noshot 0.3.9__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +535 -0
  2. noshot/data/ML TS XAI/Football Player/4.ipynb +395 -0
  3. noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +1 -0
  4. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +886 -0
  5. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +292 -0
  6. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +1 -0
  7. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +546 -0
  8. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +921 -0
  9. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/METADATA +1 -1
  10. noshot-0.4.0.dist-info/RECORD +48 -0
  11. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
  12. noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
  13. noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
  14. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
  15. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
  16. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
  17. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
  18. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
  19. noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
  20. noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
  21. noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
  22. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
  23. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
  24. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
  25. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
  26. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
  27. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
  28. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
  29. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
  30. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
  31. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
  32. noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
  33. noshot-0.3.9.dist-info/RECORD +0 -62
  34. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/1.ipynb +0 -0
  35. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/Question.txt +0 -0
  36. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/airfoil_self_noise.dat +0 -0
  37. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/2.ipynb +0 -0
  38. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/Question.txt +0 -0
  39. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/pop_failures.dat +0 -0
  40. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/3.ipynb +0 -0
  41. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/Qu.txt +0 -0
  42. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/go_track_tracks.csv +0 -0
  43. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/4.ipynb +0 -0
  44. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/Wilt.csv +0 -0
  45. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/qu.txt +0 -0
  46. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/LICENSE.txt +0 -0
  47. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/WHEEL +0 -0
  48. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/top_level.txt +0 -0
@@ -1,1416 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "YPUOzkLyRB8u"
7
- },
8
- "source": [
9
- "# ***Pre Steps***"
10
- ]
11
- },
12
- {
13
- "cell_type": "code",
14
- "execution_count": null,
15
- "metadata": {
16
- "executionInfo": {
17
- "elapsed": 18,
18
- "status": "ok",
19
- "timestamp": 1740357338286,
20
- "user": {
21
- "displayName": "Jaison A",
22
- "userId": "07006398627763032071"
23
- },
24
- "user_tz": -330
25
- },
26
- "id": "NPvIf3ZFLvuV"
27
- },
28
- "outputs": [],
29
- "source": [
30
- "import pandas as pd\n",
31
- "import matplotlib.pyplot as plt\n",
32
- "import seaborn as sns\n",
33
- "import datetime\n",
34
- "import numpy as np\n",
35
- "import warnings\n",
36
- "warnings.filterwarnings('ignore')"
37
- ]
38
- },
39
- {
40
- "cell_type": "markdown",
41
- "metadata": {
42
- "id": "gO-DdNvcL804"
43
- },
44
- "source": [
45
- "# ***EX_1***"
46
- ]
47
- },
48
- {
49
- "cell_type": "markdown",
50
- "metadata": {
51
- "id": "JtZeYI8jWgB7"
52
- },
53
- "source": [
54
- "## ***Random Data.***"
55
- ]
56
- },
57
- {
58
- "cell_type": "code",
59
- "execution_count": null,
60
- "metadata": {
61
- "colab": {
62
- "base_uri": "https://localhost:8080/"
63
- },
64
- "executionInfo": {
65
- "elapsed": 721,
66
- "status": "ok",
67
- "timestamp": 1740357650710,
68
- "user": {
69
- "displayName": "Jaison A",
70
- "userId": "07006398627763032071"
71
- },
72
- "user_tz": -330
73
- },
74
- "id": "bmxATAzRXDCs",
75
- "outputId": "c8875b55-01a6-4d36-a47a-dd0cbe6bc107"
76
- },
77
- "outputs": [],
78
- "source": [
79
- "np.random.seed(42)\n",
80
- "values=np.random.randn(100)\n",
81
- "values"
82
- ]
83
- },
84
- {
85
- "cell_type": "code",
86
- "execution_count": null,
87
- "metadata": {
88
- "executionInfo": {
89
- "elapsed": 3,
90
- "status": "ok",
91
- "timestamp": 1740357652355,
92
- "user": {
93
- "displayName": "Jaison A",
94
- "userId": "07006398627763032071"
95
- },
96
- "user_tz": -330
97
- },
98
- "id": "ooK9lOgAXrL0"
99
- },
100
- "outputs": [],
101
- "source": [
102
- "dates=pd.date_range('2010-01-01',periods=len(values),freq='D')"
103
