noshot 0.3.9__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +535 -0
  2. noshot/data/ML TS XAI/Football Player/4.ipynb +395 -0
  3. noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +1 -0
  4. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +886 -0
  5. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +292 -0
  6. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +1 -0
  7. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +546 -0
  8. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +921 -0
  9. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/METADATA +1 -1
  10. noshot-0.4.0.dist-info/RECORD +48 -0
  11. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
  12. noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
  13. noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
  14. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
  15. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
  16. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
  17. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
  18. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
  19. noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
  20. noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
  21. noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
  22. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
  23. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
  24. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
  25. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
  26. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
  27. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
  28. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
  29. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
  30. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
  31. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
  32. noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
  33. noshot-0.3.9.dist-info/RECORD +0 -62
  34. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/1.ipynb +0 -0
  35. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/Question.txt +0 -0
  36. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/airfoil_self_noise.dat +0 -0
  37. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/2.ipynb +0 -0
  38. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/Question.txt +0 -0
  39. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/pop_failures.dat +0 -0
  40. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/3.ipynb +0 -0
  41. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/Qu.txt +0 -0
  42. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/go_track_tracks.csv +0 -0
  43. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/4.ipynb +0 -0
  44. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/Wilt.csv +0 -0
  45. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/qu.txt +0 -0
  46. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/LICENSE.txt +0 -0
  47. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/WHEEL +0 -0
  48. {noshot-0.3.9.dist-info → noshot-0.4.0.dist-info}/top_level.txt +0 -0
@@ -1,146 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "6bb9403b-263b-48e3-a516-a436a771ab3d",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "import seaborn as sns\n",
14
- "import random"
15
- ]
16
- },
17
- {
18
- "cell_type": "code",
19
- "execution_count": null,
20
- "id": "e62e553d-9abb-4f4a-bf47-48df2618e1ba",
21
- "metadata": {},
22
- "outputs": [],
23
- "source": [
24
- "np.random.seed(42)\n",
25
- "dates=pd.date_range('2024-01-01','2024-12-31',freq='ME')\n",
26
- "data=pd.DataFrame(data=[random.randint(0,1000) for i in range(len(dates))], index=dates,columns=['Values'])\n",
27
- "data.head()"
28
- ]
29
- },
30
- {
31
- "cell_type": "code",
32
- "execution_count": null,
33
- "id": "00fc7ac6-e20b-4203-8e76-02fb6d7cc435",
34
- "metadata": {},
35
- "outputs": [],
36
- "source": [
37
- "data.plot(kind='line')\n",
38
- "plt.show()"
39
- ]
40
- },
41
- {
42
- "cell_type": "markdown",
43
- "id": "90d4394d-e513-49d1-9f0c-17540946e676",
44
- "metadata": {},
45
- "source": [
46
- "**Up Sampling and Interpolation**"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "id": "a5b59623-5abc-4f47-86de-f5992dd95d4b",
53
- "metadata": {},
54
- "outputs": [],
55
- "source": [
56
- "upsample=data.resample('h')\n",
57
