noshot 0.3.9__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +535 -0
  2. noshot/data/ML TS XAI/Football Player/4.ipynb +395 -0
  3. noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +1 -0
  4. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +886 -0
  5. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +292 -0
  6. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +1 -0
  7. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +546 -0
  8. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +921 -0
  9. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/METADATA +1 -1
  10. noshot-0.4.0.dist-info/RECORD +48 -0
  11. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
  12. noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
  13. noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
  14. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
  15. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
  16. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
  17. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
  18. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
  19. noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
  20. noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
  21. noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
  22. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
  23. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
  24. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
  25. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
  26. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
  27. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
  28. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
  29. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
  30. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
  31. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
  32. noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
  33. noshot-0.3.9.dist-info/RECORD +0 -62
  34. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/1.ipynb +0 -0
  35. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/Question.txt +0 -0
  36. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/airfoil_self_noise.dat +0 -0
  37. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/2.ipynb +0 -0
  38. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/Question.txt +0 -0
  39. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/pop_failures.dat +0 -0
  40. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/3.ipynb +0 -0
  41. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/Qu.txt +0 -0
  42. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/go_track_tracks.csv +0 -0
  43. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/4.ipynb +0 -0
  44. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/Wilt.csv +0 -0
  45. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/qu.txt +0 -0
  46. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/LICENSE.txt +0 -0
  47. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/WHEEL +0 -0
  48. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/top_level.txt +0 -0
@@ -1,213 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "8c277840-b16a-423e-9f4f-f3b803c2c2ee",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "import seaborn as sns\n",
