noshot 0.9.0__py3-none-any.whl → 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,241 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "3d63e9c0",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "import seaborn as sns\n",
14
+ "from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
15
+ "from statsmodels.tsa.stattools import adfuller\n",
16
+ "from statsmodels.tsa.arima.model import ARIMA\n",
17
+ "from statsmodels.tsa.statespace import sarimax\n",
18
+ "from sklearn.metrics import r2_score,mean_squared_error"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": null,
24
+ "id": "411787bc",
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "df=pd.read_csv('data/monthly-sunspots.csv')\n",
29
+ "df['Date']=df['Month']\n",
30
+ "del df['Month']\n",
31
+ "display(df.head())"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "code",
36
+ "execution_count": null,
37
+ "id": "af7abd2d",
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "df['Date']=pd.to_datetime(df['Date'])\n",
42
+ "df"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "code",
47
+ "execution_count": null,
48
+ "id": "10b20a75",
49
+ "metadata": {},
50
+ "outputs": [],
51
+ "source": [
52
+ "print(df.isnull().sum())"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "id": "d8a439ba",
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": [
62
+ "display(df.describe())"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": null,
68
+ "id": "d7ef84ea",
69
+ "metadata": {},
70
+ "outputs": [],
71
+ "source": [
72
+ "df.info()"
73
+ ]
74
+ },
75
+ {
76
+ "cell_type": "code",
77
+ "execution_count": null,
78
+ "id": "f79409e8",
79
+ "metadata": {},
80
+ "outputs": [],
81
+ "source": [
82
+ "plt.plot(df['Sunspots'],label='Sunspots')\n",
83
+ "plt.xlabel('Date')\n",
84
+ "plt.ylabel(\"Sunspots\")\n",
85
+ "plt.legend()\n",
86
+ "plt.title('Sunspots By Date')\n",
87
+ "plt.show()"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": null,
93
+ "id": "fbf0d907",
94
+ "metadata": {},
95
+ "outputs": [],
96
+ "source": [
97
+ "def stationarity_test(data):\n",
98
+ " data=adfuller(data)\n",
99
+ " print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
100
+ "\n",
101
+ "stationarity_test(df['Sunspots'])"
102
+ ]
103
+ },
104
+ {
105
+ "cell_type": "code",
106
+ "execution_count": null,
107
+ "id": "7965415d",
108
+ "metadata": {},
109
+ "outputs": [],
110
+ "source": [
111
+ "plot_acf(df['Sunspots'],lags=7)\n",
112
+ "plot_pacf(df['Sunspots'],lags=7)\n",
113
+ "plt.show()"
114
+ ]
115
+ },
116
+ {
117
+ "cell_type": "code",
118
+ "execution_count": null,
119
+ "id": "7c5c5023",
120
+ "metadata": {},
121
+ "outputs": [],
122
+ "source": [
123
+ "arma_model=ARIMA(df['Sunspots'],order=(2,0,0))\n",
124
+ "arma_fit=arma_model.fit()\n",
125
+ "display(arma_fit.summary())"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": null,
131
+ "id": "46da16b9",
132
+ "metadata": {},
133
+ "outputs": [],
134
+ "source": [
135
+ "arima_model=ARIMA(df['Sunspots'],order=(2,1,0))\n",
136
+ "arima_fit=arima_model.fit()\n",
137
+ "display(arima_fit.summary())"
138
+ ]
139
+ },
140
+ {
141
+ "cell_type": "code",
142
+ "execution_count": null,
143
+ "id": "1e629e66",
144
+ "metadata": {},
145
+ "outputs": [],
146
+ "source": [
147
+ "sarima_model=sarimax.SARIMAX(df['Sunspots'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
148
+ "sarima_fit=sarima_model.fit()\n",
149
+ "display(sarima_fit.summary())"
150
+ ]
151
+ },
152
+ {
153
+ "cell_type": "code",
154
+ "execution_count": null,
155
+ "id": "e3ae7519",
156
