
1002
- "y=df[features]\n",
1003
- "x=df['price']\n",
1004
- "\n",
1005
- "X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)\n",
1006
- "\n",
1007
- "# Reshape X_train to a 2D array\n",
1008
- "X_train = X_train.values.reshape(-1, 1)\n",
1009
- "X_test = X_test.values.reshape(-1, 1) # Reshape X_test as well for consistency\n",
1010
- "\n",
1011
- "lg=LinearRegression()\n",
1012
- "lg.fit(X_train,y_train)\n",
1013
- "\n",
1014
- "y_pred=lg.predict(X_test)\n",
1015
- "\n",
1016
- "print(f'r2_Score : {r2_score(y_test,y_pred)}')"
1017
- ]
1018
- },
1019
- {
1020
- "cell_type": "code",
1021
- "execution_count": null,
1022
- "metadata": {
1023
- "colab": {
1024
- "base_uri": "https://localhost:8080/"
1025
- },
1026
- "executionInfo": {
1027
- "elapsed": 37,
1028
- "status": "ok",
1029
- "timestamp": 1741051644707,
1030
- "user": {
1031
- "displayName": "Jaison A",
1032
- "userId": "07006398627763032071"
1033
- },
1034
- "user_tz": -330
1035
- },
1036
- "id": "bZr_ZoedHOJI",
1037
- "outputId": "7a9a1d5e-18d6-4656-9ab0-e247abd8a5dc"
1038
- },
1039
- "outputs": [],
1040
- "source": [
1041
- "features=[\n",
1042
- " \"area\", \"bedrooms\", \"bathrooms\", \"stories\", \"mainroad\", \"guestroom\",\n",
1043
- " \"basement\", \"hotwaterheating\", \"airconditioning\", \"parking\",\n",
1044
- " \"prefarea\", \"furnishingstatus\"\n",
1045
- "]\n",
1046
- "X=df[features]\n",
1047
- "vif_data = pd.DataFrame()\n",
1048
- "vif_data[\"Feature\"] = features\n",
1049
- "vif_data[\"VIF\"] = [variance_inflation_factor(X.values, i) for i in range(len(features))]\n",
1050
- "print(\"\\nVariance Inflation Factor (VIF):\")\n",
1051
- "print(vif_data)"
1052
- ]
1053
- }
1054
- ],
1055
- "metadata": {
1056
- "colab": {
1057
- "authorship_tag": "ABX9TyOo5KSbG35NjuMjAiytt9Xd",
1058
- "collapsed_sections": [
1059
- "R7euuRFaCdIZ",
1060
- "qCogj3nw4UUy",
1061
- "ytnBNsap7xZZ",
1062
- "FU9VMoYaByfs",
1063
- "vugOPwlBFzmb"
1064
- ],
1065
- "provenance": []
1066
- },
1067
- "kernelspec": {
1068
- "display_name": "Python 3 (ipykernel)",
1069
- "language": "python",
1070
- "name": "python3"
1071
- },
1072
- "language_info": {
1073
- "codemirror_mode": {
1074
- "name": "ipython",
1075
- "version": 3
1076
- },
1077
- "file_extension": ".py",
1078
- "mimetype": "text/x-python",
1079
- "name": "python",
1080
- "nbconvert_exporter": "python",
1081
- "pygments_lexer": "ipython3",
1082
- "version": "3.12.4"
1083
- }
1084
- },
1085
- "nbformat": 4,
1086
- "nbformat_minor": 4
1087
- }