noshot 0.9.0__py3-none-any.whl → 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,239 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "3d63e9c0",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "import seaborn as sns\n",
14
+ "from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
15
+ "from statsmodels.tsa.stattools import adfuller\n",
16
+ "from statsmodels.tsa.arima.model import ARIMA\n",
17
+ "from statsmodels.tsa.statespace import sarimax\n",
18
+ "from sklearn.metrics import r2_score,mean_squared_error"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": null,
24
+ "id": "411787bc",
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "df=pd.read_csv('data/bill-data.csv')\n",
29
+ "display(df.head())"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "id": "af7abd2d",
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "df['Date']=pd.to_datetime(df['Date'])\n",
40
+ "df"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type": "code",
45
+ "execution_count": null,
46
+ "id": "10b20a75",
47
+ "metadata": {},
48
+ "outputs": [],
49
+ "source": [
50
+ "print(df.isnull().sum())"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": null,
56
+ "id": "d8a439ba",
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "display(df.describe())"
61
+ ]
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": null,
66
+ "id": "d7ef84ea",
67
+ "metadata": {},
68
+ "outputs": [],
69
+ "source": [
70
+ "df.info()"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": null,
76
+ "id": "f79409e8",
77
+ "metadata": {},
78
+ "outputs": [],
79
+ "source": [
80
+ "plt.plot(df['Bill Charge'],label='Bill Charge')\n",
81
+ "plt.xlabel('Date')\n",
82
+ "plt.ylabel(\"Bill Charge\")\n",
83
+ "plt.legend()\n",
84
+ "plt.title('Bill Charge By Date')\n",
85
+ "plt.show()"
86
+ ]
87
+ },
88
+ {
89
+ "cell_type": "code",
90
+ "execution_count": null,
91
+ "id": "fbf0d907",
92
+ "metadata": {},
93
+ "outputs": [],
94
+ "source": [
95
+ "def stationarity_test(data):\n",
96
+ " data=adfuller(data)\n",
97
+ " print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
98
+ "\n",
99
+ "stationarity_test(df['Bill Charge'])"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": null,
105
+ "id": "7965415d",
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "plot_acf(df['Bill Charge'],lags=7)\n",
110
+ "plot_pacf(df['Bill Charge'],lags=7)\n",
111
+ "plt.show()"
112
+ ]
113
+ },
114
+ {
115
+ "cell_type": "code",
116
+ "execution_count": null,
117
+ "id": "7c5c5023",
118
+ "metadata": {},
119
+ "outputs": [],
120
+ "source": [
121
+ "arma_model=ARIMA(df['Bill Charge'],order=(2,0,0))\n",
122
+ "arma_fit=arma_model.fit()\n",
123
+ "display(arma_fit.summary())"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": null,
129
+ "id": "46da16b9",
130
+ "metadata": {},
131
+ "outputs": [],
132
+ "source": [
133
+ "arima_model=ARIMA(df['Bill Charge'],order=(2,1,0))\n",
134
+ "arima_fit=arima_model.fit()\n",
135
+ "display(arima_fit.summary())"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": null,
141
+ "id": "1e629e66",
142
+ "metadata": {},
143
+ "outputs": [],
144
+ "source": [
145
+ "sarima_model=sarimax.SARIMAX(df['Bill Charge'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
146
+ "sarima_fit=sarima_model.fit()\n",
147
+ "display(sarima_fit.summary())"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": null,
153
+ "id": "e3ae7519",
154
+ "metadata": {},
155
+ "outputs": [],
156
+ "source": [
157
+ "display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": null,
163
+ "id": "e9e40bbd",
164
+ "metadata": {},
165
+ "outputs": [],
166
+ "source": [
167
+ "display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
168
+ ]
169
+ },
170
+ {
171
+ "cell_type": "code",
172
+ "execution_count": null,
173
+ "id": "8773dcb6",
174
+ "metadata": {},
175