- ]
104
- },
105
- {
106
- "cell_type": "code",
107
- "execution_count": null,
108
- "metadata": {
109
- "colab": {
110
- "base_uri": "https://localhost:8080/",
111
- "height": 423
112
- },
113
- "executionInfo": {
114
- "elapsed": 9,
115
- "status": "ok",
116
- "timestamp": 1740357654295,
117
- "user": {
118
- "displayName": "Jaison A",
119
- "userId": "07006398627763032071"
120
- },
121
- "user_tz": -330
122
- },
123
- "id": "1XH7EXGpXjpb",
124
- "outputId": "223b4a24-2bf7-4419-9773-d0fd7ae462d4"
125
- },
126
- "outputs": [],
127
- "source": [
128
- "data1=pd.DataFrame(values,index=dates,columns=[\"Values\"])\n",
129
- "data1"
130
- ]
131
- },
132
- {
133
- "cell_type": "markdown",
134
- "metadata": {
135
- "id": "Zl9W7OxjWqqO"
136
- },
137
- "source": [
138
- "## ***Dataset Data***"
139
- ]
140
- },
141
- {
142
- "cell_type": "code",
143
- "execution_count": null,
144
- "metadata": {
145
- "colab": {
146
- "base_uri": "https://localhost:8080/",
147
- "height": 432
148
- },
149
- "executionInfo": {
150
- "elapsed": 944,
151
- "status": "ok",
152
- "timestamp": 1740357339223,
153
- "user": {
154
- "displayName": "Jaison A",
155
- "userId": "07006398627763032071"
156
- },
157
- "user_tz": -330
158
- },
159
- "id": "sG8VvdN7MFK3",
160
- "outputId": "37d4cf03-b3d5-46e0-de82-8e23e56b4188"
161
- },
162
- "outputs": [],
163
- "source": [
164
- "data1=pd.read_csv(\"data/raw_sales.csv\")\n",
165
- "display(\"First Five Rows :\",data1.head())\n",
166
- "display(\"Last Five Rows :\",data1.tail())"
167
- ]
168
- },
169
- {
170
- "cell_type": "code",
171
- "execution_count": null,
172
- "metadata": {
173
- "colab": {
174
- "base_uri": "https://localhost:8080/",
175
- "height": 319
176
- },
177
- "executionInfo": {
178
- "elapsed": 25,
179
- "status": "ok",
180
- "timestamp": 1740357339224,
181
- "user": {
182
- "displayName": "Jaison A",
183
- "userId": "07006398627763032071"
184
- },
185
- "user_tz": -330
186
- },
187
- "id": "y_u5ogPWcnpe",
188
- "outputId": "5cb89815-9b6a-4518-8ab6-42f8ad1bef17"
189
- },
190
- "outputs": [],
191
- "source": [
192
- "#summary Statistics\n",
193
- "display(\"Summary Statistics :\",data1.describe())"
194
- ]
195
- },
196
- {
197
- "cell_type": "code",
198
- "execution_count": null,
199
- "metadata": {
200
- "colab": {
201
- "base_uri": "https://localhost:8080/",
202
- "height": 423
203
- },
204
- "executionInfo": {
205
- "elapsed": 21,
206
- "status": "ok",
207
- "timestamp": 1740357339224,
208
- "user": {
209
- "displayName": "Jaison A",
210
- "userId": "07006398627763032071"
211
- },
212
- "user_tz": -330
213
- },
214
- "id": "ctnAohCcdHoE",
215
- "outputId": "8ffd34e9-6709-473e-c17c-d2d5e753889a"
216
- },
217
- "outputs": [],
218
- "source": [
219
- "#Filter data for a specific year\n",
220
- "data1[\"datesold\"]=pd.to_datetime(data1['datesold'])\n",
221
- "'''\n",
222
- "query_year=int(input(\"Enter year : \"))\n",
223
- "'''\n",
224
- "query_year=2015\n",
225
- "display(data1[data1[\"datesold\"].dt.year==query_year])"
226
- ]
227
- },
228
- {
229
- "cell_type": "code",
230
- "execution_count": null,
231
- "metadata": {
232
- "colab": {
233
- "base_uri": "https://localhost:8080/",
234
- "height": 912
235
- },
236
- "executionInfo": {
237
- "elapsed": 1305,
238
- "status": "ok",
239
- "timestamp": 1740357340510,
240
- "user": {
241
- "displayName": "Jaison A",
242
- "userId": "07006398627763032071"
243
- },
244
- "user_tz": -330
245
- },
246
- "id": "jqUZ1GRjeRMn",
247
- "outputId": "42f9205b-2abf-4e49-c05c-598c968f6133"
248
- },
249
- "outputs": [],
250
- "source": [
251
- "# Plot the average price per year\n",
252
- "avg_price_per_year=data1.groupby(data1[\"datesold\"].dt.year)[\"price\"].mean().reset_index(name=\"Average Price\")\n",
253
- "display(avg_price_per_year)\n",
254
- "plt.plot(avg_price_per_year[\"datesold\"],avg_price_per_year[\"Average Price\"])\n",
255
- "plt.title(\"Average Price per Year\")\n",
256
- "plt.xlabel(\"Year\")\n",
257
- "plt.ylabel(\"Average Price\")\n",
258
- "plt.show()"
259
- ]
260
- },
261
- {
262
- "cell_type": "code",
263
- "execution_count": null,
264
- "metadata": {
265
- "colab": {
266
- "base_uri": "https://localhost:8080/",
267
- "height": 912
268
- },
269
- "executionInfo": {
270
- "elapsed": 30,
271
- "status": "ok",
272
- "timestamp": 1740357340510,
273
- "user": {
274
- "displayName": "Jaison A",
275
- "userId": "07006398627763032071"
276
- },
277
- "user_tz": -330
278
- },
279
- "id": "jr1y2lnXfJxB",
280
- "outputId": "e10a53c9-7e85-468f-bf56-0e2b7c86b769"
281
- },
282
- "outputs": [],
283
- "source": [
284
- "#Count of properties sold per year\n",
285
- "property_count_per_year=data1.groupby(data1[\"datesold\"].dt.year).size().reset_index(name=\"Properties_sold\")\n",
286
- "property_count_per_year.rename(columns={\"datesold\":\"Year\"},inplace=True)\n",
287
- "display(property_count_per_year)\n",
288
- "plt.plot(property_count_per_year[\"Year\"],property_count_per_year[\"Properties_sold\"])\n",
289
- "plt.title(\"Properties Sold per Year\")\n",
290
- "plt.xlabel(\"Year\")\n",
291
- "plt.ylabel(\"Properties Sold\")\n",
292
- "plt.show()"
293
- ]
294
- },
295
- {
296
- "cell_type": "code",
297
- "execution_count": null,
298
- "metadata": {
299
- "colab": {
300
