noshot 0.9.0__py3-none-any.whl → 2.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/TS/bill-charge.ipynb +239 -0
- noshot/data/ML TS XAI/TS/daily-min-temperatures.ipynb +239 -0
- noshot/data/ML TS XAI/TS/data/bill-data.csv +21 -0
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/data/monthly-sunspots.csv +2821 -0
- noshot/data/ML TS XAI/TS/monthly-sunspots.ipynb +241 -0
- {noshot-0.9.0.dist-info → noshot-2.0.0.dist-info}/METADATA +1 -1
- noshot-2.0.0.dist-info/RECORD +15 -0
- {noshot-0.9.0.dist-info → noshot-2.0.0.dist-info}/WHEEL +1 -1
- noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +0 -246
- noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +0 -228
- noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +0 -77
- noshot/data/ML TS XAI/TS/7. Differencing.ipynb +0 -167
- noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +0 -197
- noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +0 -220
- noshot-0.9.0.dist-info/RECORD +0 -15
- {noshot-0.9.0.dist-info → noshot-2.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-0.9.0.dist-info → noshot-2.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,239 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "3d63e9c0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import pandas as pd\n",
|
11
|
+
"import numpy as np\n",
|
12
|
+
"import matplotlib.pyplot as plt\n",
|
13
|
+
"import seaborn as sns\n",
|
14
|
+
"from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
|
15
|
+
"from statsmodels.tsa.stattools import adfuller\n",
|
16
|
+
"from statsmodels.tsa.arima.model import ARIMA\n",
|
17
|
+
"from statsmodels.tsa.statespace import sarimax\n",
|
18
|
+
"from sklearn.metrics import r2_score,mean_squared_error"
|
19
|
+
]
|
20
|
+
},
|
21
|
+
{
|
22
|
+
"cell_type": "code",
|
23
|
+
"execution_count": null,
|
24
|
+
"id": "411787bc",
|
25
|
+
"metadata": {},
|
26
|
+
"outputs": [],
|
27
|
+
"source": [
|
28
|
+
"df=pd.read_csv('data/bill-data.csv')\n",
|
29
|
+
"display(df.head())"
|
30
|
+
]
|
31
|
+
},
|
32
|
+
{
|
33
|
+
"cell_type": "code",
|
34
|
+
"execution_count": null,
|
35
|
+
"id": "af7abd2d",
|
36
|
+
"metadata": {},
|
37
|
+
"outputs": [],
|
38
|
+
"source": [
|
39
|
+
"df['Date']=pd.to_datetime(df['Date'])\n",
|
40
|
+
"df"
|
41
|
+
]
|
42
|
+
},
|
43
|
+
{
|
44
|
+
"cell_type": "code",
|
45
|
+
"execution_count": null,
|
46
|
+
"id": "10b20a75",
|
47
|
+
"metadata": {},
|
48
|
+
"outputs": [],
|
49
|
+
"source": [
|
50
|
+
"print(df.isnull().sum())"
|
51
|
+
]
|
52
|
+
},
|
53
|
+
{
|
54
|
+
"cell_type": "code",
|
55
|
+
"execution_count": null,
|
56
|
+
"id": "d8a439ba",
|
57
|
+
"metadata": {},
|
58
|
+
"outputs": [],
|
59
|
+
"source": [
|
60
|
+
"display(df.describe())"
|
61
|
+
]
|
62
|
+
},
|
63
|
+
{
|
64
|
+
"cell_type": "code",
|
65
|
+
"execution_count": null,
|
66
|
+
"id": "d7ef84ea",
|
67
|
+
"metadata": {},
|
68
|
+
"outputs": [],
|
69
|
+
"source": [
|
70
|
+
"df.info()"
|
71
|
+
]
|
72
|
+
},
|
73
|
+
{
|
74
|
+
"cell_type": "code",
|
75
|
+
"execution_count": null,
