noshot 0.3.9__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +535 -0
- noshot/data/ML TS XAI/Football Player/4.ipynb +395 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +1 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +886 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +292 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +1 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +546 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +921 -0
- {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/METADATA +1 -1
- noshot-0.4.0.dist-info/RECORD +48 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
- noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
- noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
- noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
- noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
- noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
- noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
- noshot-0.3.9.dist-info/RECORD +0 -62
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/1.ipynb +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/Question.txt +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/airfoil_self_noise.dat +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/2.ipynb +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/Question.txt +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/pop_failures.dat +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/3.ipynb +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/Qu.txt +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/go_track_tracks.csv +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/4.ipynb +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/Wilt.csv +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/qu.txt +0 -0
- {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/LICENSE.txt +0 -0
- {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/WHEEL +0 -0
- {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/top_level.txt +0 -0
@@ -1,213 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "8c277840-b16a-423e-9f4f-f3b803c2c2ee",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import seaborn as sns\n",
|
14
|
-
"from statsmodels.tsa.stattools import adfuller, kpss\n",
|
15
|
-
"from statsmodels.graphics.tsaplots import plot_acf, plot_pacf"
|
16
|
-
]
|
17
|
-
},
|
18
|
-
{
|
19
|
-
"cell_type": "code",
|
20
|
-
"execution_count": null,
|
21
|
-
"id": "9eb2b98c-9f4b-4f11-8773-ab7288365a2c",
|
22
|
-
"metadata": {},
|
23
|
-
"outputs": [],
|
24
|
-
"source": [
|
25
|
-
"import warnings\n",
|
26
|
-
"warnings.filterwarnings('ignore')"
|
27
|
-
]
|
28
|
-
},
|
29
|
-
{
|
30
|
-
"cell_type": "code",
|
31
|
-
"execution_count": null,
|
32
|
-