14
- "from statsmodels.tsa.stattools import adfuller, kpss\n",
15
- "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf"
16
- ]
17
- },
18
- {
19
- "cell_type": "code",
20
- "execution_count": null,
21
- "id": "9eb2b98c-9f4b-4f11-8773-ab7288365a2c",
22
- "metadata": {},
23
- "outputs": [],
24
- "source": [
25
- "import warnings\n",
26
- "warnings.filterwarnings('ignore')"
27
- ]
28
- },
29
- {
30
- "cell_type": "code",
31
- "execution_count": null,
32
- "id": "6a81c3aa-f769-4e32-b02c-1e4976f7f1a4",
33
- "metadata": {},
34
- "outputs": [],
35
- "source": [
36
- "file_path = \"shampoo_sales.csv\"\n",
37
- "shampoo_data = pd.read_csv(file_path)\n",
38
- "\n",
39
- "shampoo_data['Date'] = pd.to_datetime(shampoo_data['Month'], format=\"%m-%y\")\n",
40
- "shampoo_data.set_index('Date', inplace=True)\n",
41
- "shampoo_data.drop(columns=['Month'], inplace=True)\n",
42
- "shampoo_data.head()"
43
- ]
44
- },
45
- {
46
- "cell_type": "code",
47
- "execution_count": null,
48
- "id": "448b1106-37c9-43b8-9b79-fd370c2046c6",
49
- "metadata": {},
50
- "outputs": [],
51
- "source": [
52
- "print(shampoo_data.info())\n",
53
- "print(shampoo_data.describe())"
54
- ]
55
- },
56
- {
57
- "cell_type": "code",
58
- "execution_count": null,
59
- "id": "a63051e2-dc07-433c-a473-d6529d40b374",
60
- "metadata": {},
61
- "outputs": [],
62
- "source": [
63
- "plt.figure(figsize=(10, 5))\n",
64
- "plt.plot(shampoo_data['Sales'], marker='o', linestyle='-')\n",
65
- "plt.title(\"Shampoo Sales Over Time\")\n",
66
- "plt.show()"
67
- ]
68
- },
69
- {
70
- "cell_type": "code",
71
- "execution_count": null,
72
- "id": "49fb7080-639b-4bba-a96f-0afe16fae498",
73
- "metadata": {},
74
- "outputs": [],
75
- "source": [
76
- "plt.scatter(shampoo_data.index, shampoo_data['Sales'])\n",
77
- "plt.title(\"Scatter Plot of Shampoo Sales\")\n",
78
- "plt.show()"
79
- ]
80
- },
81
- {
82
- "cell_type": "code",
83
- "execution_count": null,
84
- "id": "90c8cac6-eb8b-4352-a644-0511715e3a38",
85
- "metadata": {},
86
- "outputs": [],
87
- "source": [
88
- "plot_acf(shampoo_data['Sales'])\n",
89
- "plt.show()\n",
90
- "\n",
91
- "plot_pacf(shampoo_data['Sales'])\n",
92
- "plt.show()"
93
- ]
94
- },
95
- {
96
- "cell_type": "code",
97
- "execution_count": null,
98
- "id": "4e996648-7825-45cb-812a-628c53a16c4a",
99
- "metadata": {},
100
- "outputs": [],
101
- "source": [
102
- "plt.figure(figsize=(8, 5))\n",
103
- "sns.histplot(shampoo_data['Sales'], bins=20, kde=True, edgecolor='black')\n",
104
- "plt.title(\"Histogram of Shampoo Sales\")\n",
105
- "plt.show()"
106
- ]
107
- },
108
- {
109
- "cell_type": "code",
110
- "execution_count": null,
111
- "id": "17b1e87a-bd61-4a01-851d-41527be0b032",
112
- "metadata": {},
113
- "outputs": [],
114
- "source": [
115
- "sns.kdeplot(shampoo_data['Sales'], fill=True)\n",
116
- "plt.title(\"Density Plot of Shampoo Sales\")\n",
117
- "plt.show()"
118
- ]
119
- },
120
- {
121
- "cell_type": "code",
122
- "execution_count": null,
123
- "id": "10c9d944-fe80-43a0-9300-4cb8ea57d5d3",
124
- "metadata": {},
125
- "outputs": [],
126
- "source": [
127
- "plt.figure(figsize=(8, 6))\n",
128
- "sns.heatmap(shampoo_data.corr(), annot=True, cmap='coolwarm')\n",
129
- "plt.title(\"Correlation Heatmap\")\n",
130
- "plt.show()"
131