+ "outputs": [],
176
+ "source": [
177
+ "display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
178
+ ]
179
+ },
180
+ {
181
+ "cell_type": "code",
182
+ "execution_count": null,
183
+ "id": "50ca8a19",
184
+ "metadata": {},
185
+ "outputs": [],
186
+ "source": [
187
+ "sarima_fit.resid.plot(color='teal')\n",
188
+ "plt.title('Residual Plot')\n",
189
+ "plt.show()"
190
+ ]
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "execution_count": null,
195
+ "id": "6b6ddce5",
196
+ "metadata": {},
197
+ "outputs": [],
198
+ "source": [
199
+ "plt.plot(df['Bill Charge'],label='Original',color='blue')\n",
200
+ "plt.plot(sarima_fit.predict(),label='Forecast',color='red')\n",
201
+ "plt.title(\"Forecast\")\n",
202
+ "plt.legend()\n",
203
+ "plt.show()"
204
+ ]
205
+ },
206
+ {
207
+ "cell_type": "code",
208
+ "execution_count": null,
209
+ "id": "d3839c19",
210
+ "metadata": {},
211
+ "outputs": [],
212
+ "source": [
213
+ "print(f\"r2_Score : {r2_score(df['Bill Charge'],sarima_fit.predict())}\")\n",
214
+ "print(f\"Mean Squared Error : {mean_squared_error(df['Bill Charge'],sarima_fit.predict())}\")"
215
+ ]
216
+ }
217
+ ],
218
+ "metadata": {
219
+ "kernelspec": {
220
+ "display_name": "Python 3 (ipykernel)",
221
+ "language": "python",
222
+ "name": "python3"
223
+ },
224
+ "language_info": {
225
+ "codemirror_mode": {
226
+ "name": "ipython",
227
+ "version": 3
228
+ },
229
+ "file_extension": ".py",
230
+ "mimetype": "text/x-python",
231
+ "name": "python",
232
+ "nbconvert_exporter": "python",
233
+ "pygments_lexer": "ipython3",
234
+ "version": "3.12.4"
235
+ }
236
+ },
237
+ "nbformat": 4,
238
+ "nbformat_minor": 5
239
+ }
@@ -0,0 +1,239 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "3d63e9c0",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import pandas as pd\n",
11
+ "import numpy as np\n",
12
+ "import matplotlib.pyplot as plt\n",
13
+ "import seaborn as sns\n",
14
+ "from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
15
+ "from statsmodels.tsa.stattools import adfuller\n",
16
+ "from statsmodels.tsa.arima.model import ARIMA\n",
17
+ "from statsmodels.tsa.statespace import sarimax\n",
18
+ "from sklearn.metrics import r2_score,mean_squared_error"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": null,
24
+ "id": "411787bc",
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "df=pd.read_csv('data/daily-min-temperatures.csv')\n",
29
+ "display(df.head())"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "id": "af7abd2d",
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "df['Date']=pd.to_datetime(df['Date'])\n",
40
+ "df"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type": "code",
45
+ "execution_count": null,
46
+ "id": "10b20a75",
47
+ "metadata": {},
48
+ "outputs": [],
49
+ "source": [
50
+ "print(df.isnull().sum())"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": null,
56
+ "id": "d8a439ba",
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "display(df.describe())"
61
+ ]
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": null,
66
+ "id": "d7ef84ea",
67
+ "metadata": {},
68
+ "outputs": [],
69
+ "source": [
70
+ "df.info()"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": null,
76
+ "id": "f79409e8",
77
+ "metadata": {},
78
+ "outputs": [],
79
+ "source": [
80
+ "plt.plot(df['Temp'],label='Temp')\n",
81
+ "plt.xlabel('Date')\n",
82
+ "plt.ylabel(\"Temp\")\n",
83
+ "plt.legend()\n",
84
+ "plt.title('Temp By Date')\n",
85
+ "plt.show()"
86
+ ]
87
+ },
88
+ {
89
+ "cell_type": "code",
90
+ "execution_count": null,
91
+ "id": "fbf0d907",
92
+ "metadata": {},
93
+ "outputs": [],
94
+ "source": [
95
+ "def stationarity_test(data):\n",
96
+ " data=adfuller(data)\n",
97
+ " print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
98
+ "\n",
99
+ "stationarity_test(df['Temp'])"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": null,