"id": "6a81c3aa-f769-4e32-b02c-1e4976f7f1a4",
|
33
|
-
"metadata": {},
|
34
|
-
"outputs": [],
|
35
|
-
"source": [
|
36
|
-
"file_path = \"shampoo_sales.csv\"\n",
|
37
|
-
"shampoo_data = pd.read_csv(file_path)\n",
|
38
|
-
"\n",
|
39
|
-
"shampoo_data['Date'] = pd.to_datetime(shampoo_data['Month'], format=\"%m-%y\")\n",
|
40
|
-
"shampoo_data.set_index('Date', inplace=True)\n",
|
41
|
-
"shampoo_data.drop(columns=['Month'], inplace=True)\n",
|
42
|
-
"shampoo_data.head()"
|
43
|
-
]
|
44
|
-
},
|
45
|
-
{
|
46
|
-
"cell_type": "code",
|
47
|
-
"execution_count": null,
|
48
|
-
"id": "448b1106-37c9-43b8-9b79-fd370c2046c6",
|
49
|
-
"metadata": {},
|
50
|
-
"outputs": [],
|
51
|
-
"source": [
|
52
|
-
"print(shampoo_data.info())\n",
|
53
|
-
"print(shampoo_data.describe())"
|
54
|
-
]
|
55
|
-
},
|
56
|
-
{
|
57
|
-
"cell_type": "code",
|
58
|
-
"execution_count": null,
|
59
|
-
"id": "a63051e2-dc07-433c-a473-d6529d40b374",
|
60
|
-
"metadata": {},
|
61
|
-
"outputs": [],
|
62
|
-
"source": [
|
63
|
-
"plt.figure(figsize=(10, 5))\n",
|
64
|
-
"plt.plot(shampoo_data['Sales'], marker='o', linestyle='-')\n",
|
65
|
-
"plt.title(\"Shampoo Sales Over Time\")\n",
|
66
|
-
"plt.show()"
|
67
|
-
]
|
68
|
-
},
|
69
|
-
{
|
70
|
-
"cell_type": "code",
|
71
|
-
"execution_count": null,
|
72
|
-
"id": "49fb7080-639b-4bba-a96f-0afe16fae498",
|
73
|
-
"metadata": {},
|
74
|
-
"outputs": [],
|
75
|
-
"source": [
|
76
|
-
"plt.scatter(shampoo_data.index, shampoo_data['Sales'])\n",
|
77
|
-
"plt.title(\"Scatter Plot of Shampoo Sales\")\n",
|
78
|
-
"plt.show()"
|
79
|
-
]
|
80
|
-
},
|
81
|
-
{
|
82
|
-
"cell_type": "code",
|
83
|
-
"execution_count": null,
|
84
|
-
"id": "90c8cac6-eb8b-4352-a644-0511715e3a38",
|
85
|
-
"metadata": {},
|
86
|
-
"outputs": [],
|
87
|
-
"source": [
|
88
|
-
"plot_acf(shampoo_data['Sales'])\n",
|
89
|
-
"plt.show()\n",
|
90
|
-
"\n",
|
91
|
-
"plot_pacf(shampoo_data['Sales'])\n",
|
92
|
-
"plt.show()"
|
93
|
-
]
|
94
|
-
},
|
95
|
-
{
|
96
|
-
"cell_type": "code",
|
97
|
-
"execution_count": null,
|
98
|
-
"id": "4e996648-7825-45cb-812a-628c53a16c4a",
|
99
|
-
"metadata": {},
|
100
|
-
"outputs": [],
|
101
|
-
"source": [
|
102
|
-
"plt.figure(figsize=(8, 5))\n",
|
103
|
-
"sns.histplot(shampoo_data['Sales'], bins=20, kde=True, edgecolor='black')\n",
|
104
|
-
"plt.title(\"Histogram of Shampoo Sales\")\n",
|
105
|
-
"plt.show()"
|
106
|
-
]
|
107
|
-
},
|
108
|
-
{
|
109
|
-
"cell_type": "code",
|
110
|
-
"execution_count": null,
|
111
|
-
"id": "17b1e87a-bd61-4a01-851d-41527be0b032",
|
112
|
-
"metadata": {},
|
113
|
-
"outputs": [],
|
114
|
-
"source": [
|
115
|
-
"sns.kdeplot(shampoo_data['Sales'], fill=True)\n",
|
116
|
-
"plt.title(\"Density Plot of Shampoo Sales\")\n",
|
117
|
-
"plt.show()"
|
118
|
-
]
|
119
|
-
},
|
120
|