|
76
|
+
"id": "f79409e8",
|
77
|
+
"metadata": {},
|
78
|
+
"outputs": [],
|
79
|
+
"source": [
|
80
|
+
"plt.plot(df['Bill Charge'],label='Bill Charge')\n",
|
81
|
+
"plt.xlabel('Date')\n",
|
82
|
+
"plt.ylabel(\"Bill Charge\")\n",
|
83
|
+
"plt.legend()\n",
|
84
|
+
"plt.title('Bill Charge By Date')\n",
|
85
|
+
"plt.show()"
|
86
|
+
]
|
87
|
+
},
|
88
|
+
{
|
89
|
+
"cell_type": "code",
|
90
|
+
"execution_count": null,
|
91
|
+
"id": "fbf0d907",
|
92
|
+
"metadata": {},
|
93
|
+
"outputs": [],
|
94
|
+
"source": [
|
95
|
+
"def stationarity_test(data):\n",
|
96
|
+
" data=adfuller(data)\n",
|
97
|
+
" print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
|
98
|
+
"\n",
|
99
|
+
"stationarity_test(df['Bill Charge'])"
|
100
|
+
]
|
101
|
+
},
|
102
|
+
{
|
103
|
+
"cell_type": "code",
|
104
|
+
"execution_count": null,
|
105
|
+
"id": "7965415d",
|
106
|
+
"metadata": {},
|
107
|
+
"outputs": [],
|
108
|
+
"source": [
|
109
|
+
"plot_acf(df['Bill Charge'],lags=7)\n",
|
110
|
+
"plot_pacf(df['Bill Charge'],lags=7)\n",
|
111
|
+
"plt.show()"
|
112
|
+
]
|
113
|
+
},
|
114
|
+
{
|
115
|
+
"cell_type": "code",
|
116
|
+
"execution_count": null,
|
117
|
+
"id": "7c5c5023",
|
118
|
+
"metadata": {},
|
119
|
+
"outputs": [],
|
120
|
+
"source": [
|
121
|
+
"arma_model=ARIMA(df['Bill Charge'],order=(2,0,0))\n",
|
122
|
+
"arma_fit=arma_model.fit()\n",
|
123
|
+
"display(arma_fit.summary())"
|
124
|
+
]
|
125
|
+
},
|
126
|
+
{
|
127
|
+
"cell_type": "code",
|
128
|
+
"execution_count": null,
|
129
|
+
"id": "46da16b9",
|
130
|
+
"metadata": {},
|
131
|
+
"outputs": [],
|
132
|
+
"source": [
|
133
|
+
"arima_model=ARIMA(df['Bill Charge'],order=(2,1,0))\n",
|
134
|
+
"arima_fit=arima_model.fit()\n",
|
135
|
+
"display(arima_fit.summary())"
|
136
|
+
]
|
137
|
+
},
|
138
|
+
{
|
139
|
+
"cell_type": "code",
|
140
|
+
"execution_count": null,
|
141
|
+
"id": "1e629e66",
|
142
|
+
"metadata": {},
|
143
|
+
"outputs": [],
|
144
|
+
"source": [
|
145
|
+
"sarima_model=sarimax.SARIMAX(df['Bill Charge'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
|
146
|
+
"sarima_fit=sarima_model.fit()\n",
|
147
|
+
"display(sarima_fit.summary())"
|
148
|
+
]
|
149
|
+
},
|
150
|
+
{
|
151
|
+
"cell_type": "code",
|
152
|
+
"execution_count": null,
|
153
|
+
"id": "e3ae7519",
|
154
|
+
"metadata": {},
|
155
|
+
"outputs": [],
|
156
|
+
"source": [
|
157
|
+
"display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
|
158
|
+
]
|
159
|
+
},
|
160
|
+
{
|
161
|
+
"cell_type": "code",
|
162
|
+
"execution_count": null,
|
163
|
+
"id": "e9e40bbd",
|
164
|
+
"metadata": {},
|
165
|
+
"outputs": [],
|
166
|
+
"source": [
|
167
|
+
"display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
|
168
|
+
]
|
169
|
+
},
|
170
|
+
{
|
171
|
+
"cell_type": "code",
|
172
|
+
"execution_count": null,
|
173
|
+
"id": "8773dcb6",
|
174
|
+
"metadata": {},
|
175
|
+
"outputs": [],
|
176
|
+
"source": [
|
177
|
+
"display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
|
178
|
+
]
|