+ "metadata": {},
157
+ "outputs": [],
158
+ "source": [
159
+ "display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": null,
165
+ "id": "e9e40bbd",
166
+ "metadata": {},
167
+ "outputs": [],
168
+ "source": [
169
+ "display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "code",
174
+ "execution_count": null,
175
+ "id": "8773dcb6",
176
+ "metadata": {},
177
+ "outputs": [],
178
+ "source": [
179
+ "display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
180
+ ]
181
+ },
182
+ {
183
+ "cell_type": "code",
184
+ "execution_count": null,
185
+ "id": "50ca8a19",
186
+ "metadata": {},
187
+ "outputs": [],
188
+ "source": [
189
+ "arima_fit.resid.plot(color='teal')\n",
190
+ "plt.title('Residual Plot')\n",
191
+ "plt.show()"
192
+ ]
193
+ },
194
+ {
195
+ "cell_type": "code",
196
+ "execution_count": null,
197
+ "id": "6b6ddce5",
198
+ "metadata": {},
199
+ "outputs": [],
200
+ "source": [
201
+ "plt.plot(df['Sunspots'],label='Original',color='blue')\n",
202
+ "plt.plot(arima_fit.predict(),label='Forecast',color='red')\n",
203
+ "plt.title(\"Forecast\")\n",
204
+ "plt.legend()\n",
205
+ "plt.show()"
206
+ ]
207
+ },
208
+ {
209
+ "cell_type": "code",
210
+ "execution_count": null,
211
+ "id": "d3839c19",
212
+ "metadata": {},
213
+ "outputs": [],
214
+ "source": [
215
+ "print(f\"r2_Score : {r2_score(df['Sunspots'],arima_fit.predict())}\")\n",
216
+ "print(f\"Mean Squared Error : {mean_squared_error(df['Sunspots'],arima_fit.predict())}\")"
217
+ ]
218
+ }
219
+ ],
220
+ "metadata": {
221
+ "kernelspec": {
222
+ "display_name": "Python 3 (ipykernel)",
223
+ "language": "python",
224
+ "name": "python3"
225
+ },
226
+ "language_info": {
227
+ "codemirror_mode": {
228
+ "name": "ipython",
229
+ "version": 3
230
+ },
231
+ "file_extension": ".py",
232
+ "mimetype": "text/x-python",
233
+ "name": "python",
234
+ "nbconvert_exporter": "python",
235
+ "pygments_lexer": "ipython3",
236
+ "version": "3.12.4"
237
+ }
238
+ },
239
+ "nbformat": 4,
240
+ "nbformat_minor": 5
241
+ }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: noshot
3
- Version: 0.9.0
3
+ Version: 2.0.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -0,0 +1,15 @@
1
+ noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
+ noshot/main.py,sha256=zXegIqjJPARlPnQMS-B2dAENcvyaZkNwmue63Gm8lHU,663
3
+ noshot/data/ML TS XAI/TS/bill-charge.ipynb,sha256=YL8YClvZGctD1gEMZXf0XNlAGaqdvRJ5-73_8b3ij3Q,5205
4
+ noshot/data/ML TS XAI/TS/daily-min-temperatures.ipynb,sha256=N7q4NBhBXzzlmp97R3gNh4Fh-EarM7J9sdgAWzsQKIw,5119
5
+ noshot/data/ML TS XAI/TS/monthly-sunspots.ipynb,sha256=mcyjIFL5Zye5j_HqEqFQns4fnu3NzYTUfEXa2jPfnPU,5226
6
+ noshot/data/ML TS XAI/TS/data/bill-data.csv,sha256=X5CgQyNbpbCpsjdNLatK8__Qg_yiscOVqo9k1rzJRPQ,490
7
+ noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv,sha256=neLFZzg9m1CUv3S4fitPJqrqSx3xOMVD08JIJS_Efm4,59637
8
+ noshot/data/ML TS XAI/TS/data/monthly-sunspots.csv,sha256=xOyMxX2fb7bs2z4fN_Jbb0ut1RJMVZMQUrDNL8O8cfM,45039
9
+ noshot/utils/__init__.py,sha256=QVrN1ZpzPXxZqDOqot5-t_ulFjZXVx7Cvr-Is9AK0po,110
10
+ noshot/utils/shell_utils.py,sha256=-XfgYlNQlULa_rRJ3vsfTns4m_jiueGEj396J_y0Gus,2611
11
+ noshot-2.0.0.dist-info/licenses/LICENSE.txt,sha256=fgCruaVm5cUjFGOeEoGIimT6nnUunBqcNZHpGzK8TSw,1086
12
+ noshot-2.0.0.dist-info/METADATA,sha256=G9BAFS8FqRu2zMFDf_kt3JyOAPIHYU0MabufJ8UEHto,2573
13
+ noshot-2.0.0.dist-info/WHEEL,sha256=pxyMxgL8-pra_rKaQ4drOZAegBVuX-G_4nRHjjgWbmo,91
14
+ noshot-2.0.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
15
+ noshot-2.0.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (78.1.0)