-
{
|
121
|
-
"cell_type": "code",
|
122
|
-
"execution_count": null,
|
123
|
-
"id": "10c9d944-fe80-43a0-9300-4cb8ea57d5d3",
|
124
|
-
"metadata": {},
|
125
|
-
"outputs": [],
|
126
|
-
"source": [
|
127
|
-
"plt.figure(figsize=(8, 6))\n",
|
128
|
-
"sns.heatmap(shampoo_data.corr(), annot=True, cmap='coolwarm')\n",
|
129
|
-
"plt.title(\"Correlation Heatmap\")\n",
|
130
|
-
"plt.show()"
|
131
|
-
]
|
132
|
-
},
|
133
|
-
{
|
134
|
-
"cell_type": "code",
|
135
|
-
"execution_count": null,
|
136
|
-
"id": "c77ab9ee-e024-4f5b-b7bf-db2332496f83",
|
137
|
-
"metadata": {},
|
138
|
-
"outputs": [],
|
139
|
-
"source": [
|
140
|
-
"upsampled = shampoo_data.resample('D').interpolate(method='linear')\n",
|
141
|
-
"\n",
|
142
|
-
"plt.figure(figsize=(12, 5))\n",
|
143
|
-
"plt.plot(upsampled['Sales'], label='Linear Interpolation', color='blue')\n",
|
144
|
-
"plt.title(\"Upsampled Data (Daily)\")\n",
|
145
|
-
"plt.legend()\n",
|
146
|
-
"plt.show()"
|
147
|
-
]
|
148
|
-
},
|
149
|
-
{
|
150
|
-
"cell_type": "code",
|
151
|
-
"execution_count": null,
|
152
|
-
"id": "65cbf554-b568-4841-8572-5454723505a2",
|
153
|
-
"metadata": {},
|
154
|
-
"outputs": [],
|
155
|
-
"source": [
|
156
|
-
"upsampled_quadratic = shampoo_data.resample('D').interpolate(method='quadratic')\n",
|
157
|
-
"\n",
|
158
|
-
"plt.figure(figsize=(12, 5))\n",
|
159
|
-
"plt.plot(upsampled_quadratic['Sales'], label='Quadratic Interpolation', color='red')\n",
|
160
|
-
"plt.title(\"Upsampled Data (Quadratic)\")\n",
|
161
|
-
"plt.legend()\n",
|
162
|
-
"plt.show()"
|
163
|
-
]
|
164
|
-
},
|
165
|
-
{
|
166
|
-
"cell_type": "code",
|
167
|
-
"execution_count": null,
|
168
|
-
"id": "0cb91482-23cb-45f1-8dc9-bf6def1f1383",
|
169
|
-
"metadata": {},
|
170
|
-
"outputs": [],
|
171
|
-
"source": [
|
172
|
-
"def adf_test(series):\n",
|
173
|
-
" result = adfuller(series.dropna())\n",
|
174
|
-
" print(\"ADF Statistic:\", result[0])\n",
|
175
|
-
" print(\"p-value:\", result[1])\n",
|
176
|
-
" print(\"Stationary\" if result[1] < 0.05 else \"Non-Stationary\")\n",
|
177
|
-
"\n",
|
178
|
-
"print(\"\\nADF Test Results:\")\n",
|
179
|
-
"adf_test(shampoo_data['Sales'])\n",
|
180
|
-
"\n",
|
181
|
-
"def kpss_test(series):\n",
|
182
|
-
" result = kpss(series.dropna(), regression='c')\n",
|
183
|
-
" print(\"KPSS Statistic:\", result[0])\n",
|
184
|
-
" print(\"p-value:\", result[1])\n",
|
185
|
-
" print(\"Stationary\" if result[1] > 0.05 else \"Non-Stationary\")\n",
|
186
|
-
"\n",
|
187
|
-
"print(\"\\nKPSS Test Results:\")\n",
|
188
|
-
"kpss_test(shampoo_data['Sales'])"
|
189
|
-
]
|
190
|
-
}
|
191
|
-
],
|
192
|
-
"metadata": {
|
193
|
-
"kernelspec": {
|
194
|
-
"display_name": "Python 3 (ipykernel)",
|
195
|
-
"language": "python",
|
196
|
-
"name": "python3"
|
197
|
-
},
|