- "interpolated=upsample.interpolate(method='linear')\n",
58
- "interpolated"
59
- ]
60
- },
61
- {
62
- "cell_type": "code",
63
- "execution_count": null,
64
- "id": "b5fd4bf6-b5fd-4144-8efa-3d42d52abc72",
65
- "metadata": {},
66
- "outputs": [],
67
- "source": [
68
- "interpolated.plot(kind='line')"
69
- ]
70
- },
71
- {
72
- "cell_type": "code",
73
- "execution_count": null,
74
- "id": "fd729d40-2b9f-4cfa-8fcb-8ab950d5051a",
75
- "metadata": {},
76
- "outputs": [],
77
- "source": [
78
- "upsample=data.resample('h')\n",
79
- "interpolated=upsample.interpolate(method='spline',order=3)\n",
80
- "interpolated"
81
- ]
82
- },
83
- {
84
- "cell_type": "code",
85
- "execution_count": null,
86
- "id": "453062ab-4042-4bcd-a465-ecc4375e9cbf",
87
- "metadata": {},
88
- "outputs": [],
89
- "source": [
90
- "interpolated.plot(kind='line')\n",
91
- "plt.show()"
92
- ]
93
- },
94
- {
95
- "cell_type": "markdown",
96
- "id": "6f6e70bf-15c7-4dfb-b9b1-3deae9a4226e",
97
- "metadata": {},
98
- "source": [
99
- "**Down Sampling and Interpolation**"
100
- ]
101
- },
102
- {
103
- "cell_type": "code",
104
- "execution_count": null,
105
- "id": "bd57a941-82c1-40c8-911c-6cca58ea549b",
106
- "metadata": {},
107
- "outputs": [],
108
- "source": [
109
- "downsample=interpolated.resample('QE')\n",
110
- "interpolated=downsample.mean()\n",
111
- "interpolated"
112
- ]
113
- },
114
- {
115
- "cell_type": "code",
116
- "execution_count": null,
117
- "id": "f3427633-7ca0-4377-98d1-95099c064159",
118
- "metadata": {},
119
- "outputs": [],
120
- "source": [
121
- "interpolated.plot(kind='line')"
122
- ]
123
- }
124
- ],
125
- "metadata": {
126
- "kernelspec": {
127
- "display_name": "Python 3 (ipykernel)",
128
- "language": "python",
129
- "name": "python3"
130
- },
131
- "language_info": {
132
- "codemirror_mode": {
133
- "name": "ipython",
134
- "version": 3
135
- },
136
- "file_extension": ".py",
137
- "mimetype": "text/x-python",
138
- "name": "python",
139
- "nbconvert_exporter": "python",
140
- "pygments_lexer": "ipython3",
141
- "version": "3.12.4"
142
- }
143
- },
144
- "nbformat": 4,
145
- "nbformat_minor": 5
146
- }
@@ -1,173 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "f01bfd82-b491-4e4c-ab74-0eb7709b20b1",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "from statsmodels.tsa.stattools import kpss\n",
14
- "from statsmodels.tsa.seasonal import seasonal_decompose\n",
15
- "import warnings\n",
16
- "warnings.filterwarnings(\"ignore\")"
17
- ]
18
- },
19
- {
20
- "cell_type": "code",
21
- "execution_count": null,
22
- "id": "04a57fe7-20ae-4202-b5fd-7d4f60161871",
23
- "metadata": {},
24
- "outputs": [],
25
- "source": [
26
- "df = pd.read_csv(\"data/daily-total-female-births.csv\", parse_dates = ['Date'], index_col='Date')\n",
27
- "print(f\"Shape: {df.shape}\")\n",
28
- "df.head()"
29
- ]
30
- },
31
- {
32
- "cell_type": "code",
33
- "execution_count": null,
34
- "id": "8ae68a42-dc21-4fdc-a69d-3c28ae65f146",
35
- "metadata": {},
36
- "outputs": [],
37
- "source": [
38
- "df.plot()\n",
39
- "plt.show()"
40
- ]
41
- },
42
- {
43
- "cell_type": "code",
44
- "execution_count": null,
45
- "id": "99bc55d6-f608-4ab3-84f0-f0b9b6e39aa8",
46
- "metadata": {},
47
- "outputs": [],
48
- "source": [
49
- "x = np.linspace(0, 12, num=200)\n",
50
- "seasonality = 1.2 * np.sin(2 * np.pi * x / 4)\n",
51
- "\n",
52
- "plt.figure(figsize=(10,6))\n",
53
- "plt.plot(x, seasonality, label = \"Seasonal Component\", color = \"g\")\n",
54
- "plt.xlabel(\"Time\")\n",
55
- "plt.ylabel(\"Value\")\n",
56
- "plt.title(\"Seasonal Signal\")\n",
57
- "plt.legend()\n",
58
- "plt.show()"
59
- ]
60
- },
61
- {
62
- "cell_type": "code",
63
- "execution_count": null,
64
- "id": "ea5377ec-67f4-4fc3-b20b-7792b937eb72",
65
- "metadata": {},
66
- "outputs": [],
67
- "source": [
68
- "df2 = pd.read_csv(\"daily-min-temperatures.csv\", parse_dates = ['Date'], index_col='Date')\n",
69
- "df2.head()"
70
- ]
71
- },
72
- {
73
- "cell_type": "code",
74
- "execution_count": null,
75
- "id": "a0d10a57-006c-4a59-b7c7-ff0c63bb6e99",
76
- "metadata": {},
77
- "outputs": [],
78
- "source": [
79
- "df2.plot(title = \"Daily Minimun Temperature\", figsize = (14, 8), legend = None)\n",
80
- "plt.xlabel(\"Date\")\n",
81
- "plt.ylabel(\"Temperature in °C\")\n",
82
- "plt.show()"
83
- ]
84
- },
85
- {
86
- "cell_type": "code",
87
- "execution_count": null,
88
- "id": "1c99e75f-5e45-4485-b54c-3b848fd428ca",
89
- "metadata": {},