- "base_uri": "https://localhost:8080/",
301
- "height": 423
302
- },
303
- "executionInfo": {
304
- "elapsed": 25,
305
- "status": "ok",
306
- "timestamp": 1740357340511,
307
- "user": {
308
- "displayName": "Jaison A",
309
- "userId": "07006398627763032071"
310
- },
311
- "user_tz": -330
312
- },
313
- "id": "YkziajZ2jC2J",
314
- "outputId": "09b7cbd9-27c8-4b35-94c6-dc094029f638"
315
- },
316
- "outputs": [],
317
- "source": [
318
- "#Query for a specific date range (e.g., Jan 2010 to Dec 2015)\n",
319
- "'''\n",
320
- "start_date=input(\"Enter date in format yyyy-mm-dd : \").split(\"-\")\n",
321
- "start_date=datetime.datetime(int(start_date[0]),int(start_date[1]),int(start_date[2]))\n",
322
- "end_date=input(\"Enter date in format yyyy-mm-dd : \").split(\"-\")\n",
323
- "end_date=datetime.datetime(int(end_date[0]),int(end_date[1]),int(end_date[2]))\n",
324
- "'''\n",
325
- "start_date=datetime.datetime(2010,5,1)\n",
326
- "end_date=datetime.datetime(2015,1,1)\n",
327
- "display(data1[(data1[\"datesold\"]>=start_date) & (data1[\"datesold\"]<=end_date)])"
328
- ]
329
- },
330
- {
331
- "cell_type": "code",
332
- "execution_count": null,
333
- "metadata": {
334
- "colab": {
335
- "base_uri": "https://localhost:8080/",
336
- "height": 880
337
- },
338
- "executionInfo": {
339
- "elapsed": 24,
340
- "status": "ok",
341
- "timestamp": 1740357340511,
342
- "user": {
343
- "displayName": "Jaison A",
344
- "userId": "07006398627763032071"
345
- },
346
- "user_tz": -330
347
- },
348
- "id": "NJ_5sVMFoTyX",
349
- "outputId": "d6ea639a-d5d1-4fce-e3f3-b5c87372c8e3"
350
- },
351
- "outputs": [],
352
- "source": [
353
- "#Calculate the mean price month-wise (use Groupby)\n",
354
- "mean_price_by_month=data1.groupby(data1[\"datesold\"].dt.month)[\"price\"].mean().reset_index(name=\"Average per by month\")\n",
355
- "mean_price_by_month.rename(columns={\"datesold\":\"Month\"},inplace=True)\n",
356
- "display(mean_price_by_month)\n",
357
- "plt.plot(mean_price_by_month[\"Month\"],mean_price_by_month[\"Average per by month\"])\n",
358
- "plt.title(\"Average Price per Month\")\n",
359
- "plt.xlabel(\"Month\")\n",
360
- "plt.ylabel(\"Average Price\")\n",
361
- "plt.show()"
362
- ]
363
- },
364
- {
365
- "cell_type": "code",
366
- "execution_count": null,
367
- "metadata": {
368
- "colab": {
369
- "base_uri": "https://localhost:8080/",
370
- "height": 472
371
- },
372
- "executionInfo": {
373
- "elapsed": 22,
374
- "status": "ok",
375
- "timestamp": 1740357340511,
376
- "user": {
377
- "displayName": "Jaison A",
378
- "userId": "07006398627763032071"
379
- },
380
- "user_tz": -330
381
- },
382
- "id": "KIz-sKstpBUu",
383
- "outputId": "90f7fa37-b4a9-42ea-b62b-25addc60f25d"
384
- },
385
- "outputs": [],
386
- "source": [
387
- "#Perform a histogram plot\n",
388
- "plt.hist(data1[\"price\"],bins=20)\n",
389
- "plt.title(\"Histogram of price\")\n",
390
- "plt.xlabel(\"price\")\n",
391
- "plt.ylabel(\"Frequency\")\n",
392
- "plt.show()"
393
- ]
394
- },
395
- {
396
- "cell_type": "code",
397
- "execution_count": null,
398
- "metadata": {
399
- "colab": {
400
- "base_uri": "https://localhost:8080/",
401
- "height": 423
402
- },
403
- "executionInfo": {
404
- "elapsed": 21,
405
- "status": "ok",
406
- "timestamp": 1740357340512,
407
- "user": {
408
- "displayName": "Jaison A",
409
- "userId": "07006398627763032071"
410
- },
411
- "user_tz": -330
412
- },
413
- "id": "qmZKeyMTpgJ2",
414
- "outputId": "6ad5b16b-71a8-451f-d86c-4a0b4246a37c"
415
- },
416
- "outputs": [],
417
- "source": [
418
- "#Print the property price > 5Lakhs\n",
419
- "display(data1[(data1[\"price\"]>500000)])"
420
- ]
421
- },
422
- {
423
- "cell_type": "markdown",
424
- "metadata": {
425
- "id": "0TR58cjVMVhP"
426
- },
427
- "source": [
428
- "# ***EX_2***"
429
- ]
430
- },
431
- {
432
- "cell_type": "code",
433
- "execution_count": null,
434
- "metadata": {
435
- "executionInfo": {
436
- "elapsed": 19,
437
- "status": "ok",
438
- "timestamp": 1740357340512,
439
- "user": {
440
- "displayName": "Jaison A",
441
- "userId": "07006398627763032071"
442
- },
443
- "user_tz": -330
444
- },
445
- "id": "HAvpD5xIjklW"
446
- },
447
- "outputs": [],
448
- "source": [
449
- "from sklearn.preprocessing import StandardScaler"
450
- ]
451
- },
452
- {
453
- "cell_type": "code",
454
- "execution_count": null,
455
- "metadata": {
456
- "colab": {
457
- "base_uri": "https://localhost:8080/",
458
- "height": 206
459
- },
460
- "executionInfo": {
461
- "elapsed": 1252,
462
- "status": "ok",
463
- "timestamp": 1740357341745,
464
- "user": {
465
- "displayName": "Jaison A",
466
- "userId": "07006398627763032071"
467
- },
468
- "user_tz": -330
469
- },
470
- "id": "KIJ4N5nXMYFg",
471
- "outputId": "74c59d4c-1a16-4a0d-ad2e-aeb205f7ea57"
472
- },
473
- "outputs": [],
474
- "source": [
475
- "data2=pd.read_csv(\"data/shampoo_sales.csv\")\n",
476
- "display(data2.head())"
477
- ]
478
- },
479
- {
480
- "cell_type": "code",
481
- "execution_count": null,
482
- "metadata": {
483
- "colab": {
484
- "base_uri": "https://localhost:8080/",
485
- "height": 1000
486
- },
487
- "executionInfo": {
488
- "elapsed": 36,
489
- "status": "ok",
490
- "timestamp": 1740357341745,
491
- "user": {
492
- "displayName": "Jaison A",
493