198
|
-
"language_info": {
|
199
|
-
"codemirror_mode": {
|
200
|
-
"name": "ipython",
|
201
|
-
"version": 3
|
202
|
-
},
|
203
|
-
"file_extension": ".py",
|
204
|
-
"mimetype": "text/x-python",
|
205
|
-
"name": "python",
|
206
|
-
"nbconvert_exporter": "python",
|
207
|
-
"pygments_lexer": "ipython3",
|
208
|
-
"version": "3.12.4"
|
209
|
-
}
|
210
|
-
},
|
211
|
-
"nbformat": 4,
|
212
|
-
"nbformat_minor": 5
|
213
|
-
}
|
@@ -1,37 +0,0 @@
|
|
1
|
-
"Month","Sales"
|
2
|
-
"1-01",266.0
|
3
|
-
"1-02",145.9
|
4
|
-
"1-03",183.1
|
5
|
-
"1-04",119.3
|
6
|
-
"1-05",180.3
|
7
|
-
"1-06",168.5
|
8
|
-
"1-07",231.8
|
9
|
-
"1-08",224.5
|
10
|
-
"1-09",192.8
|
11
|
-
"1-10",122.9
|
12
|
-
"1-11",336.5
|
13
|
-
"1-12",185.9
|
14
|
-
"2-01",194.3
|
15
|
-
"2-02",149.5
|
16
|
-
"2-03",210.1
|
17
|
-
"2-04",273.3
|
18
|
-
"2-05",191.4
|
19
|
-
"2-06",287.0
|
20
|
-
"2-07",226.0
|
21
|
-
"2-08",303.6
|
22
|
-
"2-09",289.9
|
23
|
-
"2-10",421.6
|
24
|
-
"2-11",264.5
|
25
|
-
"2-12",342.3
|
26
|
-
"3-01",339.7
|
27
|
-
"3-02",440.4
|
28
|
-
"3-03",315.9
|
29
|
-
"3-04",439.3
|
30
|
-
"3-05",401.3
|
31
|
-
"3-06",437.4
|
32
|
-
"3-07",575.5
|
33
|
-
"3-08",407.6
|
34
|
-
"3-09",682.0
|
35
|
-
"3-10",475.3
|
36
|
-
"3-11",581.3
|
37
|
-
"3-12",646.9
|
Binary file
|
noshot-0.3.9.dist-info/RECORD
DELETED
@@ -1,62 +0,0 @@
|
|
1
|
-
noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
|
2
|
-
noshot/main.py,sha256=6gU5gZ5csHxJQ7H-YyWVkW51hJIZdV9cqsPBDTjFo9s,645
|
3
|
-
noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb,sha256=YHOR8PEU-UZDbOnYfY8RXWlKWPmAylk8JjyCNXGJDWs,4951
|
4
|
-
noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb,sha256=Z-s44hC240B3ZQL4LHVhh6kdec8zbc9WXntA6rmu2gc,7705
|
5
|
-
noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb,sha256=S7lovIZpIxK2rSUa201DQwnbBfVFN99R0v03nFq1amI,2218
|
6
|
-
noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb,sha256=F3DQAZf_2omM8fBeWfkadzdbvrzh6dlRoeG6vqbqJgg,3152
|
7
|
-
noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb,sha256=QUJd2YY0dR8QncLM2_IgfGOJRJnIH1rBIV9XD8kY2ZY,3766
|
8
|
-
noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb,sha256=O1FCVYpuPBNe33vO2eRmKghvnehMe_rIup1djnzrDJY,2003
|
9
|
-
noshot/data/ML TS XAI/ML/data/balance-scale.csv,sha256=TIXuC522eeShSGKEzpVdslBH-7pj-iElyk1J0LQfp3k,6315
|
10
|
-
noshot/data/ML TS XAI/ML/data/balance-scale.txt,sha256=_QWQ4ru9MWCeh_4x372ev6Ipg5oOeUcGFH_2Jp0QA9E,6249
|
11
|
-
noshot/data/ML TS XAI/ML/data/machine-data.csv,sha256=poHH1NKX94SE7hyRTX7Gug4fWdAHRY4SnUNwYg_B1TQ,8746
|
12
|
-
noshot/data/ML TS XAI/ML/data/wine-dataset.csv,sha256=zYAVj609HiA9YdrkIkJiCwLdX5GOY3tfCDgeOefPUgQ,12261
|
13
|
-
noshot/data/ML TS XAI/ML Additional/Bank.ipynb,sha256=PX9-mjUbYAtRNgXPg-t3nzeq3Hat3Fm3LZxpAgy-yek,2332
|
14
|
-
