noshot 0.3.9__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +535 -0
- noshot/data/ML TS XAI/Football Player/4.ipynb +395 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +1 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +886 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +292 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +1 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +546 -0
- noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +921 -0
- {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/METADATA +1 -1
- noshot-0.4.0.dist-info/RECORD +48 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
- noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
- noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
- noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
- noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
- noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
- noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
- noshot-0.3.9.dist-info/RECORD +0 -62
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/1.ipynb +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/Question.txt +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/airfoil_self_noise.dat +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/2.ipynb +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/Question.txt +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/pop_failures.dat +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/3.ipynb +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/Qu.txt +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/go_track_tracks.csv +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/4.ipynb +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/Wilt.csv +0 -0
- /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/qu.txt +0 -0
- {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/LICENSE.txt +0 -0
- {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/WHEEL +0 -0
- {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/top_level.txt +0 -0
@@ -1,146 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "6bb9403b-263b-48e3-a516-a436a771ab3d",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import seaborn as sns\n",
|
14
|
-
"import random"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "code",
|
19
|
-
"execution_count": null,
|
20
|
-
"id": "e62e553d-9abb-4f4a-bf47-48df2618e1ba",
|
21
|
-
"metadata": {},
|
22
|
-
"outputs": [],
|
23
|
-
"source": [
|
24
|
-
"np.random.seed(42)\n",
|
25
|
-
"dates=pd.date_range('2024-01-01','2024-12-31',freq='ME')\n",
|
26
|
-
"data=pd.DataFrame(data=[random.randint(0,1000) for i in range(len(dates))], index=dates,columns=['Values'])\n",
|
27
|
-
"data.head()"
|
28
|
-
]
|
29
|
-
},
|
30
|
-
{
|
31
|
-
"cell_type": "code",
|
32
|
-
"execution_count": null,
|
33
|
-
"id": "00fc7ac6-e20b-4203-8e76-02fb6d7cc435",
|
34
|
-
"metadata": {},
|
35
|
-
"outputs": [],
|
36
|
-
"source": [
|
37
|
-
"data.plot(kind='line')\n",
|
38
|
-
"plt.show()"
|
39
|
-
]
|
40
|
-
},
|
41
|
-
{
|
42
|
-
"cell_type": "markdown",
|
43
|
-
"id": "90d4394d-e513-49d1-9f0c-17540946e676",
|
44
|
-
"metadata": {},
|
45
|
-
"source": [
|
46
|
-
"**Up Sampling and Interpolation**"
|
47
|
-
]
|
48
|
-
},
|
49
|
-
{
|
50
|
-
"cell_type": "code",
|
51
|
-
"execution_count": null,
|
52
|
-
"id": "a5b59623-5abc-4f47-86de-f5992dd95d4b",
|
53
|
-
"metadata": {},
|