- "userId": "07006398627763032071"
494
- },
495
- "user_tz": -330
496
- },
497
- "id": "YvazR8g_qbGK",
498
- "outputId": "b565bdd1-1ab5-4a7a-a418-50025151bb23"
499
- },
500
- "outputs": [],
501
- "source": [
502
- "#Perform basic Exploratory Data Analysis.\n",
503
- "\n",
504
- "data2.info()\n",
505
- "display(\"Summary Statistics : \",data2.describe())\n",
506
- "display(\"No of Missing Values :\",data2.isnull().sum().reset_index(name=\" No of Missing Values\"))\n",
507
- "data2=data2.dropna()#removing missing data if they exist.\n",
508
- "print(f\"\\n\\nNo of Duplicates in Dataset : {data2.duplicated().sum()}\\n\\n\")\n",
509
- "data2=data2.drop_duplicates()#removing duplicates if available.\n",
510
- "display(\"First Five Rows : \",data2.head())\n",
511
- "display(\"Last Five Rows : \",data2.tail())"
512
- ]
513
- },
514
- {
515
- "cell_type": "code",
516
- "execution_count": null,
517
- "metadata": {
518
- "colab": {
519
- "base_uri": "https://localhost:8080/",
520
- "height": 395
521
- },
522
- "executionInfo": {
523
- "elapsed": 30,
524
- "status": "ok",
525
- "timestamp": 1740357341745,
526
- "user": {
527
- "displayName": "Jaison A",
528
- "userId": "07006398627763032071"
529
- },
530
- "user_tz": -330
531
- },
532
- "id": "QYLYOwa8tooX",
533
- "outputId": "966c3194-2ecd-47d6-86d7-6d29684ea7ad"
534
- },
535
- "outputs": [],
536
- "source": [
537
- "#Perform date and lag based features\n",
538
- "data2[\"Date\"] = pd.to_datetime(data2[\"Month\"],format=\"%m-%y\")\n",
539
- "data2[\"Month\"]=data2[\"Date\"].dt.month\n",
540
- "data2[\"Year\"]=data2[\"Date\"].dt.year\n",
541
- "display(data2.head())\n",
542
- "display(data2.tail())"
543
- ]
544
- },
545
- {
546
- "cell_type": "code",
547
- "execution_count": null,
548
- "metadata": {
549
- "colab": {
550
- "base_uri": "https://localhost:8080/",
551
- "height": 472
552
- },
553
- "executionInfo": {
554
- "elapsed": 29,
555
- "status": "ok",
556
- "timestamp": 1740357341745,
557
- "user": {
558
- "displayName": "Jaison A",
559
- "userId": "07006398627763032071"
560
- },
561
- "user_tz": -330
562
- },
563
- "id": "kaWQjZ6VfrOd",
564
- "outputId": "21149ad5-56b5-4990-f108-d0fe513b776f"
565
- },
566
- "outputs": [],
567
- "source": [
568
- "data2[\"Sales\"].plot(kind=\"hist\",bins=20,title=\"Histogram of Sales\")\n",
569
- "ax=plt.gca()\n",
570
- "ax.spines[\"top\"].set_visible(False)\n",
571
- "ax.spines[\"bottom\"].set_visible(False)\n",
572
- "ax.spines[\"right\"].set_visible(False)\n",
573
- "ax.spines[\"left\"].set_visible(False)\n",
574
- "plt.xlabel(\"Sales\")\n",
575
- "plt.show()"
576
- ]
577
- },
578
- {
579
- "cell_type": "code",
580
- "execution_count": null,
581
- "metadata": {
582
- "colab": {
583
- "base_uri": "https://localhost:8080/",
584
- "height": 472
585
- },
586
- "executionInfo": {
587
- "elapsed": 28,
588
- "status": "ok",
589
- "timestamp": 1740357341745,
590
- "user": {
591
- "displayName": "Jaison A",
592
- "userId": "07006398627763032071"
593
- },
594
- "user_tz": -330
595
- },
596
- "id": "nxYJOGkgg23k",
597
- "outputId": "ae525b9d-79c8-4fe0-9d12-fd8e340a31c5"
598
- },
599
- "outputs": [],
600
- "source": [
601
- "data2[\"Sales\"].plot(kind='line',title=\"sales\")\n",
602
- "plt.xlabel(\"Sales\")\n",
603
- "plt.ylabel(\"Values\")\n",
604
- "plt.show()"
605
- ]
606
- },
607
- {
608
- "cell_type": "code",
609
- "execution_count": null,
610
- "metadata": {
611
- "colab": {
612
- "base_uri": "https://localhost:8080/",
613
- "height": 206
614
- },
615
- "executionInfo": {
616
- "elapsed": 27,
617
- "status": "ok",
618
- "timestamp": 1740357341745,
619
- "user": {
620
- "displayName": "Jaison A",
621
- "userId": "07006398627763032071"
622
- },
623
- "user_tz": -330
624
- },
625
- "id": "VvybP7rThGkE",
626
- "outputId": "882f1f08-c8c0-4109-c615-8be2235fe6a0"
627
- },
628
- "outputs": [],
629
- "source": [
630
- "#lag.\n",
631
- "data2['lag_1']=data2[\"Sales\"].shift(1)\n",
632
- "data2[\"lag_2\"]=data2['Sales'].shift(3)\n",
633
- "display(data2.head())"
634
- ]
635
- },
636
- {
637
- "cell_type": "code",
638
- "execution_count": null,
639
- "metadata": {
640
- "colab": {
641
- "base_uri": "https://localhost:8080/",
642
- "height": 363
643
- },
644
- "executionInfo": {
645
- "elapsed": 26,
646
- "status": "ok",
647
- "timestamp": 1740357341745,
648
- "user": {
649
- "displayName": "Jaison A",
650
- "userId": "07006398627763032071"
651
- },
652
- "user_tz": -330
653
- },
654
- "id": "SIfG_XeuhoZV",
655
- "outputId": "c2920be0-7ef6-4ce7-ec72-4cbdd69cf11e"
656
- },
657
- "outputs": [],
658
- "source": [
659
- "#rolling.\n",
660
- "data2[\"rolling_mean_5\"]=data2['Sales'].rolling(5).mean()\n",
661
- "data2[\"rolling_min_5\"]=data2['Sales'].rolling(5).min()\n",
662
- "data2[\"rolling_max_5\"]=data2['Sales'].rolling(5).max()\n",
663
- "data2[\"rolling_std_5\"]=data2['Sales'].rolling(5).std()\n",
664
- "display(data2.head(10))"
665
- ]
666
- },
667
- {
668
- "cell_type": "code",
669
- "execution_count": null,
670
- "metadata": {
671
- "colab": {
672
- "base_uri": "https://localhost:8080/",
673
- "height": 363
674
- },
675
- "executionInfo": {
676
- "elapsed": 25,
677
- "status": "ok",
678
- "timestamp": 1740357341745,
679
- "user": {
680
- "displayName": "Jaison A",
681
- "userId": "07006398627763032071"