- ]
132
- },
133
- {
134
- "cell_type": "code",
135
- "execution_count": null,
136
- "id": "c77ab9ee-e024-4f5b-b7bf-db2332496f83",
137
- "metadata": {},
138
- "outputs": [],
139
- "source": [
140
- "upsampled = shampoo_data.resample('D').interpolate(method='linear')\n",
141
- "\n",
142
- "plt.figure(figsize=(12, 5))\n",
143
- "plt.plot(upsampled['Sales'], label='Linear Interpolation', color='blue')\n",
144
- "plt.title(\"Upsampled Data (Daily)\")\n",
145
- "plt.legend()\n",
146
- "plt.show()"
147
- ]
148
- },
149
- {
150
- "cell_type": "code",
151
- "execution_count": null,
152
- "id": "65cbf554-b568-4841-8572-5454723505a2",
153
- "metadata": {},
154
- "outputs": [],
155
- "source": [
156
- "upsampled_quadratic = shampoo_data.resample('D').interpolate(method='quadratic')\n",
157
- "\n",
158
- "plt.figure(figsize=(12, 5))\n",
159
- "plt.plot(upsampled_quadratic['Sales'], label='Quadratic Interpolation', color='red')\n",
160
- "plt.title(\"Upsampled Data (Quadratic)\")\n",
161
- "plt.legend()\n",
162
- "plt.show()"
163
- ]
164
- },
165
- {
166
- "cell_type": "code",
167
- "execution_count": null,
168
- "id": "0cb91482-23cb-45f1-8dc9-bf6def1f1383",
169
- "metadata": {},
170
- "outputs": [],
171
- "source": [
172
- "def adf_test(series):\n",
173
- " result = adfuller(series.dropna())\n",
174
- " print(\"ADF Statistic:\", result[0])\n",
175
- " print(\"p-value:\", result[1])\n",
176
- " print(\"Stationary\" if result[1] < 0.05 else \"Non-Stationary\")\n",
177
- "\n",
178
- "print(\"\\nADF Test Results:\")\n",
179
- "adf_test(shampoo_data['Sales'])\n",
180
- "\n",
181
- "def kpss_test(series):\n",
182
- " result = kpss(series.dropna(), regression='c')\n",
183
- " print(\"KPSS Statistic:\", result[0])\n",
184
- " print(\"p-value:\", result[1])\n",
185
- " print(\"Stationary\" if result[1] > 0.05 else \"Non-Stationary\")\n",
186
- "\n",
187
- "print(\"\\nKPSS Test Results:\")\n",
188
- "kpss_test(shampoo_data['Sales'])"
189
- ]
190
- }
191
- ],
192
- "metadata": {
193
- "kernelspec": {
194
- "display_name": "Python 3 (ipykernel)",
195
- "language": "python",
196
- "name": "python3"
197
- },
198
- "language_info": {
199
- "codemirror_mode": {
200
- "name": "ipython",
201
- "version": 3
202
- },
203
- "file_extension": ".py",
204
- "mimetype": "text/x-python",
205
- "name": "python",
206
- "nbconvert_exporter": "python",
207
- "pygments_lexer": "ipython3",
208
- "version": "3.12.4"
209
- }
210
- },
211
- "nbformat": 4,
212
- "nbformat_minor": 5
213
- }
@@ -1,37 +0,0 @@
1
- "Month","Sales"
2
- "1-01",266.0
3
- "1-02",145.9
4
- "1-03",183.1
5
- "1-04",119.3
6
- "1-05",180.3
7
- "1-06",168.5
8
- "1-07",231.8
9
- "1-08",224.5
10
- "1-09",192.8
11
- "1-10",122.9
12
- "1-11",336.5
13
- "1-12",185.9
14
- "2-01",194.3
15
- "2-02",149.5
16
- "2-03",210.1
17
- "2-04",273.3
18
- "2-05",191.4
19
- "2-06",287.0
20
- "2-07",226.0
21
- "2-08",303.6
22
- "2-09",289.9
23
- "2-10",421.6
24
- "2-11",264.5
25
- "2-12",342.3
26
- "3-01",339.7
27
- "3-02",440.4
28
- "3-03",315.9
29
- "3-04",439.3
30
- "3-05",401.3
31
- "3-06",437.4
32
- "3-07",575.5
33
- "3-08",407.6
34
- "3-09",682.0
35
- "3-10",475.3
36
- "3-11",581.3
37
- "3-12",646.9
@@ -1,62 +0,0 @@
1
- noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
- noshot/main.py,sha256=6gU5gZ5csHxJQ7H-YyWVkW51hJIZdV9cqsPBDTjFo9s,645