54
|
-
"outputs": [],
|
55
|
-
"source": [
|
56
|
-
"upsample=data.resample('h')\n",
|
57
|
-
"interpolated=upsample.interpolate(method='linear')\n",
|
58
|
-
"interpolated"
|
59
|
-
]
|
60
|
-
},
|
61
|
-
{
|
62
|
-
"cell_type": "code",
|
63
|
-
"execution_count": null,
|
64
|
-
"id": "b5fd4bf6-b5fd-4144-8efa-3d42d52abc72",
|
65
|
-
"metadata": {},
|
66
|
-
"outputs": [],
|
67
|
-
"source": [
|
68
|
-
"interpolated.plot(kind='line')"
|
69
|
-
]
|
70
|
-
},
|
71
|
-
{
|
72
|
-
"cell_type": "code",
|
73
|
-
"execution_count": null,
|
74
|
-
"id": "fd729d40-2b9f-4cfa-8fcb-8ab950d5051a",
|
75
|
-
"metadata": {},
|
76
|
-
"outputs": [],
|
77
|
-
"source": [
|
78
|
-
"upsample=data.resample('h')\n",
|
79
|
-
"interpolated=upsample.interpolate(method='spline',order=3)\n",
|
80
|
-
"interpolated"
|
81
|
-
]
|
82
|
-
},
|
83
|
-
{
|
84
|
-
"cell_type": "code",
|
85
|
-
"execution_count": null,
|
86
|
-
"id": "453062ab-4042-4bcd-a465-ecc4375e9cbf",
|
87
|
-
"metadata": {},
|
88
|
-
"outputs": [],
|
89
|
-
"source": [
|
90
|
-
"interpolated.plot(kind='line')\n",
|
91
|
-
"plt.show()"
|
92
|
-
]
|
93
|
-
},
|
94
|
-
{
|
95
|
-
"cell_type": "markdown",
|
96
|
-
"id": "6f6e70bf-15c7-4dfb-b9b1-3deae9a4226e",
|
97
|
-
"metadata": {},
|
98
|
-
"source": [
|
99
|
-
"**Down Sampling and Interpolation**"
|
100
|
-
]
|
101
|
-
},
|
102
|
-
{
|
103
|
-
"cell_type": "code",
|
104
|
-
"execution_count": null,
|
105
|
-
"id": "bd57a941-82c1-40c8-911c-6cca58ea549b",
|
106
|
-
"metadata": {},
|
107
|
-
"outputs": [],
|
108
|
-
"source": [
|
109
|
-
"downsample=interpolated.resample('QE')\n",
|
110
|
-
"interpolated=downsample.mean()\n",
|
111
|
-
"interpolated"
|
112
|
-
]
|
113
|
-
},
|
114
|
-
{
|
115
|
-
"cell_type": "code",
|
116
|
-
"execution_count": null,
|
117
|
-
"id": "f3427633-7ca0-4377-98d1-95099c064159",
|
118
|
-
"metadata": {},
|
119
|
-
"outputs": [],
|
120
|
-
"source": [
|
121
|
-
"interpolated.plot(kind='line')"
|
122
|
-
]
|
123
|
-
}
|
124
|
-
],
|
125
|
-
"metadata": {
|
126
|
-
"kernelspec": {
|
127
|
-
"display_name": "Python 3 (ipykernel)",
|
128
|
-
"language": "python",
|
129
|
-
"name": "python3"
|
130
|
-
},
|
131
|
-
"language_info": {
|
132
|
-
"codemirror_mode": {
|
133
|
-
"name": "ipython",
|
134
|
-
"version": 3
|
135
|
-
},
|
136
|
-
"file_extension": ".py",
|
137
|
-
"mimetype": "text/x-python",
|
138
|
-
"name": "python",
|
139
|
-
"nbconvert_exporter": "python",
|
140
|
-
"pygments_lexer": "ipython3",
|
141
|
-
"version": "3.12.4"
|
142
|
-
}
|
143
|
-
},
|
144
|
-
"nbformat": 4,
|
145
|
-
"nbformat_minor": 5
|
146
|
-
}
|
@@ -1,173 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "f01bfd82-b491-4e4c-ab74-0eb7709b20b1",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"from statsmodels.tsa.stattools import kpss\n",
|
14
|
-
"from statsmodels.tsa.seasonal import seasonal_decompose\n",
|
15
|
-
"import warnings\n",
|
16
|
-
"warnings.filterwarnings(\"ignore\")"
|
17
|
-
]
|
18
|
-
},
|
19
|
-
{
|
20
|
-
"cell_type": "code",
|
21
|
-
"execution_count": null,
|
22
|
-
"id": "04a57fe7-20ae-4202-b5fd-7d4f60161871",
|
23
|
-
"metadata": {},
|
24
|
-
"outputs": [],
|
25
|
-
"source": [
|
26
|
-
"df = pd.read_csv(\"data/daily-total-female-births.csv\", parse_dates = ['Date'], index_col='Date')\n",
|
27
|
-
"print(f\"Shape: {df.shape}\")\n",
|
28
|
-
"df.head()"
|
29
|
-
]
|
30
|
-
},
|
31
|
-
{
|
32
|
-
"cell_type": "code",
|
33
|
-