179
|
+
},
|
180
|
+
{
|
181
|
+
"cell_type": "code",
|
182
|
+
"execution_count": null,
|
183
|
+
"id": "50ca8a19",
|
184
|
+
"metadata": {},
|
185
|
+
"outputs": [],
|
186
|
+
"source": [
|
187
|
+
"sarima_fit.resid.plot(color='teal')\n",
|
188
|
+
"plt.title('Residual Plot')\n",
|
189
|
+
"plt.show()"
|
190
|
+
]
|
191
|
+
},
|
192
|
+
{
|
193
|
+
"cell_type": "code",
|
194
|
+
"execution_count": null,
|
195
|
+
"id": "6b6ddce5",
|
196
|
+
"metadata": {},
|
197
|
+
"outputs": [],
|
198
|
+
"source": [
|
199
|
+
"plt.plot(df['Bill Charge'],label='Original',color='blue')\n",
|
200
|
+
"plt.plot(sarima_fit.predict(),label='Forecast',color='red')\n",
|
201
|
+
"plt.title(\"Forecast\")\n",
|
202
|
+
"plt.legend()\n",
|
203
|
+
"plt.show()"
|
204
|
+
]
|
205
|
+
},
|
206
|
+
{
|
207
|
+
"cell_type": "code",
|
208
|
+
"execution_count": null,
|
209
|
+
"id": "d3839c19",
|
210
|
+
"metadata": {},
|
211
|
+
"outputs": [],
|
212
|
+
"source": [
|
213
|
+
"print(f\"r2_Score : {r2_score(df['Bill Charge'],sarima_fit.predict())}\")\n",
|
214
|
+
"print(f\"Mean Squared Error : {mean_squared_error(df['Bill Charge'],sarima_fit.predict())}\")"
|
215
|
+
]
|
216
|
+
}
|
217
|
+
],
|
218
|
+
"metadata": {
|
219
|
+
"kernelspec": {
|
220
|
+
"display_name": "Python 3 (ipykernel)",
|
221
|
+
"language": "python",
|
222
|
+
"name": "python3"
|
223
|
+
},
|
224
|
+
"language_info": {
|
225
|
+
"codemirror_mode": {
|
226
|
+
"name": "ipython",
|
227
|
+
"version": 3
|
228
|
+
},
|
229
|
+
"file_extension": ".py",
|
230
|
+
"mimetype": "text/x-python",
|
231
|
+
"name": "python",
|
232
|
+
"nbconvert_exporter": "python",
|
233
|
+
"pygments_lexer": "ipython3",
|
234
|
+
"version": "3.12.4"
|
235
|
+
}
|
236
|
+
},
|
237
|
+
"nbformat": 4,
|
238
|
+
"nbformat_minor": 5
|
239
|
+
}
|
@@ -0,0 +1,239 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "3d63e9c0",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import pandas as pd\n",
|
11
|
+
"import numpy as np\n",
|
12
|
+
"import matplotlib.pyplot as plt\n",
|
13
|
+
"import seaborn as sns\n",
|
14
|
+
"from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
|
15
|
+
"from statsmodels.tsa.stattools import adfuller\n",
|
16
|
+
"from statsmodels.tsa.arima.model import ARIMA\n",
|
17
|
+
"from statsmodels.tsa.statespace import sarimax\n",
|
18
|
+
"from sklearn.metrics import r2_score,mean_squared_error"
|
19
|
+
]
|
20
|
+
},
|
21
|
+
{
|
22
|
+
"cell_type": "code",
|
23
|
+
"execution_count": null,
|
24
|
+
"id": "411787bc",
|
25
|
+
"metadata": {},
|
26
|
+
"outputs": [],
|
27
|
+
"source": [
|
28
|
+
"df=pd.read_csv('data/daily-min-temperatures.csv')\n",
|
29
|
+
"display(df.head())"
|
30
|
+
]
|
31
|
+
},
|
32
|
+
{
|
33
|
+
"cell_type": "code",
|
34
|
+
"execution_count": null,
|
35
|
+
"id": "af7abd2d",
|
36
|
+
"metadata": {},
|
37
|
+
"outputs": [],
|
38
|
+
"source": [
|
39
|
+
"df['Date']=pd.to_datetime(df['Date'])\n",
|
40
|
+
"df"
|
41
|
+
]
|
42
|
+
},
|
43
|
+
{
|
44
|
+
"cell_type": "code",
|
45
|
+
"execution_count": null,