682
- },
683
- "user_tz": -330
684
- },
685
- "id": "6Ov02b5KiKap",
686
- "outputId": "66e756d4-1945-43ce-cfb6-484cca73c91d"
687
- },
688
- "outputs": [],
689
- "source": [
690
- "data2[\"expanding_mean\"]=data2['Sales'].expanding().mean()\n",
691
- "data2['expanding_min']=data2['Sales'].expanding().min()\n",
692
- "data2['expanding_max']=data2['Sales'].expanding().max()\n",
693
- "data2['expanding_std']=data2['Sales'].expanding().std()\n",
694
- "display(data2.head(10))"
695
- ]
696
- },
697
- {
698
- "cell_type": "code",
699
- "execution_count": null,
700
- "metadata": {
701
- "colab": {
702
- "base_uri": "https://localhost:8080/",
703
- "height": 206
704
- },
705
- "executionInfo": {
706
- "elapsed": 25,
707
- "status": "ok",
708
- "timestamp": 1740357341746,
709
- "user": {
710
- "displayName": "Jaison A",
711
- "userId": "07006398627763032071"
712
- },
713
- "user_tz": -330
714
- },
715
- "id": "GKyc9bAejTy4",
716
- "outputId": "4a686717-21ec-4375-ecfc-0fcc6f56fb11"
717
- },
718
- "outputs": [],
719
- "source": [
720
- "#drop missing values.\n",
721
- "data2.dropna(inplace=True)\n",
722
- "display(data2.head())"
723
- ]
724
- },
725
- {
726
- "cell_type": "code",
727
- "execution_count": null,
728
- "metadata": {
729
- "colab": {
730
- "base_uri": "https://localhost:8080/",
731
- "height": 747
732
- },
733
- "executionInfo": {
734
- "elapsed": 1649,
735
- "status": "ok",
736
- "timestamp": 1740357343371,
737
- "user": {
738
- "displayName": "Jaison A",
739
- "userId": "07006398627763032071"
740
- },
741
- "user_tz": -330
742
- },
743
- "id": "IacjMiWsjraC",
744
- "outputId": "395c187a-c9d7-42dc-ace0-2979b69e853a"
745
- },
746
- "outputs": [],
747
- "source": [
748
- "#correlation matrix for feature extraction.\n",
749
- "from sklearn.preprocessing import StandardScaler\n",
750
- "Scaler=StandardScaler()\n",
751
- "data_numeric=data2.select_dtypes(include=['number'])\n",
752
- "Scaled_data=pd.DataFrame(Scaler.fit_transform(data_numeric),columns=data_numeric.columns,index=data_numeric.index)\n",
753
- "display(Scaled_data.head())\n",
754
- "\n",
755
- "sns.heatmap(Scaled_data.corr(),annot=True,cmap='coolwarm')\n",
756
- "plt.title(\"Correlation Matrix\")\n",
757
- "plt.show()"
758
- ]
759
- },
760
- {
761
- "cell_type": "markdown",
762
- "metadata": {
763
- "id": "f0DbzcliMrBt"
764
- },
765
- "source": [
766
- "# ***EX_3***"
767
- ]
768
- },
769
- {
770
- "cell_type": "code",
771
- "execution_count": null,
772
- "metadata": {
773
- "executionInfo": {
774
- "elapsed": 413,
775
- "status": "ok",
776
- "timestamp": 1740358664164,
777
- "user": {
778
- "displayName": "Jaison A",
779
- "userId": "07006398627763032071"
780
- },
781
- "user_tz": -330
782
- },
783
- "id": "hMDhfYk9A31m"
784
- },
785
- "outputs": [],
786
- "source": [
787
- "from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
788
- "from statsmodels.tsa.arima.model import ARIMA"
789
- ]
790
- },
791
- {
792
- "cell_type": "code",
793
- "execution_count": null,
794
- "metadata": {
795
- "colab": {
796
- "base_uri": "https://localhost:8080/",
797
- "height": 206
798
- },
799
- "executionInfo": {
800
- "elapsed": 541,
801
- "status": "ok",
802
- "timestamp": 1740358667234,
803
- "user": {
804
- "displayName": "Jaison A",
805
- "userId": "07006398627763032071"
806
- },
807
- "user_tz": -330
808
- },
809
- "id": "nauKmIq0MteK",
810
- "outputId": "0fe43e74-5e28-4808-e91f-7976f1d51849"
811
- },
812
- "outputs": [],
813
- "source": [
814
- "data3=pd.read_csv(\"data/daily-min-temperatures.csv\")\n",
815
- "display(data3.head())"
816
- ]
817
- },
818
- {
819
- "cell_type": "code",
820
- "execution_count": null,
821
- "metadata": {
822
- "colab": {
823
- "base_uri": "https://localhost:8080/",
824
- "height": 887
825
- },
826
- "executionInfo": {
827
- "elapsed": 14562,
828
- "status": "ok",
829
- "timestamp": 1740358683849,
830
- "user": {
831
- "displayName": "Jaison A",
832
- "userId": "07006398627763032071"
833
- },
834
- "user_tz": -330
835
- },
836
- "id": "kXmZiDB099gy",
837
- "outputId": "bec3f37d-2627-48c0-d871-6988158a7097"
838
- },
839
- "outputs": [],
840
- "source": [
841
- "#Find how time series values differs over[S1] time by analyzing the key aspects of temporal relationships such as trends, seasonality,lags and cycles.\n",
842
- "data3[\"Temp\"].plot(title=\"Daily Temperature\")\n",
843
- "plt.show()\n",
844
- "\n",
845
- "plt.scatter(data3[\"Date\"],data3[\"Temp\"])\n",
846
- "plt.title(\"Daily Temperature\")\n",
847
- "plt.show()"
848
- ]
849
- },
850
- {
851
- "cell_type": "code",
852
- "execution_count": null,
853
- "metadata": {
854
- "colab": {
855
- "base_uri": "https://localhost:8080/",
856
- "height": 887
857
- },
858
- "executionInfo": {
859
- "elapsed": 621,
860
- "status": "ok",
861
- "timestamp": 1740358689668,
862
- "user": {
863
- "displayName": "Jaison A",
864
- "userId": "07006398627763032071"
865
- },
866
- "user_tz": -330
867
- },
868
- "id": "vLpi08RqBBEq",
869
- "outputId": "93ff1514-7e91-472d-e921-93b480c80c17"
870
- },
871
- "outputs": [],
872
- "source": [
873
- "plot_acf(data3[\"Temp\"],lags=50)\n",
874
- "plt.show()\n",
875
- "\n",
876
- "plot_pacf(data3[\"Temp\"],lags=50)\n",
877
- "plt.show()"
878
- ]
879
- },
880
- {
881