3
- noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb,sha256=YHOR8PEU-UZDbOnYfY8RXWlKWPmAylk8JjyCNXGJDWs,4951
4
- noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb,sha256=Z-s44hC240B3ZQL4LHVhh6kdec8zbc9WXntA6rmu2gc,7705
5
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb,sha256=S7lovIZpIxK2rSUa201DQwnbBfVFN99R0v03nFq1amI,2218
6
- noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb,sha256=F3DQAZf_2omM8fBeWfkadzdbvrzh6dlRoeG6vqbqJgg,3152
7
- noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb,sha256=QUJd2YY0dR8QncLM2_IgfGOJRJnIH1rBIV9XD8kY2ZY,3766
8
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb,sha256=O1FCVYpuPBNe33vO2eRmKghvnehMe_rIup1djnzrDJY,2003
9
- noshot/data/ML TS XAI/ML/data/balance-scale.csv,sha256=TIXuC522eeShSGKEzpVdslBH-7pj-iElyk1J0LQfp3k,6315
10
- noshot/data/ML TS XAI/ML/data/balance-scale.txt,sha256=_QWQ4ru9MWCeh_4x372ev6Ipg5oOeUcGFH_2Jp0QA9E,6249
11
- noshot/data/ML TS XAI/ML/data/machine-data.csv,sha256=poHH1NKX94SE7hyRTX7Gug4fWdAHRY4SnUNwYg_B1TQ,8746
12
- noshot/data/ML TS XAI/ML/data/wine-dataset.csv,sha256=zYAVj609HiA9YdrkIkJiCwLdX5GOY3tfCDgeOefPUgQ,12261
13
- noshot/data/ML TS XAI/ML Additional/Bank.ipynb,sha256=PX9-mjUbYAtRNgXPg-t3nzeq3Hat3Fm3LZxpAgy-yek,2332
14
- noshot/data/ML TS XAI/ML Additional/LR.ipynb,sha256=d1t6_xphPFCAMikhaAZK2f63rSIEJVH3NQpPshHw--E,2050
15
- noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv,sha256=ti4escjJgTeb7iPjnjVoP1RVaDvXctxyKCcVjd6Smh8,261534
16
- noshot/data/ML TS XAI/ML Additional/Q4 LR.csv,sha256=LRgNqCbNasyiVsTnl76sCq5bSzf7t3SvwbkK6DGcW2U,26511
17
- noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv,sha256=u0Wt2R1OAocPzeKO5PkTt4JopapgUej74sPhYBBAQ1U,4887557
18
- noshot/data/ML TS XAI/ML Additional/airfoil.ipynb,sha256=P7xJDaG0gr7y6RoaCzW-2izjgetesGXPtFcRts1Hkes,2115
19
- noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat,sha256=EO4G5s-yfa5rRCE9Qh0hcBL7H5tpdZLnOk5AFrUtQl8,58481
20
- noshot/data/ML TS XAI/ML Additional/obesity.ipynb,sha256=-I7RSTLvsap3l02NpQwPJKzGsIy-rpvDPSbUBpjrOpc,2528
21
- noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb,sha256=dxkLk_SCxksdYu-RiEZdzsLjfgTDqvSb464IjxiDl5w,2413
22
- noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb,sha256=RwpYKNBXvwkAuT8f5mvs56Qg8oml847e1Lz4Rn3B9Co,3995
23
- noshot/data/ML TS XAI/ML Lab CIA/1/Question.txt,sha256=cxrnnGmeKfFzUdYcD2H1iNBqBArJwuvkxBryrx45pcg,389
24
- noshot/data/ML TS XAI/ML Lab CIA/1/airfoil_self_noise.dat,sha256=EO4G5s-yfa5rRCE9Qh0hcBL7H5tpdZLnOk5AFrUtQl8,58481
25
- noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb,sha256=g7sW7wS4UZDI7q3S4HbzRWKoEDloVTCrT3lNvFbzQmo,3705
26
- noshot/data/ML TS XAI/ML Lab CIA/2/Question.txt,sha256=b-lOzBMSgYIF1NaFpHqKGaKBgg6InJ2X1BzDfrqvtiI,517
27
- noshot/data/ML TS XAI/ML Lab CIA/2/pop_failures.dat,sha256=Pf4s5kiObecb2vJmWTjKoXfZP_zlkbhG5nl-vhymW2I,65536
28
- noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb,sha256=ZOUhF1XGZLmBTKMfO6S1vQ6P-tUamWex0tKznA4gGSk,3780
29
- noshot/data/ML TS XAI/ML Lab CIA/3/Qu.txt,sha256=gvt2BGN7SWAXxHlbxjUOHk-VV6CY5lCeXLL3gl7cQvA,44
30
- noshot/data/ML TS XAI/ML Lab CIA/3/go_track_tracks.csv,sha256=xDfqYnGJFmNBRZicq8D98WC2o34qiR5buhPBMShxSC0,10979
31
- noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb,sha256=vxXJL4AFS8yeSSFtlgcWiiuE2Yk4qez58QDcPR7CAzw,3956