noshot/data/ML TS XAI/ML Additional/LR.ipynb,sha256=d1t6_xphPFCAMikhaAZK2f63rSIEJVH3NQpPshHw--E,2050
|
15
|
-
noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv,sha256=ti4escjJgTeb7iPjnjVoP1RVaDvXctxyKCcVjd6Smh8,261534
|
16
|
-
noshot/data/ML TS XAI/ML Additional/Q4 LR.csv,sha256=LRgNqCbNasyiVsTnl76sCq5bSzf7t3SvwbkK6DGcW2U,26511
|
17
|
-
noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv,sha256=u0Wt2R1OAocPzeKO5PkTt4JopapgUej74sPhYBBAQ1U,4887557
|
18
|
-
noshot/data/ML TS XAI/ML Additional/airfoil.ipynb,sha256=P7xJDaG0gr7y6RoaCzW-2izjgetesGXPtFcRts1Hkes,2115
|
19
|
-
noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat,sha256=EO4G5s-yfa5rRCE9Qh0hcBL7H5tpdZLnOk5AFrUtQl8,58481
|
20
|
-
noshot/data/ML TS XAI/ML Additional/obesity.ipynb,sha256=-I7RSTLvsap3l02NpQwPJKzGsIy-rpvDPSbUBpjrOpc,2528
|
21
|
-
noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb,sha256=dxkLk_SCxksdYu-RiEZdzsLjfgTDqvSb464IjxiDl5w,2413
|
22
|
-
noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb,sha256=RwpYKNBXvwkAuT8f5mvs56Qg8oml847e1Lz4Rn3B9Co,3995
|
23
|
-
noshot/data/ML TS XAI/ML Lab CIA/1/Question.txt,sha256=cxrnnGmeKfFzUdYcD2H1iNBqBArJwuvkxBryrx45pcg,389
|
24
|
-
noshot/data/ML TS XAI/ML Lab CIA/1/airfoil_self_noise.dat,sha256=EO4G5s-yfa5rRCE9Qh0hcBL7H5tpdZLnOk5AFrUtQl8,58481
|
25
|
-
noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb,sha256=g7sW7wS4UZDI7q3S4HbzRWKoEDloVTCrT3lNvFbzQmo,3705
|
26
|
-
noshot/data/ML TS XAI/ML Lab CIA/2/Question.txt,sha256=b-lOzBMSgYIF1NaFpHqKGaKBgg6InJ2X1BzDfrqvtiI,517
|
27
|
-
noshot/data/ML TS XAI/ML Lab CIA/2/pop_failures.dat,sha256=Pf4s5kiObecb2vJmWTjKoXfZP_zlkbhG5nl-vhymW2I,65536
|
28
|
-
noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb,sha256=ZOUhF1XGZLmBTKMfO6S1vQ6P-tUamWex0tKznA4gGSk,3780
|
29
|
-
noshot/data/ML TS XAI/ML Lab CIA/3/Qu.txt,sha256=gvt2BGN7SWAXxHlbxjUOHk-VV6CY5lCeXLL3gl7cQvA,44
|
30
|
-
noshot/data/ML TS XAI/ML Lab CIA/3/go_track_tracks.csv,sha256=xDfqYnGJFmNBRZicq8D98WC2o34qiR5buhPBMShxSC0,10979
|
31
|
-
noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb,sha256=vxXJL4AFS8yeSSFtlgcWiiuE2Yk4qez58QDcPR7CAzw,3956
|
32
|
-
noshot/data/ML TS XAI/ML Lab CIA/4/Wilt.csv,sha256=2Ew_JR5_DOLq5DtuAVZCmJiVK54uccMdT90yAW_9XWk,244730
|
33
|
-
noshot/data/ML TS XAI/ML Lab CIA/4/qu.txt,sha256=sM9c0pox6ooOXkyqFFZq_8QCYekl6CwU14ZPVocVeNk,53
|
34
|
-
noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb,sha256=TSBMPI4qdxsp4TV8FXxlutybmft76PP5AnnAEVBmX14,5483
|
35
|
-
noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb,sha256=HdDfhPowxFujZweySJRuP-Et_y_2TvZP-PZLevgXUKY,4231
|
36
|
-
noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb,sha256=Fi1Aq6BhqlqY8XcHwvRdOwTTNQ5QvIS7yr41sTMkW3A,3705
|
37
|
-
noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb,sha256=7-_k3WNgab0sIAX4vC2Ot_jbJwcLBszh4hw_F66PSms,3194