- "cell_type": "code",
882
- "execution_count": null,
883
- "metadata": {
884
- "colab": {
885
- "base_uri": "https://localhost:8080/",
886
- "height": 1000
887
- },
888
- "executionInfo": {
889
- "elapsed": 4781,
890
- "status": "ok",
891
- "timestamp": 1740358792570,
892
- "user": {
893
- "displayName": "Jaison A",
894
- "userId": "07006398627763032071"
895
- },
896
- "user_tz": -330
897
- },
898
- "id": "H1QHq0q5Drfz",
899
- "outputId": "2a337a2f-6936-4bf0-9249-f0ec900b6cf8"
900
- },
901
- "outputs": [],
902
- "source": [
903
- "ar_model=ARIMA(data3[\"Temp\"],order=(2,0,0))\n",
904
- "ar_fit=ar_model.fit()\n",
905
- "display('AR Model : ',ar_fit.summary())\n",
906
- "\n",
907
- "ma_model=ARIMA(data3[\"Temp\"],order=(0,0,2))\n",
908
- "ma_fit=ma_model.fit()\n",
909
- "display('MA Model : ',ma_fit.summary())\n",
910
- "\n",
911
- "arma_model=ARIMA(data3[\"Temp\"],order=(2,0,2))\n",
912
- "arma_fit=arma_model.fit()\n",
913
- "display('ARMA Model : ',arma_fit.summary())"
914
- ]
915
- },
916
- {
917
- "cell_type": "code",
918
- "execution_count": null,
919
- "metadata": {
920
- "colab": {
921
- "base_uri": "https://localhost:8080/",
922
- "height": 1000
923
- },
924
- "executionInfo": {
925
- "elapsed": 1277,
926
- "status": "ok",
927
- "timestamp": 1740357363185,
928
- "user": {
929
- "displayName": "Jaison A",
930
- "userId": "07006398627763032071"
931
- },
932
- "user_tz": -330
933
- },
934
- "id": "CwhhRS3gFSut",
935
- "outputId": "0359f268-5204-4fe3-8520-b5b06f0b3418"
936
- },
937
- "outputs": [],
938
- "source": [
939
- "#Histogram.\n",
940
- "data3[\"Temp\"].plot(kind=\"hist\",bins=20,title=\"Histogram of Temperature\",edgecolor=\"black\")\n",
941
- "plt.xlabel(\"Temperature\")\n",
942
- "plt.show()\n",
943
- "\n",
944
- "#Density plot.\n",
945
- "sns.kdeplot(data3[\"Temp\"],fill=True)\n",
946
- "plt.title(\"Density PLot of Temperature\")\n",
947
- "plt.show()\n",
948
- "\n",
949
- "#box and wisker plot.\n",
950
- "sns.boxplot(data3[\"Temp\"])\n",
951
- "plt.title(\"Box and Whisker Plot of Temperature\")\n",
952
- "plt.show()\n",
953
- "\n",
954
- "#heatmap\n",
955
- "data3[\"Lagged_1\"]=data3[\"Temp\"].shift(1)\n",
956
- "data3[\"Lagged_3\"]=data3[\"Temp\"].shift(3)\n",
957
- "data3[\"Rolling_mean_3\"]=data3[\"Temp\"].rolling(3).mean()\n",
958
- "sns.heatmap(data3.select_dtypes(include=['number']).corr(), annot=True, cmap='coolwarm', linewidths=0.5)\n",
959
- "plt.show()"
960
- ]
961
- },
962
- {
963
- "cell_type": "markdown",
964
- "metadata": {
965
- "id": "1MC9ktJs-WRz"
966
- },
967
- "source": [
968
- "***Extra***"
969
- ]
970
- },
971
- {
972
- "cell_type": "code",
973
- "execution_count": null,
974
- "metadata": {
975
- "colab": {
976
- "base_uri": "https://localhost:8080/",
977
- "height": 1000
978
- },
979
- "executionInfo": {
980
- "elapsed": 1564,
981
- "status": "ok",
982
- "timestamp": 1740357364737,
983
- "user": {
984
- "displayName": "Jaison A",
985
- "userId": "07006398627763032071"
986
- },
987
- "user_tz": -330
988
- },
989
- "id": "Arh5e0emCHdU",
990
- "outputId": "db0a0b2e-1b5e-48f0-ffe3-3de8f82b9bb9"
991
- },
992
- "outputs": [],
993
- "source": [
994
- "from statsmodels.tsa.seasonal import seasonal_decompose\n",
995
- "\n",
996
- "data_decomposed=seasonal_decompose(data3[\"Temp\"],model=\"additive\",period=365)\n",
997
- "\n",
998
- "trend=data_decomposed.trend\n",
999
- "seasonal=data_decomposed.seasonal\n",
1000
- "residual=data_decomposed.resid\n",
1001
- "\n",
1002
- "plt.plot(data3[\"Temp\"])\n",
1003
- "plt.title('Original')\n",
1004
- "plt.show()\n",
1005
- "plt.plot(trend)\n",
1006
- "plt.title(\"Trend\")\n",
1007
- "plt.show()\n",
1008
- "plt.plot(seasonal)\n",
1009
- "plt.title(\"Seasonal\")\n",
1010
- "plt.show()\n",
1011
- "plt.plot(residual)\n",
1012
- "plt.title(\"Residual\")\n",
1013
- "plt.show()"
1014
- ]
1015
- },
1016
- {
1017
- "cell_type": "markdown",
1018
- "metadata": {
1019
- "id": "14Hg06M_NoUq"
1020
- },
1021
- "source": [
1022
- "# ***EX_4***"
1023
- ]
1024
- },
1025
- {
1026
- "cell_type": "code",
1027
- "execution_count": null,
1028
- "metadata": {
1029
- "colab": {
1030
- "base_uri": "https://localhost:8080/",
1031
- "height": 650
1032
- },
1033
- "executionInfo": {
1034
- "elapsed": 29,
1035
- "status": "ok",
1036
- "timestamp": 1740357364738,
1037
- "user": {
1038
- "displayName": "Jaison A",
1039
- "userId": "07006398627763032071"
1040
- },
1041
- "user_tz": -330
1042
- },
1043
- "id": "rJBVHicDNrHy",
1044
- "outputId": "9d97b557-512c-4d02-dd58-dac1e56c318d"
1045
- },
1046
- "outputs": [],
1047
- "source": [
1048
- "data4=pd.read_csv(\"data/shampoo_sales.csv\")\n",
1049
- "display(data4.head())\n",
1050
- "\n",
1051
- "\n",
1052
- "data4[\"Date\"]=pd.to_datetime(data4[\"Month\"],format=\"%m-%y\")\n",
1053
- "data4=data4.drop(\"Month\",axis=1)\n",
1054
- "display(data4.head())\n",
1055
- "\n",
1056
- "data=pd.Series(data4[\"Sales\"].values,index=data4[\"Date\"])\n",
1057
- "display(data.head())"
1058
- ]
1059
- },
1060
- {
1061
- "cell_type": "code",
1062
- "execution_count": null,
1063
- "metadata": {
1064
- "colab": {
1065
- "base_uri": "https://localhost:8080/",
1066
- "height": 1000
1067
- },
1068
- "executionInfo": {
1069
- "elapsed": 26,
1070
- "status": "ok",
1071
- "timestamp": 1740357364739,