|
46
|
+
"id": "10b20a75",
|
47
|
+
"metadata": {},
|
48
|
+
"outputs": [],
|
49
|
+
"source": [
|
50
|
+
"print(df.isnull().sum())"
|
51
|
+
]
|
52
|
+
},
|
53
|
+
{
|
54
|
+
"cell_type": "code",
|
55
|
+
"execution_count": null,
|
56
|
+
"id": "d8a439ba",
|
57
|
+
"metadata": {},
|
58
|
+
"outputs": [],
|
59
|
+
"source": [
|
60
|
+
"display(df.describe())"
|
61
|
+
]
|
62
|
+
},
|
63
|
+
{
|
64
|
+
"cell_type": "code",
|
65
|
+
"execution_count": null,
|
66
|
+
"id": "d7ef84ea",
|
67
|
+
"metadata": {},
|
68
|
+
"outputs": [],
|
69
|
+
"source": [
|
70
|
+
"df.info()"
|
71
|
+
]
|
72
|
+
},
|
73
|
+
{
|
74
|
+
"cell_type": "code",
|
75
|
+
"execution_count": null,
|
76
|
+
"id": "f79409e8",
|
77
|
+
"metadata": {},
|
78
|
+
"outputs": [],
|
79
|
+
"source": [
|
80
|
+
"plt.plot(df['Temp'],label='Temp')\n",
|
81
|
+
"plt.xlabel('Date')\n",
|
82
|
+
"plt.ylabel(\"Temp\")\n",
|
83
|
+
"plt.legend()\n",
|
84
|
+
"plt.title('Temp By Date')\n",
|
85
|
+
"plt.show()"
|
86
|
+
]
|
87
|
+
},
|
88
|
+
{
|
89
|
+
"cell_type": "code",
|
90
|
+
"execution_count": null,
|
91
|
+
"id": "fbf0d907",
|
92
|
+
"metadata": {},
|
93
|
+
"outputs": [],
|
94
|
+
"source": [
|
95
|
+
"def stationarity_test(data):\n",
|
96
|
+
" data=adfuller(data)\n",
|
97
|
+
" print(f'Result : The Data is {\"not\" if data[1]<0.05 else \"\"} Stationary')\n",
|
98
|
+
"\n",
|
99
|
+
"stationarity_test(df['Temp'])"
|
100
|
+
]
|
101
|
+
},
|
102
|
+
{
|
103
|
+
"cell_type": "code",
|
104
|
+
"execution_count": null,
|
105
|
+
"id": "7965415d",
|
106
|
+
"metadata": {},
|
107
|
+
"outputs": [],
|
108
|
+
"source": [
|
109
|
+
"plot_acf(df['Temp'],lags=7)\n",
|
110
|
+
"plot_pacf(df['Temp'],lags=7)\n",
|
111
|
+
"plt.show()"
|
112
|
+
]
|
113
|
+
},
|
114
|
+
{
|
115
|
+
"cell_type": "code",
|
116
|
+
"execution_count": null,
|
117
|
+
"id": "7c5c5023",
|
118
|
+
"metadata": {},
|
119
|
+
"outputs": [],
|
120
|
+
"source": [
|
121
|
+
"arma_model=ARIMA(df['Temp'],order=(2,0,0))\n",
|
122
|
+
"arma_fit=arma_model.fit()\n",
|
123
|
+
"display(arma_fit.summary())"
|
124
|
+
]
|
125
|
+
},
|
126
|
+
{
|
127
|
+
"cell_type": "code",
|
128
|
+
"execution_count": null,
|
129
|
+
"id": "46da16b9",
|
130
|
+
"metadata": {},
|
131
|
+
"outputs": [],
|
132
|
+
"source": [
|
133
|
+
"arima_model=ARIMA(df['Temp'],order=(2,1,0))\n",
|
134
|
+
"arima_fit=arima_model.fit()\n",
|
135
|
+
"display(arima_fit.summary())"
|
136
|
+
]
|
137
|
+
},
|
138
|
+
{
|
139
|
+
"cell_type": "code",
|
140
|
+
"execution_count": null,
|
141
|
+
"id": "1e629e66",
|
142
|
+
"metadata": {},
|
143
|
+
"outputs": [],
|
144
|
+
"source": [
|
145
|
+
"sarima_model=sarimax.SARIMAX(df['Temp'],order=(1,1,0),seasonal_order=(1,2,0,4))\n",
|
146
|
+
"sarima_fit=sarima_model.fit()\n",
|
147
|
+
"display(sarima_fit.summary())"
|
148
|
+
]
|
149
|
+
},
|
150
|
+
{
|
151
|
+
"cell_type": "code",
|
152
|
+
"execution_count": null,
|
153
|
+
"id": "e3ae7519",
|
154
|
+
"metadata": {},
|
155
|
+
"outputs": [],
|
156
|
+
"source": [
|
157
|
+