|
38
|
-
noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb,sha256=I3vHyu1oxp95TiroeLUrTeKR7am5G7CEPVjp3CZ4V4U,4612
|
39
|
-
noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb,sha256=tRSrqFrJpXQHRo4nyXCz-UZbNmhJc47F4b8pGRWEMRk,1901
|
40
|
-
noshot/data/ML TS XAI/TS/AllinOne.ipynb,sha256=egNDVfK-aObDRs_qyWLWjdQKQhccijA3_cirYbinJeg,35686
|
41
|
-
noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv,sha256=F4yFcHwUgxnEyjUGnQRMeZ_yLo1xt6LAiSIhZ1bRiWE,64271
|
42
|
-
noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv,sha256=nvfDjkWMQydf_0NJKSLwCZgI1y9oVtrDY9kAwEM1RQQ,5855
|
43
|
-
noshot/data/ML TS XAI/TS/data/raw_sales.csv,sha256=prmIL2Za6SSvtNySuENVeeWm96ErETBE2yKdzUTsAIQ,1150525
|
44
|
-
noshot/data/ML TS XAI/TS/data/shampoo_sales.csv,sha256=3cnpMyQZjuLerDQ6seFWybW79od4Xx0J1jYJYOjBrm0,426
|
45
|
-
noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf,sha256=B_z0vtszHqZ8yK4r7M7qL-BdryhR3hqs978QrzUMCeQ,156479
|
46
|
-
noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb,sha256=fx-bnmM--DGpl_wDxmpP0Vk7aqYKpGRCM6JFSlhljw0,5114
|
47
|
-
noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv,sha256=X4sxa4RUXZz7BWEimN-EFc5MREIccBLRCUZVZLB-vAY,1746
|
48
|
-
noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb,sha256=DqOIH5u7ZE1-ZBa8PB3NmfTefT5UaP3xcUSetpKA32s,5376
|
49
|
-
noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv,sha256=nvfDjkWMQydf_0NJKSLwCZgI1y9oVtrDY9kAwEM1RQQ,5855
|
50
|
-
noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb,sha256=oXbFNROkV0zqpdKHuocFj6fVdyNDzURuA4VqpifGGoU,4265
|
51
|
-
noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv,sha256=tLP-OanWaF3ddiGFYyFjzcK1cXYpPvSmitbyOOe0Okk,471
|
52
|
-
noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb,sha256=cUhKSNijW8nbwCAFKf65Q4HrJYFxQ7r6PbZ_rCqeGt8,4681
|
53
|
-
noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv,sha256=F4yFcHwUgxnEyjUGnQRMeZ_yLo1xt6LAiSIhZ1bRiWE,64271
|
54
|
-
noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb,sha256=jPltozGU6R3driZcLthAPjgkuJWIBX6kWsrnsxc09Ec,5590
|
55
|
-
noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv,sha256=c3ry-Yy1m-MoLGWopaD9jfVX9UZ2JRBBJA2DtwWi_fg,484
|
56
|
-
noshot/utils/__init__.py,sha256=NovRMat6RWu1WNI1_OH_Xo6Uvaq8D91no-ZhLcuVwHs,108
|
57
|
-
noshot/utils/shell_utils.py,sha256=WzVq5EZEgiJFysbDYn9QPRYSE555Ew20HZbb3RDymkE,2555
|
58
|
-
noshot-0.3.9.dist-info/LICENSE.txt,sha256=MLVZLpViyRWQLkQCesNwRqdfGzt-aunQSFiP5b_5Qn4,1066
|
59
|
-
noshot-0.3.9.dist-info/METADATA,sha256=0K34AYcusoZVHqiPDJLaDFqzwG6jHHxiClrcFy2r3zM,2391
|
60
|
-
noshot-0.3.9.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
61
|
-
noshot-0.3.9.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
|
62
|
-
noshot-0.3.9.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|