1072
- "user": {
1073
- "displayName": "Jaison A",
1074
- "userId": "07006398627763032071"
1075
- },
1076
- "user_tz": -330
1077
- },
1078
- "id": "Wv9S5nMGLMYa",
1079
- "outputId": "377c6156-1fcd-47e9-c271-bcc5627242ee"
1080
- },
1081
- "outputs": [],
1082
- "source": [
1083
- "#upsampling.\n",
1084
- "\n",
1085
- "up_1=data.resample(\"h\").mean()\n",
1086
- "up_2=data.resample(\"1min\").min()\n",
1087
- "up_3=data.resample('5min').sum()\n",
1088
- "up_4=data.resample('h').asfreq()\n",
1089
- "display(up_1,up_1.describe(),\"No of missing Values : \",up_1.isnull().sum())\n",
1090
- "display(up_2,up_2.describe(),\"No of missing Values : \",up_2.isnull().sum())\n",
1091
- "display(up_3,up_3.describe(),\"No of missing Values : \",up_3.isnull().sum())\n",
1092
- "display(up_4,up_4.describe(),\"No of missing Values : \",up_4.isnull().sum())"
1093
- ]
1094
- },
1095
- {
1096
- "cell_type": "code",
1097
- "execution_count": null,
1098
- "metadata": {
1099
- "colab": {
1100
- "base_uri": "https://localhost:8080/",
1101
- "height": 1000
1102
- },
1103
- "executionInfo": {
1104
- "elapsed": 22,
1105
- "status": "ok",
1106
- "timestamp": 1740357364739,
1107
- "user": {
1108
- "displayName": "Jaison A",
1109
- "userId": "07006398627763032071"
1110
- },
1111
- "user_tz": -330
1112
- },
1113
- "id": "QrqkQYJgOOLk",
1114
- "outputId": "4f411d06-0040-4d0b-95ea-ffd495e5b3cc"
1115
- },
1116
- "outputs": [],
1117
- "source": [
1118
- "#Downsampling from upsampled data.\n",
1119
- "\n",
1120
- "down_1=up_1.resample(\"D\").mean()\n",
1121
- "down_2=up_2.resample(\"10min\").min()\n",
1122
- "down_3=up_3.resample(\"h\").sum()\n",
1123
- "down_4=up_4.resample(\"D\").asfreq()\n",
1124
- "\n",
1125
- "display(down_1,down_1.describe(),\"No of missing Values : \",down_1.isnull().sum())\n",
1126
- "display(down_2,down_2.describe(),\"No of missing Values : \",down_2.isnull().sum())\n",
1127
- "display(down_3,down_3.describe(),\"No of missing Values : \",down_3.isnull().sum())\n",
1128
- "display(down_4,down_4.describe(),\"No of missing Values : \",down_4.isnull().sum())"
1129
- ]
1130
- },
1131
- {
1132
- "cell_type": "code",
1133
- "execution_count": null,
1134
- "metadata": {
1135
- "colab": {
1136
- "base_uri": "https://localhost:8080/",
1137
- "height": 1000
1138
- },
1139
- "executionInfo": {
1140
- "elapsed": 1537,
1141
- "status": "ok",
1142
- "timestamp": 1740357366258,
1143
- "user": {
1144
- "displayName": "Jaison A",
1145
- "userId": "07006398627763032071"
1146
- },
1147
- "user_tz": -330
1148
- },
1149
- "id": "OsLKMVgyPuvK",
1150
- "outputId": "69ef9500-35e8-4d97-ce49-16dea0b08114"
1151
- },
1152
- "outputs": [],
1153
- "source": [
1154
- "#Interpolation .\n",
1155
- "\n",
1156
- "d1=data.resample(\"D\")\n",
1157
- "interpolated_1=d1.interpolate(method=\"linear\")\n",
1158
- "display(interpolated_1.head())\n",
1159
- "display(interpolated_1.tail())\n",
1160
- "interpolated_1.plot(kind=\"line\",title=\"Linear Interpolation\")\n",
1161
- "plt.show()\n",
1162
- "\n",
1163
- "interpolated_2=d1.interpolate(method=\"spline\",order=2)\n",
1164
- "display(interpolated_2.head())\n",
1165
- "display(interpolated_2.tail())\n",
1166
- "interpolated_2.plot(title=\"Spline Interpolation\")\n",
1167
- "plt.show()"
1168
- ]
1169
- },
1170
- {
1171
- "cell_type": "markdown",
1172
- "metadata": {
1173
- "id": "vxHGmAiyOVCq"
1174
- },
1175
- "source": [
1176
- "# ***EX_5***"
1177
- ]
1178
- },
1179
- {
1180
- "cell_type": "code",
1181
- "execution_count": null,
1182
- "metadata": {
1183
- "executionInfo": {
1184
- "elapsed": 21,
1185
- "status": "ok",
1186
- "timestamp": 1740357366258,
1187
- "user": {
1188
- "displayName": "Jaison A",
1189
- "userId": "07006398627763032071"
1190
- },
1191
- "user_tz": -330
1192
- },
1193
- "id": "lQn-Xu89RRdF"
1194
- },
1195
- "outputs": [],
1196
- "source": [
1197
- "from statsmodels.tsa.stattools import kpss,adfuller\n",
1198
- "from statsmodels.tsa.seasonal import seasonal_decompose"
1199
- ]
1200
- },
1201
- {
1202
- "cell_type": "code",
1203
- "execution_count": null,
1204
- "metadata": {
1205
- "colab": {
1206
- "base_uri": "https://localhost:8080/",
1207
- "height": 206
1208
- },
1209
- "executionInfo": {
1210
- "elapsed": 21,
1211
- "status": "ok",
1212
- "timestamp": 1740357366259,
1213
- "user": {
1214
- "displayName": "Jaison A",
1215
- "userId": "07006398627763032071"
1216
- },
1217
- "user_tz": -330
1218
- },
1219
- "id": "DMi3fCA9OXBl",
1220
- "outputId": "dd2b4195-0e15-459d-9126-3225045538b4"
1221
- },
1222
- "outputs": [],
1223
- "source": [
1224
- "data5=pd.read_csv(\"data/daily-total-female-births.csv\")\n",
1225
- "display(data5.head())"
1226
- ]
1227
- },
1228
- {
1229
- "cell_type": "code",
1230
- "execution_count": null,
1231
- "metadata": {
1232
- "colab": {
1233
- "base_uri": "https://localhost:8080/"
1234
- },
1235
- "executionInfo": {
1236
- "elapsed": 19,
1237
- "status": "ok",
1238
- "timestamp": 1740357366259,
1239
- "user": {
1240
- "displayName": "Jaison A",
1241
- "userId": "07006398627763032071"
1242
- },
1243
- "user_tz": -330
1244
- },
1245
- "id": "WJUYt-XgRhsL",
1246
- "outputId": "a8b40d2b-2b0e-42e6-c6c0-713c1c641bbd"
1247
- },
1248
- "outputs": [],
1249
- "source": [
1250
- "import warnings\n",