32
- noshot/data/ML TS XAI/ML Lab CIA/4/Wilt.csv,sha256=2Ew_JR5_DOLq5DtuAVZCmJiVK54uccMdT90yAW_9XWk,244730
33
- noshot/data/ML TS XAI/ML Lab CIA/4/qu.txt,sha256=sM9c0pox6ooOXkyqFFZq_8QCYekl6CwU14ZPVocVeNk,53
34
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb,sha256=TSBMPI4qdxsp4TV8FXxlutybmft76PP5AnnAEVBmX14,5483
35
- noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb,sha256=HdDfhPowxFujZweySJRuP-Et_y_2TvZP-PZLevgXUKY,4231
36
- noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb,sha256=Fi1Aq6BhqlqY8XcHwvRdOwTTNQ5QvIS7yr41sTMkW3A,3705
37
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb,sha256=7-_k3WNgab0sIAX4vC2Ot_jbJwcLBszh4hw_F66PSms,3194
38
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb,sha256=I3vHyu1oxp95TiroeLUrTeKR7am5G7CEPVjp3CZ4V4U,4612
39
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb,sha256=tRSrqFrJpXQHRo4nyXCz-UZbNmhJc47F4b8pGRWEMRk,1901
40
- noshot/data/ML TS XAI/TS/AllinOne.ipynb,sha256=egNDVfK-aObDRs_qyWLWjdQKQhccijA3_cirYbinJeg,35686
41
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv,sha256=F4yFcHwUgxnEyjUGnQRMeZ_yLo1xt6LAiSIhZ1bRiWE,64271
42
- noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv,sha256=nvfDjkWMQydf_0NJKSLwCZgI1y9oVtrDY9kAwEM1RQQ,5855
43
- noshot/data/ML TS XAI/TS/data/raw_sales.csv,sha256=prmIL2Za6SSvtNySuENVeeWm96ErETBE2yKdzUTsAIQ,1150525
44
- noshot/data/ML TS XAI/TS/data/shampoo_sales.csv,sha256=3cnpMyQZjuLerDQ6seFWybW79od4Xx0J1jYJYOjBrm0,426
45
- noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf,sha256=B_z0vtszHqZ8yK4r7M7qL-BdryhR3hqs978QrzUMCeQ,156479
46
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb,sha256=fx-bnmM--DGpl_wDxmpP0Vk7aqYKpGRCM6JFSlhljw0,5114
47
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv,sha256=X4sxa4RUXZz7BWEimN-EFc5MREIccBLRCUZVZLB-vAY,1746
48
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb,sha256=DqOIH5u7ZE1-ZBa8PB3NmfTefT5UaP3xcUSetpKA32s,5376
49
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv,sha256=nvfDjkWMQydf_0NJKSLwCZgI1y9oVtrDY9kAwEM1RQQ,5855
50
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb,sha256=oXbFNROkV0zqpdKHuocFj6fVdyNDzURuA4VqpifGGoU,4265
51
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv,sha256=tLP-OanWaF3ddiGFYyFjzcK1cXYpPvSmitbyOOe0Okk,471
52
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb,sha256=cUhKSNijW8nbwCAFKf65Q4HrJYFxQ7r6PbZ_rCqeGt8,4681
53
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv,sha256=F4yFcHwUgxnEyjUGnQRMeZ_yLo1xt6LAiSIhZ1bRiWE,64271
54
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb,sha256=jPltozGU6R3driZcLthAPjgkuJWIBX6kWsrnsxc09Ec,5590
55
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv,sha256=c3ry-Yy1m-MoLGWopaD9jfVX9UZ2JRBBJA2DtwWi_fg,484
56
- noshot/utils/__init__.py,sha256=NovRMat6RWu1WNI1_OH_Xo6Uvaq8D91no-ZhLcuVwHs,108
57
- noshot/utils/shell_utils.py,sha256=WzVq5EZEgiJFysbDYn9QPRYSE555Ew20HZbb3RDymkE,2555
58
- noshot-0.3.9.dist-info/LICENSE.txt,sha256=MLVZLpViyRWQLkQCesNwRqdfGzt-aunQSFiP5b_5Qn4,1066
59
- noshot-0.3.9.dist-info/METADATA,sha256=0K34AYcusoZVHqiPDJLaDFqzwG6jHHxiClrcFy2r3zM,2391
60
- noshot-0.3.9.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
61
- noshot-0.3.9.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
62
- noshot-0.3.9.dist-info/RECORD,,
File without changes