90
- "outputs": [],
91
- "source": [
92
- "def kpss_test(series):\n",
93
- " statistic, p_value, n_lags, critical_values = kpss(series)\n",
94
- " print(f\"KPSS Statistic: {statistic:.4f}\")\n",
95
- " print(f\"p-value: {p_value:.4f}\")\n",
96
- " print(f\"Number of Lags: {n_lags}\")\n",
97
- " print(\"Critical Values:\")\n",
98
- " print(\"\\n\".join([f\"{key} : {value:.4f}\" for key, value in critical_values.items()]))\n",
99
- " print(f\"Result: The Series is {'not' if p_value < 0.05 else ''} Stationary\")"
100
- ]
101
- },
102
- {
103
- "cell_type": "code",
104
- "execution_count": null,
105
- "id": "67290889-aaf5-464c-8748-7f2e3f797d0c",
106
- "metadata": {},
107
- "outputs": [],
108
- "source": [
109
- "kpss_test(df)"
110
- ]
111
- },
112
- {
113
- "cell_type": "code",
114
- "execution_count": null,
115
- "id": "421d972b-3f8a-4c54-884b-4b270bf2adfb",
116
- "metadata": {},
117
- "outputs": [],
118
- "source": [
119
- "kpss_test(df2)"
120
- ]
121
- },
122
- {
123
- "cell_type": "code",
124
- "execution_count": null,
125
- "id": "dd286b94-3867-4045-b3ff-0b5693b0feab",
126
- "metadata": {},
127
- "outputs": [],
128
- "source": [
129
- "decomposition = seasonal_decompose(df2['Temp'], model = 'additive', period = 365)\n",
130
- "\n",
131
- "trend = decomposition.trend\n",
132
- "seasonal = decomposition.seasonal\n",
133
- "residual = decomposition.resid\n",
134
- "\n",
135
- "plt.figure(figsize = (14,8))\n",
136
- "plt.subplot(411)\n",
137
- "plt.plot(df2['Temp'], label = \"Original\", color =\"g\")\n",
138
- "plt.legend(loc = \"upper left\")\n",
139
- "plt.subplot(412)\n",
140
- "plt.plot(trend, label=\"Trend\", color =\"r\")\n",
141
- "plt.legend(loc=\"upper left\")\n",
142
- "plt.subplot(413)\n",
143
- "plt.plot(seasonal, label = \"Seasonal\", color =\"y\")\n",
144
- "plt.legend(loc = \"upper left\")\n",
145
- "plt.subplot(414)\n",
146
- "plt.plot(residual, label=\"Residual\", color =\"lightblue\")\n",
147
- "plt.legend(loc=\"upper left\")\n",
148
- "plt.show()"
149
- ]
150
- }
151
- ],
152
- "metadata": {
153
- "kernelspec": {
154
- "display_name": "Python 3 (ipykernel)",
155
- "language": "python",
156
- "name": "python3"
157
- },
158
- "language_info": {
159
- "codemirror_mode": {
160
- "name": "ipython",
161
- "version": 3
162
- },
163
- "file_extension": ".py",
164
- "mimetype": "text/x-python",
165
- "name": "python",
166
- "nbconvert_exporter": "python",
167
- "pygments_lexer": "ipython3",
168
- "version": "3.12.4"
169
- }
170
- },
171
- "nbformat": 4,
172
- "nbformat_minor": 5
173
- }
@@ -1,77 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "97b25ae4-1eb7-4599-bad4-e959bbb9a275",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf"
14
- ]
15
- },
16
- {
17
- "cell_type": "code",
18
- "execution_count": null,
19
- "id": "f70584ab-aa4d-4957-9315-3e884f66c559",
20
- "metadata": {},
21
- "outputs": [],
22
- "source": [
23
- "df = pd.read_csv('data/daily-min-temperatures.csv')\n",
24
- "print(df.shape)\n",
25
- "df.head()"
26
- ]
27
- },
28
- {
29
- "cell_type": "code",
30
- "execution_count": null,
31
- "id": "b6574dd0-e010-423b-bb26-ba2ca142e848",
32
- "metadata": {},
33
- "outputs": [],
34
- "source": [
35
- "df.plot(title = \"daily Minimum Temperature\" ,figsize = (14, 8), legend = None, color = 'green')\n",
36
- "plt.xlabel('Date')\n",
37
- "plt.ylabel('Temperature (°C)')\n",
38
- "plt.show()"
39
- ]
40
- },
41
- {
42
- "cell_type": "code",
43
- "execution_count": null,
44
- "id": "3ba0f2ea-069c-4aa2-aa4b-0d90a54ee21f",
45
- "metadata": {},
46
- "outputs": [],
47
- "source": [
48
- "fig, axs = plt.subplots(2, 1, figsize = (10,8))\n",
49
- "plot_acf(df['Temp'], lags = 30, ax = axs[0], title = 'Autocorrelation (ACF)', color = 'green')\n",
50
- "plot_pacf(df['Temp'], lags = 30, ax = axs[1], title = 'Partial Autocorrelation (PACF)', color = 'red')\n",
51
- "plt.tight_layout()\n",
52
- "plt.show()"
53
- ]
54
- }
55
- ],
56
- "metadata": {
57
- "kernelspec": {
58
- "display_name": "Python 3 (ipykernel)",
59
- "language": "python",
60
- "name": "python3"
61
- },
62
- "language_info": {
63
- "codemirror_mode": {
64
- "name": "ipython",
65
- "version": 3
66
- },
67
- "file_extension": ".py",
68
- "mimetype": "text/x-python",
69
- "name": "python",
70
- "nbconvert_exporter": "python",
71
- "pygments_lexer": "ipython3",
72
- "version": "3.12.4"
73
- }
74
- },
75
- "nbformat": 4,
76
- "nbformat_minor": 5
77
- }