1251
- "warnings.filterwarnings('ignore')\n",
1252
- "\n",
1253
- "class stationary_test():\n",
1254
- " def adf_test(self,data):\n",
1255
- " print(\"\\nAdfuller : \\n\")\n",
1256
- " statistic,p_value,n_lags,n_obs,critical_values,m_info=adfuller(data)\n",
1257
- " print(f\"Statistic : {statistic}\")\n",
1258
- " print(f\"P_value : {p_value}\")\n",
1259
- " print(f\"n_lags : {n_lags}\")\n",
1260
- " print(f\"n_obs : {n_obs}\")\n",
1261
- " print(f\"max_info : {m_info}\")\n",
1262
- " print(\"Critical Values : \")\n",
1263
- " for key,value in critical_values.items():\n",
1264
- " print(f\" {key} : {value}\")\n",
1265
- " print(f\"Result : The data is {'not' if p_value<0.05 else ''} Stationary.\")\n",
1266
- "\n",
1267
- " def kpss_test(self,data):\n",
1268
- " print(\"\\nKPSS : \\n\")\n",
1269
- " statistic,p_value,n_lags,critical_values=kpss(data)\n",
1270
- " print(f\"Statistic : {statistic}\")\n",
1271
- " print(f\"P_value : {p_value}\")\n",
1272
- " print(f\"n_lags : {n_lags}\")\n",
1273
- " print(\"Critical Values : \")\n",
1274
- " for key,value in critical_values.items():\n",
1275
- " print(f\" {key} : {value}\")\n",
1276
- " print(f\"Result : The data is {'not' if p_value<0.05 else ''} Stationary.\")\n",
1277
- "\n",
1278
- "stationary_test().adf_test(data5[\"Births\"])\n",
1279
- "stationary_test().kpss_test(data5[\"Births\"])"
1280
- ]
1281
- },
1282
- {
1283
- "cell_type": "code",
1284
- "execution_count": null,
1285
- "metadata": {
1286
- "colab": {
1287
- "base_uri": "https://localhost:8080/",
1288
- "height": 487
1289
- },
1290
- "executionInfo": {
1291
- "elapsed": 12,
1292
- "status": "ok",
1293
- "timestamp": 1740357366259,
1294
- "user": {
1295
- "displayName": "Jaison A",
1296
- "userId": "07006398627763032071"
1297
- },
1298
- "user_tz": -330
1299
- },
1300
- "id": "8MHXNENCX_v3",
1301
- "outputId": "55f46ef1-9ecc-436d-9cd3-162192296c58"
1302
- },
1303
- "outputs": [],
1304
- "source": [
1305
- "def decompose_data(data):\n",
1306
- " decomposed_data=seasonal_decompose(data[\"Births\"],model=\"additive\",period=7)\n",
1307
- "\n",
1308
- " seasonal=decomposed_data.seasonal\n",
1309
- " trend=decomposed_data.trend\n",
1310
- " residual=decomposed_data.resid\n",
1311
- "\n",
1312
- " plt.subplot(411)\n",
1313
- " plt.plot(data[\"Births\"],label=\"Births\")\n",
1314
- " plt.title(\"Original\")\n",
1315
- " plt.legend(loc=\"best\")\n",
1316
- " plt.subplot(412)\n",
1317
- " plt.plot(trend,label=\"Births\")\n",
1318
- " plt.title(\"Trend\")\n",
1319
- " plt.legend(loc=\"best\")\n",
1320
- " plt.subplot(413)\n",
1321
- " plt.plot(seasonal,label=\"Births\")\n",
1322
- " plt.title(\"Seasonal\")\n",
1323
- " plt.legend(loc=\"best\")\n",
1324
- " plt.subplot(414)\n",
1325
- " plt.plot(residual,label=\"Births\")\n",
1326
- " plt.title(\"Residual\")\n",
1327
- " plt.legend(loc=\"best\")\n",
1328
- " plt.tight_layout()\n",
1329
- " plt.show()\n",
1330
- "\n",
1331
- "decompose_data(data5)"
1332
- ]
1333
- },
1334
- {
1335
- "cell_type": "markdown",
1336
- "metadata": {},
1337
- "source": [
1338
- "# ***EX_6***"
1339
- ]
1340
- },
1341
- {
1342
- "cell_type": "code",
1343
- "execution_count": null,
1344
- "metadata": {},
1345
- "outputs": [],
1346
- "source": [
1347
- "import pandas as pd\n",
1348
- "import numpy as np\n",
1349
- "import matplotlib.pyplot as plt\n",
1350
- "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf"
1351
- ]
1352
- },
1353
- {
1354
- "cell_type": "code",
1355
- "execution_count": null,
1356
- "metadata": {},
1357
- "outputs": [],
1358
- "source": [
1359
- "df = pd.read_csv('data/daily-min-temperatures.csv')\n",
1360
- "print(df.shape)\n",
1361
- "df.head()"
1362
- ]
1363
- },
1364
- {
1365
- "cell_type": "code",
1366
- "execution_count": null,
1367
- "metadata": {},
1368
- "outputs": [],
1369
- "source": [
1370
- "df.plot(title = \"daily Minimum Temperature\" ,figsize = (14, 8), legend = None, color = 'green')\n",
1371
- "plt.xlabel('Date')\n",
1372
- "plt.ylabel('Temperature (°C)')\n",
1373
- "plt.show()"
1374
- ]
1375
- },
1376
- {
1377
- "cell_type": "code",
1378
- "execution_count": null,
1379
- "metadata": {},
1380
- "outputs": [],
1381
- "source": [
1382
- "fig, axs = plt.subplots(2, 1, figsize = (10,8))\n",
1383
- "plot_acf(df['Temp'], lags = 30, ax = axs[0], title = 'Autocorrelation (ACF)', color = 'green')\n",
1384
- "plot_pacf(df['Temp'], lags = 30, ax = axs[1], title = 'Partial Autocorrelation (PACF)', color = 'red')\n",
1385
- "plt.tight_layout()\n",
1386
- "plt.show()"
1387
- ]
1388
- }
1389
- ],
1390
- "metadata": {
1391
- "colab": {
1392
- "authorship_tag": "ABX9TyMO2Ar4ng0qzuL76Kn//c5c",
1393
- "mount_file_id": "1-TZgygrVA6lCZOtzkiJAcAIWo5aLCj-x",
1394
- "provenance": []
1395
- },
1396
- "kernelspec": {
1397
- "display_name": "Python 3 (ipykernel)",
1398
- "language": "python",
1399
- "name": "python3"
1400
- },
1401
- "language_info": {
1402
- "codemirror_mode": {
1403
- "name": "ipython",
1404
- "version": 3
1405
- },
1406
- "file_extension": ".py",
1407
- "mimetype": "text/x-python",
1408
- "name": "python",
1409
- "nbconvert_exporter": "python",
1410
- "pygments_lexer": "ipython3",
1411
- "version": "3.12.4"
1412
- }
1413
- },
1414
- "nbformat": 4,
1415
- "nbformat_minor": 4
1416
- }