2
+ Generator: setuptools (79.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,246 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "142adfce-1c93-475a-a465-0f344cbc6b93",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import numpy as np\n",
11
- "import pandas as pd\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "from sklearn.metrics import mean_squared_error\n",
14
- "from pandas.plotting import autocorrelation_plot\n",
15
- "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n",
16
- "import statsmodels.api as sm\n",
17
- "from statsmodels.tsa.arima_model import ARIMA\n",
18
- "import warnings\n",
19
- "warnings.filterwarnings('ignore')"
20
- ]
21
- },
22
- {
23
- "cell_type": "code",
24
- "execution_count": null,
25
- "id": "b10b8b58-6c78-442e-b712-67b16f228f15",
26
- "metadata": {},
27
- "outputs": [],
28
- "source": [
29
- "df = pd.read_csv('monthly-sunspots.csv', parse_dates=[0])\n",
30
- "df.head(10)"
31
- ]
32
- },
33
- {
34
- "cell_type": "code",
35
- "execution_count": null,
36
- "id": "3b123997-e868-4998-bbb6-9031ea8ab39f",
37
- "metadata": {},
38
- "outputs": [],
39
- "source": [
40
- "plt.figure(figsize=(10,8))\n",
41
- "plt.plot(df['Month'], df['Sunspots'], color = 'green', label = 'Sunspot Numbers')\n",
42
- "plt.xlabel('Date')\n",
43
- "plt.ylabel('Sunspot Numbers')\n",
44
- "plt.grid()\n",
45
- "plt.title('Monthly Mean Sunspot Numbers')\n",
46
- "plt.show()"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "id": "9c56e5d1-a019-457b-8313-c5f71b378a5a",
53
- "metadata": {},
54
- "outputs": [],
55
- "source": [
56
- "df.describe().T"
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": null,
62
- "id": "94752ac3-fb85-41c1-94dc-f1a05b0baf75",
63
- "metadata": {},
64
- "outputs": [],
65
- "source": [
66
- "df['Month'] = pd.to_datetime(df['Month'])\n",
67
- "data_new = df.set_index(df['Month'])\n",
68
- "data_new = data_new.drop(labels = ['Month'], axis = 1)\n",
69
- "data_new.head()"
70
- ]
71
- },
72
- {
73
- "cell_type": "code",
74
- "execution_count": null,
75
- "id": "b02c91b4-f7ee-4ce5-b707-6bf2604bed55",
76
- "metadata": {},
77
- "outputs": [],
78
- "source": [
79
- "fig = plt.figure(figsize=(10,8))\n",
80
- "data_new['Sunspots'].plot(style = 'k.')"
81
- ]
82
- },
83
- {
84
- "cell_type": "code",
85
- "execution_count": null,
86
- "id": "dca190cd-41b8-44d5-8ed2-190c87b04fb9",
87
- "metadata": {},
88
- "outputs": [],
89
- "source": [
90
- "data_q = data_new.resample('q').mean()\n",
91
- "data_q.head()"
92
- ]
93
- },
94
- {
95
- "cell_type": "code",
96
- "execution_count": null,
97
- "id": "1f944805-6b99-4854-a7c2-53bf2a6de1c2",
98
- "metadata": {},
99
- "outputs": [],
100
- "source": [
101
- "def adfuller_test(data):\n",
102
- " result = adfuller(data)\n",
103
- " labels = ['ADF Test Statistic' 'P-value', 'Lags Used', 'Number of Observation Used']\n",
104
- " for value, label in zip(result, labels):\n",
105
- " print(label+\": \"+str(value))\n",
106
- " if result[1] <= 0.05:\n",
107
- " print(\"Strong evidencew against the null hypothesis(h0), reject the null hypothesis. Data has no unit root and is stationary\")\n",
108
- " else:\n",
109
- " print(\"Weak evidence against null hypothesis, time series has a unit root, indicating it is non-stationary\")"
110
- ]
111
- },
112
- {
113
- "cell_type": "code",
114
- "execution_count": null,
115
- "id": "1e2740f4-ba2b-4fc4-a310-131b15ae20cb",
116
- "metadata": {},
117
- "outputs": [],
118
- "source": [
119
- "data_q.plot(figsize=(10,8))"
120
- ]
121
- },
122
- {
123