"execution_count": null,
|
34
|
-
"id": "8ae68a42-dc21-4fdc-a69d-3c28ae65f146",
|
35
|
-
"metadata": {},
|
36
|
-
"outputs": [],
|
37
|
-
"source": [
|
38
|
-
"df.plot()\n",
|
39
|
-
"plt.show()"
|
40
|
-
]
|
41
|
-
},
|
42
|
-
{
|
43
|
-
"cell_type": "code",
|
44
|
-
"execution_count": null,
|
45
|
-
"id": "99bc55d6-f608-4ab3-84f0-f0b9b6e39aa8",
|
46
|
-
"metadata": {},
|
47
|
-
"outputs": [],
|
48
|
-
"source": [
|
49
|
-
"x = np.linspace(0, 12, num=200)\n",
|
50
|
-
"seasonality = 1.2 * np.sin(2 * np.pi * x / 4)\n",
|
51
|
-
"\n",
|
52
|
-
"plt.figure(figsize=(10,6))\n",
|
53
|
-
"plt.plot(x, seasonality, label = \"Seasonal Component\", color = \"g\")\n",
|
54
|
-
"plt.xlabel(\"Time\")\n",
|
55
|
-
"plt.ylabel(\"Value\")\n",
|
56
|
-
"plt.title(\"Seasonal Signal\")\n",
|
57
|
-
"plt.legend()\n",
|
58
|
-
"plt.show()"
|
59
|
-
]
|
60
|
-
},
|
61
|
-
{
|
62
|
-
"cell_type": "code",
|
63
|
-
"execution_count": null,
|
64
|
-
"id": "ea5377ec-67f4-4fc3-b20b-7792b937eb72",
|
65
|
-
"metadata": {},
|
66
|
-
"outputs": [],
|
67
|
-
"source": [
|
68
|
-
"df2 = pd.read_csv(\"daily-min-temperatures.csv\", parse_dates = ['Date'], index_col='Date')\n",
|
69
|
-
"df2.head()"
|
70
|
-
]
|
71
|
-
},
|
72
|
-
{
|
73
|
-
"cell_type": "code",
|
74
|
-
"execution_count": null,
|
75
|
-
"id": "a0d10a57-006c-4a59-b7c7-ff0c63bb6e99",
|
76
|
-
"metadata": {},
|
77
|
-
"outputs": [],
|
78
|
-
"source": [
|
79
|
-
"df2.plot(title = \"Daily Minimun Temperature\", figsize = (14, 8), legend = None)\n",
|
80
|
-
"plt.xlabel(\"Date\")\n",
|
81
|
-
"plt.ylabel(\"Temperature in °C\")\n",
|
82
|
-
"plt.show()"
|
83
|
-
]
|
84
|
-
},
|
85
|
-
{
|
86
|
-
"cell_type": "code",
|
87
|
-
"execution_count": null,
|
88
|
-
"id": "1c99e75f-5e45-4485-b54c-3b848fd428ca",
|
89
|
-
"metadata": {},
|
90
|
-
"outputs": [],
|
91
|
-
"source": [
|
92
|
-
"def kpss_test(series):\n",
|
93
|
-
" statistic, p_value, n_lags, critical_values = kpss(series)\n",
|
94
|
-
" print(f\"KPSS Statistic: {statistic:.4f}\")\n",
|
95
|
-
" print(f\"p-value: {p_value:.4f}\")\n",
|
96
|
-
" print(f\"Number of Lags: {n_lags}\")\n",
|
97
|
-
" print(\"Critical Values:\")\n",
|
98
|
-
" print(\"\\n\".join([f\"{key} : {value:.4f}\" for key, value in critical_values.items()]))\n",
|
99
|
-
" print(f\"Result: The Series is {'not' if p_value < 0.05 else ''} Stationary\")"
|
100
|
-
]
|
101
|
-
},
|
102
|
-
{
|
103
|
-
"cell_type": "code",
|
104
|
-
"execution_count": null,
|
105
|
-
"id": "67290889-aaf5-464c-8748-7f2e3f797d0c",
|
106
|
-
"metadata": {},
|
107
|
-
"outputs": [],
|
108
|
-
"source": [
|
109
|
-
"kpss_test(df)"
|
110
|
-
]
|
111
|
-
},
|
112
|
-
{
|
113
|
-
"cell_type": "code",
|
114
|
-
"execution_count": null,
|
115
|
-
"id": "421d972b-3f8a-4c54-884b-4b270bf2adfb",
|
116
|
-
"metadata": {},
|
117
|
-
"outputs": [],
|
118
|
-
"source": [
|
119
|
-
"kpss_test(df2)"
|
120
|
-
]
|
121
|
-
},
|
122
|
-
{
|
123
|
-
"cell_type": "code",
|
124
|
-
"execution_count": null,
|
125
|
-
"id": "dd286b94-3867-4045-b3ff-0b5693b0feab",
|
126
|
-
"metadata": {},
|
127
|
-
"outputs": [],
|
128
|
-
"source": [
|
129
|
-
"decomposition = seasonal_decompose(df2['Temp'], model = 'additive', period = 365)\n",
|
130
|
-
"\n",
|
131
|
-
"trend = decomposition.trend\n",
|
132
|
-
"seasonal = decomposition.seasonal\n",
|
133
|
-
"residual = decomposition.resid\n",
|
134
|
-
"\n",
|
135
|
-
"plt.figure(figsize = (14,8))\n",
|
136
|
-
"plt.subplot(411)\n",