105
+ "id": "7965415d",
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "plot_acf(df['Temp'],lags=7)\n",
110
+ "plot_pacf(df['Temp'],lags=7)\n",
111
+ "plt.show()"
112
+ ]
113
+ },
114
+ {
115
+ "cell_type": "code",
116
+ "execution_count": null,
117
+ "id": "7c5c5023",
118
+ "metadata": {},
119
+ "outputs": [],
120
+ "source": [
121
+ "arma_model=ARIMA(df['Temp'],order=(2,0,0))\n",
122
+ "arma_fit=arma_model.fit()\n",
123
+ "display(arma_fit.summary())"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": null,
129
+ "id": "46da16b9",
130
+ "metadata": {},
131
+ "outputs": [],
132
+ "source": [
133
+ "arima_model=ARIMA(df['Temp'],order=(2,1,0))\n",
134
+ "arima_fit=arima_model.fit()\n",
135
+ "display(arima_fit.summary())"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": null,
141
+ "id": "1e629e66",
142
+ "metadata": {},
143
+ "outputs": [],
144
+ "source": [
145
+ "sarima_model=sarimax.SARIMAX(df['Temp'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
146
+ "sarima_fit=sarima_model.fit()\n",
147
+ "display(sarima_fit.summary())"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": null,
153
+ "id": "e3ae7519",
154
+ "metadata": {},
155
+ "outputs": [],
156
+ "source": [
157
+ "display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": null,
163
+ "id": "e9e40bbd",
164
+ "metadata": {},
165
+ "outputs": [],
166
+ "source": [
167
+ "display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
168
+ ]
169
+ },
170
+ {
171
+ "cell_type": "code",
172
+ "execution_count": null,
173
+ "id": "8773dcb6",
174
+ "metadata": {},
175
+ "outputs": [],
176
+ "source": [
177
+ "display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
178
+ ]
179
+ },
180
+ {
181
+ "cell_type": "code",
182
+ "execution_count": null,
183
+ "id": "50ca8a19",
184
+ "metadata": {},
185
+ "outputs": [],
186
+ "source": [
187
+ "arma_fit.resid.plot(color='teal')\n",
188
+ "plt.title('Residual Plot')\n",
189
+ "plt.show()"
190
+ ]
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "execution_count": null,
195
+ "id": "6b6ddce5",
196
+ "metadata": {},
197
+ "outputs": [],
198
+ "source": [
199
+ "plt.plot(df['Temp'],label='Original',color='blue')\n",
200
+ "plt.plot(arma_fit.predict(),label='Forecast',color='red')\n",
201
+ "plt.title(\"Forecast\")\n",
202
+ "plt.legend()\n",
203
+ "plt.show()"
204
+ ]
205
+ },
206
+ {
207
+ "cell_type": "code",
208
+ "execution_count": null,
209
+ "id": "d3839c19",
210
+ "metadata": {},
211
+ "outputs": [],
212
+ "source": [
213
+ "print(f\"r2_Score : {r2_score(df['Temp'],arma_fit.predict())}\")\n",
214
+ "print(f\"Mean Squared Error : {mean_squared_error(df['Temp'],arma_fit.predict())}\")"
215
+ ]
216
+ }
217
+ ],
218
+ "metadata": {
219
+ "kernelspec": {
220
+ "display_name": "Python 3 (ipykernel)",
221
+ "language": "python",
222
+ "name": "python3"
223
+ },
224
+ "language_info": {
225
+ "codemirror_mode": {
226
+ "name": "ipython",
227
+ "version": 3
228
+ },
229
+ "file_extension": ".py",
230
+ "mimetype": "text/x-python",
231
+ "name": "python",
232
+ "nbconvert_exporter": "python",
233
+ "pygments_lexer": "ipython3",
234
+ "version": "3.12.4"
235
+ }
236
+ },
237
+ "nbformat": 4,
238
+ "nbformat_minor": 5
239
+ }
@@ -0,0 +1,21 @@
1
+ Date,Patient Name,Age,Bill Charge
2
+ 1/1/2023,Bob,33,100.5
3
+ 1/4/2023,Bob,24,250
4
+ 1/7/2023,Bob,56,75
5
+ 1/7/2023,Eve,40,300
6
+ 1/9/2023,Charlie,40,150.5
7
+ 1/10/2023,Charlie,24,200
8
+ 1/11/2023,Bob,40,175
9
+ 1/11/2023,Eve,40,400
10
+ 1/11/2023,Bob,40,120
11
+ 1/12/2023,Charlie,42,180
12
+ 1/14/2023,Charlie,24,90
13
+ 1/17/2023,Alice,33,50
14
+ 1/18/2023,Eve,24,25
15
+ 1/18/2023,Diana,24,75
16
+ 1/20/2023,Eve,40,325
17
+ 1/21/2023,Bob,24,60
18
+ 1/21/2023,Diana,56,60
19
+ 1/26/2023,Bob,42,100
20
+ 1/29/2023,Diana,40,250
21
+ 1/30/2023,Alice,33,40