- "cell_type": "code",
124
- "execution_count": null,
125
- "id": "8062e59f-4149-45fc-b2ca-3f586c6ed078",
126
- "metadata": {},
127
- "outputs": [],
128
- "source": [
129
- "base_data = data_q.copy()\n",
130
- "base_data['Monthly Mean Total Sunspot Number'] = base_data['Sunspots']\n",
131
- "base_data['Shifter Monthly Mean Total Sunspot Number'] = base_data['Monthly Mean Total Sunspot Number'].shift(1)"
132
- ]
133
- },
134
- {
135
- "cell_type": "code",
136
- "execution_count": null,
137
- "id": "8232f405-2560-4b9a-870e-8af209ef0f87",
138
- "metadata": {},
139
- "outputs": [],
140
- "source": [
141
- "base_data.head()"
142
- ]
143
- },
144
- {
145
- "cell_type": "code",
146
- "execution_count": null,
147
- "id": "9cb81777-9f8d-4c64-ad4f-7c245454085e",
148
- "metadata": {},
149
- "outputs": [],
150
- "source": [
151
- "base_data[['Monthly Mean Total Sunspot Number', 'Shifter Monthly Mean Total Sunspot Number']].plot()"
152
- ]
153
- },
154
- {
155
- "cell_type": "code",
156
- "execution_count": null,
157
- "id": "1e27fde3-cef9-4366-a972-52a974226d91",
158
- "metadata": {},
159
- "outputs": [],
160
- "source": [
161
- "base_data = base_data.dropna()\n",
162
- "print(\"Mean Squared Error:\", mean_squared_error(base_data['Monthly Mean Total Sunspot Number'], \n",
163
- " base_data['Shifter Monthly Mean Total Sunspot Number']))"
164
- ]
165
- },
166
- {
167
- "cell_type": "code",
168
- "execution_count": null,
169
- "id": "cd01e7eb-5e88-41e8-9ddd-1ea35f054b4b",
170
- "metadata": {},
171
- "outputs": [],
172
- "source": [
173
- "fig = plt.figure(figsize=(10,8))\n",
174
- "autocorrelation_plot(data_q)\n",
175
- "plt.show()"
176
- ]
177
- },
178
- {
179
- "cell_type": "code",
180
- "execution_count": null,
181
- "id": "2d127256-a9cc-431d-95ae-6f8323aa21b7",
182
- "metadata": {},
183
- "outputs": [],
184
- "source": [
185
- "fig = plt.figure(figsize=(10,8))\n",
186
- "ax1 = fig.add_subplot(211)\n",
187
- "fig = sm.graphics.tsa.plot_acf(data_q, lags = 40, ax = ax1)\n",
188
- "ax2 = fig.add_subplot(212)\n",
189
- "fig = sm.graphics.tsa.plot_pacf(data_q, lags = 40, ax = ax2)"
190
- ]
191
- },
192
- {
193
- "cell_type": "code",
194
- "execution_count": null,
195
- "id": "03258c9e-a3b6-465b-98ca-d5cc6a481626",
196
- "metadata": {},
197
- "outputs": [],
198
- "source": [
199
- "model = sm.tsa.statespace.SARIMAX(data_q['Sunspots'], order=(2,0,2), seasonal_order=(2,0,2,6))\n",
200
- "results = model.fit()"
201
- ]
202
- },
203
- {
204
- "cell_type": "code",
205
- "execution_count": null,
206
- "id": "4eb643eb-59ae-475c-9096-87e536da8e62",
207
- "metadata": {},
208
- "outputs": [],
209
- "source": [
210
- "results.summary()"
211
- ]
212
- },
213
- {
214
- "cell_type": "code",
215
- "execution_count": null,
216
- "id": "c2350c09-4c80-4c24-88d8-3b645981ce21",
217
- "metadata": {},
218
- "outputs": [],
219
- "source": [
220
- "data_q['forecast'] = results.predict(start = 1000, end = 1084, dynamic = True)\n",
221
- "data_q[['Sunspots', 'forecast']].plot(figsize = (10,8))"
222
- ]
223
- }
224
- ],
225
- "metadata": {
226
- "kernelspec": {
227
- "display_name": "Python 3 (ipykernel)",
228
- "language": "python",
229
- "name": "python3"
230
- },
231
- "language_info": {
232
- "codemirror_mode": {
233
- "name": "ipython",
234
- "version": 3
235
- },
236
- "file_extension": ".py",
237
- "mimetype": "text/x-python",
238
- "name": "python",
239
- "nbconvert_exporter": "python",
240
- "pygments_lexer": "ipython3",
241
- "version": "3.12.4"
242
- }
243
- },
244
- "nbformat": 4,
245
- "nbformat_minor": 5
246
- }