|
137
|
-
"plt.plot(df2['Temp'], label = \"Original\", color =\"g\")\n",
|
138
|
-
"plt.legend(loc = \"upper left\")\n",
|
139
|
-
"plt.subplot(412)\n",
|
140
|
-
"plt.plot(trend, label=\"Trend\", color =\"r\")\n",
|
141
|
-
"plt.legend(loc=\"upper left\")\n",
|
142
|
-
"plt.subplot(413)\n",
|
143
|
-
"plt.plot(seasonal, label = \"Seasonal\", color =\"y\")\n",
|
144
|
-
"plt.legend(loc = \"upper left\")\n",
|
145
|
-
"plt.subplot(414)\n",
|
146
|
-
"plt.plot(residual, label=\"Residual\", color =\"lightblue\")\n",
|
147
|
-
"plt.legend(loc=\"upper left\")\n",
|
148
|
-
"plt.show()"
|
149
|
-
]
|
150
|
-
}
|
151
|
-
],
|
152
|
-
"metadata": {
|
153
|
-
"kernelspec": {
|
154
|
-
"display_name": "Python 3 (ipykernel)",
|
155
|
-
"language": "python",
|
156
|
-
"name": "python3"
|
157
|
-
},
|
158
|
-
"language_info": {
|
159
|
-
"codemirror_mode": {
|
160
|
-
"name": "ipython",
|
161
|
-
"version": 3
|
162
|
-
},
|
163
|
-
"file_extension": ".py",
|
164
|
-
"mimetype": "text/x-python",
|
165
|
-
"name": "python",
|
166
|
-
"nbconvert_exporter": "python",
|
167
|
-
"pygments_lexer": "ipython3",
|
168
|
-
"version": "3.12.4"
|
169
|
-
}
|
170
|
-
},
|
171
|
-
"nbformat": 4,
|
172
|
-
"nbformat_minor": 5
|
173
|
-
}
|
@@ -1,77 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "97b25ae4-1eb7-4599-bad4-e959bbb9a275",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"from statsmodels.graphics.tsaplots import plot_acf, plot_pacf"
|
14
|
-
]
|
15
|
-
},
|
16
|
-
{
|
17
|
-
"cell_type": "code",
|
18
|
-
"execution_count": null,
|
19
|
-
"id": "f70584ab-aa4d-4957-9315-3e884f66c559",
|
20
|
-
"metadata": {},
|
21
|
-
"outputs": [],
|
22
|
-
"source": [
|
23
|
-
"df = pd.read_csv('data/daily-min-temperatures.csv')\n",
|
24
|
-
"print(df.shape)\n",
|
25
|
-
"df.head()"
|
26
|
-
]
|
27
|
-
},
|
28
|
-
{
|
29
|
-
"cell_type": "code",
|
30
|
-
"execution_count": null,
|
31
|
-
"id": "b6574dd0-e010-423b-bb26-ba2ca142e848",
|
32
|
-
"metadata": {},
|
33
|
-
"outputs": [],
|
34
|
-
"source": [
|
35
|
-
"df.plot(title = \"daily Minimum Temperature\" ,figsize = (14, 8), legend = None, color = 'green')\n",
|
36
|
-
"plt.xlabel('Date')\n",
|
37
|
-
"plt.ylabel('Temperature (°C)')\n",
|
38
|
-
"plt.show()"
|
39
|
-
]
|
40
|
-
},
|
41
|
-
{
|
42
|
-
"cell_type": "code",
|
43
|
-
"execution_count": null,
|
44
|
-
"id": "3ba0f2ea-069c-4aa2-aa4b-0d90a54ee21f",
|
45
|
-
"metadata": {},
|
46
|
-
"outputs": [],
|
47
|
-
"source": [
|
48
|
-
"fig, axs = plt.subplots(2, 1, figsize = (10,8))\n",
|
49
|
-
"plot_acf(df['Temp'], lags = 30, ax = axs[0], title = 'Autocorrelation (ACF)', color = 'green')\n",
|
50
|
-
"plot_pacf(df['Temp'], lags = 30, ax = axs[1], title = 'Partial Autocorrelation (PACF)', color = 'red')\n",
|
51
|
-
"plt.tight_layout()\n",
|
52
|
-
"plt.show()"
|
53
|
-
]
|
54
|
-
}
|
55
|
-
],
|
56
|
-
"metadata": {
|
57
|
-
"kernelspec": {
|
58
|
-
"display_name": "Python 3 (ipykernel)",
|
59
|
-
"language": "python",
|
60
|
-
"name": "python3"
|
61
|
-
},
|
62
|
-
"language_info": {
|
63
|
-
"codemirror_mode": {
|
64
|
-
"name": "ipython",
|
65
|
-
"version": 3
|
66
|
-
},
|
67
|
-
"file_extension": ".py",
|
68
|
-
"mimetype": "text/x-python",
|
69
|
-
"name": "python",
|
70
|
-
"nbconvert_exporter": "python",
|
71
|
-
"pygments_lexer": "ipython3",
|
72
|
-
"version": "3.12.4"
|
73
|
-
}
|
74
|
-
},
|
75
|
-
"nbformat": 4,
|
76
|
-
"nbformat_minor": 5
|
77
|
-
}
|