"display(arma_fit.aic,arima_fit.aic,sarima_fit.aic)"
|
158
|
+
]
|
159
|
+
},
|
160
|
+
{
|
161
|
+
"cell_type": "code",
|
162
|
+
"execution_count": null,
|
163
|
+
"id": "e9e40bbd",
|
164
|
+
"metadata": {},
|
165
|
+
"outputs": [],
|
166
|
+
"source": [
|
167
|
+
"display(arma_fit.bic,arima_fit.bic,sarima_fit.bic)"
|
168
|
+
]
|
169
|
+
},
|
170
|
+
{
|
171
|
+
"cell_type": "code",
|
172
|
+
"execution_count": null,
|
173
|
+
"id": "8773dcb6",
|
174
|
+
"metadata": {},
|
175
|
+
"outputs": [],
|
176
|
+
"source": [
|
177
|
+
"display(arma_fit.hqic,arima_fit.hqic,sarima_fit.hqic)"
|
178
|
+
]
|
179
|
+
},
|
180
|
+
{
|
181
|
+
"cell_type": "code",
|
182
|
+
"execution_count": null,
|
183
|
+
"id": "50ca8a19",
|
184
|
+
"metadata": {},
|
185
|
+
"outputs": [],
|
186
|
+
"source": [
|
187
|
+
"arma_fit.resid.plot(color='teal')\n",
|
188
|
+
"plt.title('Residual Plot')\n",
|
189
|
+
"plt.show()"
|
190
|
+
]
|
191
|
+
},
|
192
|
+
{
|
193
|
+
"cell_type": "code",
|
194
|
+
"execution_count": null,
|
195
|
+
"id": "6b6ddce5",
|
196
|
+
"metadata": {},
|
197
|
+
"outputs": [],
|
198
|
+
"source": [
|
199
|
+
"plt.plot(df['Temp'],label='Original',color='blue')\n",
|
200
|
+
"plt.plot(arma_fit.predict(),label='Forecast',color='red')\n",
|
201
|
+
"plt.title(\"Forecast\")\n",
|
202
|
+
"plt.legend()\n",
|
203
|
+
"plt.show()"
|
204
|
+
]
|
205
|
+
},
|
206
|
+
{
|
207
|
+
"cell_type": "code",
|
208
|
+
"execution_count": null,
|
209
|
+
"id": "d3839c19",
|
210
|
+
"metadata": {},
|
211
|
+
"outputs": [],
|
212
|
+
"source": [
|
213
|
+
"print(f\"r2_Score : {r2_score(df['Temp'],arma_fit.predict())}\")\n",
|
214
|
+
"print(f\"Mean Squared Error : {mean_squared_error(df['Temp'],arma_fit.predict())}\")"
|
215
|
+
]
|
216
|
+
}
|
217
|
+
],
|
218
|
+
"metadata": {
|
219
|
+
"kernelspec": {
|
220
|
+
"display_name": "Python 3 (ipykernel)",
|
221
|
+
"language": "python",
|
222
|
+
"name": "python3"
|
223
|
+
},
|
224
|
+
"language_info": {
|
225
|
+
"codemirror_mode": {
|
226
|
+
"name": "ipython",
|
227
|
+
"version": 3
|
228
|
+
},
|
229
|
+
"file_extension": ".py",
|
230
|
+
"mimetype": "text/x-python",
|
231
|
+
"name": "python",
|
232
|
+
"nbconvert_exporter": "python",
|
233
|
+
"pygments_lexer": "ipython3",
|
234
|
+
"version": "3.12.4"
|
235
|
+
}
|
236
|
+
},
|
237
|
+
"nbformat": 4,
|
238
|
+
"nbformat_minor": 5
|
239
|
+
}
|
@@ -0,0 +1,21 @@
|
|
1
|
+
Date,Patient Name,Age,Bill Charge
|
2
|
+
1/1/2023,Bob,33,100.5
|
3
|
+
1/4/2023,Bob,24,250
|
4
|
+
1/7/2023,Bob,56,75
|
5
|
+
1/7/2023,Eve,40,300
|
6
|
+
1/9/2023,Charlie,40,150.5
|
7
|
+
1/10/2023,Charlie,24,200
|
8
|
+
1/11/2023,Bob,40,175
|
9
|
+
1/11/2023,Eve,40,400
|
10
|
+
1/11/2023,Bob,40,120
|
11
|
+
1/12/2023,Charlie,42,180
|
12
|
+
1/14/2023,Charlie,24,90
|
13
|
+
1/17/2023,Alice,33,50
|
14
|
+
1/18/2023,Eve,24,25
|
15
|
+
1/18/2023,Diana,24,75
|
16
|
+
1/20/2023,Eve,40,325
|
17
|
+
1/21/2023,Bob,24,60
|
18
|
+
1/21/2023,Diana,56,60
|
19
|
+
1/26/2023,Bob,42,100
|
20
|
+
1/29/2023,Diana,40,250
|
21
|
+
1/30/2023,Alice,33,40
|