noshot 0.3.1__py3-none-any.whl → 0.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (36) hide show
  1. noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
  2. noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
  3. noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
  4. noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
  5. noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
  6. noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
  7. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
  8. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
  9. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
  10. noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
  11. noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
  12. noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
  13. noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
  14. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +87 -0
  15. noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
  16. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +247 -0
  17. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
  18. noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +183 -0
  19. noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +172 -0
  20. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +146 -0
  21. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
  22. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +173 -0
  23. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
  24. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
  25. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +77 -0
  26. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
  27. noshot/data/ML TS XAI/TS/AllinOne.ipynb +12676 -0
  28. noshot/main.py +18 -18
  29. noshot/utils/__init__.py +2 -2
  30. noshot/utils/shell_utils.py +56 -56
  31. {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/LICENSE.txt +20 -20
  32. {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/METADATA +55 -55
  33. noshot-0.3.2.dist-info/RECORD +36 -0
  34. noshot-0.3.1.dist-info/RECORD +0 -9
  35. {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/WHEEL +0 -0
  36. {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,210 @@
1
+ 0,1,2,3,4,5,6,7,8,9
2
+ adviser,32/60,125,256,6000,256,16,128,198,199
3
+ amdahl,470v/7,29,8000,32000,32,8,32,269,253
4
+ amdahl,470v/7a,29,8000,32000,32,8,32,220,253
5
+ amdahl,470v/7b,29,8000,32000,32,8,32,172,253
6
+ amdahl,470v/7c,29,8000,16000,32,8,16,132,132
7
+ amdahl,470v/b,26,8000,32000,64,8,32,318,290
8
+ amdahl,580-5840,23,16000,32000,64,16,32,367,381
9
+ amdahl,580-5850,23,16000,32000,64,16,32,489,381
10
+ amdahl,580-5860,23,16000,64000,64,16,32,636,749
11
+ amdahl,580-5880,23,32000,64000,128,32,64,1144,1238
12
+ apollo,dn320,400,1000,3000,0,1,2,38,23
13
+ apollo,dn420,400,512,3500,4,1,6,40,24
14
+ basf,7/65,60,2000,8000,65,1,8,92,70
15
+ basf,7/68,50,4000,16000,65,1,8,138,117
16
+ bti,5000,350,64,64,0,1,4,10,15
17
+ bti,8000,200,512,16000,0,4,32,35,64
18
+ burroughs,b1955,167,524,2000,8,4,15,19,23
19
+ burroughs,b2900,143,512,5000,0,7,32,28,29
20
+ burroughs,b2925,143,1000,2000,0,5,16,31,22
21
+ burroughs,b4955,110,5000,5000,142,8,64,120,124
22
+ burroughs,b5900,143,1500,6300,0,5,32,30,35
23
+ burroughs,b5920,143,3100,6200,0,5,20,33,39
24
+ burroughs,b6900,143,2300,6200,0,6,64,61,40
25
+ burroughs,b6925,110,3100,6200,0,6,64,76,45
26
+ c.r.d,68/10-80,320,128,6000,0,1,12,23,28
27
+ c.r.d,universe:2203t,320,512,2000,4,1,3,69,21
28
+ c.r.d,universe:68,320,256,6000,0,1,6,33,28
29
+ c.r.d,universe:68/05,320,256,3000,4,1,3,27,22
30
+ c.r.d,universe:68/137,320,512,5000,4,1,5,77,28
31
+ c.r.d,universe:68/37,320,256,5000,4,1,6,27,27
32
+ cdc,cyber:170/750,25,1310,2620,131,12,24,274,102
33
+ cdc,cyber:170/760,25,1310,2620,131,12,24,368,102
34
+ cdc,cyber:170/815,50,2620,10480,30,12,24,32,74
35
+ cdc,cyber:170/825,50,2620,10480,30,12,24,63,74
36
+ cdc,cyber:170/835,56,5240,20970,30,12,24,106,138
37
+ cdc,cyber:170/845,64,5240,20970,30,12,24,208,136
38
+ cdc,omega:480-i,50,500,2000,8,1,4,20,23
39
+ cdc,omega:480-ii,50,1000,4000,8,1,5,29,29
40
+ cdc,omega:480-iii,50,2000,8000,8,1,5,71,44
41
+ cambex,1636-1,50,1000,4000,8,3,5,26,30
42
+ cambex,1636-10,50,1000,8000,8,3,5,36,41
43
+ cambex,1641-1,50,2000,16000,8,3,5,40,74
44
+ cambex,1641-11,50,2000,16000,8,3,6,52,74
45
+ cambex,1651-1,50,2000,16000,8,3,6,60,74
46
+ dec,decsys:10:1091,133,1000,12000,9,3,12,72,54
47
+ dec,decsys:20:2060,133,1000,8000,9,3,12,72,41
48
+ dec,microvax-1,810,512,512,8,1,1,18,18
49
+ dec,vax:11/730,810,1000,5000,0,1,1,20,28
50
+ dec,vax:11/750,320,512,8000,4,1,5,40,36
51
+ dec,vax:11/780,200,512,8000,8,1,8,62,38
52
+ dg,eclipse:c/350,700,384,8000,0,1,1,24,34
53
+ dg,eclipse:m/600,700,256,2000,0,1,1,24,19
54
+ dg,eclipse:mv/10000,140,1000,16000,16,1,3,138,72
55
+ dg,eclipse:mv/4000,200,1000,8000,0,1,2,36,36
56
+ dg,eclipse:mv/6000,110,1000,4000,16,1,2,26,30
57
+ dg,eclipse:mv/8000,110,1000,12000,16,1,2,60,56
58
+ dg,eclipse:mv/8000-ii,220,1000,8000,16,1,2,71,42
59
+ formation,f4000/100,800,256,8000,0,1,4,12,34
60
+ formation,f4000/200,800,256,8000,0,1,4,14,34
61
+ formation,f4000/200ap,800,256,8000,0,1,4,20,34
62
+ formation,f4000/300,800,256,8000,0,1,4,16,34
63
+ formation,f4000/300ap,800,256,8000,0,1,4,22,34
64
+ four-phase,2000/260,125,512,1000,0,8,20,36,19
65
+ gould,concept:32/8705,75,2000,8000,64,1,38,144,75
66
+ gould,concept:32/8750,75,2000,16000,64,1,38,144,113
67
+ gould,concept:32/8780,75,2000,16000,128,1,38,259,157
68
+ hp,3000/30,90,256,1000,0,3,10,17,18
69
+ hp,3000/40,105,256,2000,0,3,10,26,20
70
+ hp,3000/44,105,1000,4000,0,3,24,32,28
71
+ hp,3000/48,105,2000,4000,8,3,19,32,33
72
+ hp,3000/64,75,2000,8000,8,3,24,62,47
73
+ hp,3000/88,75,3000,8000,8,3,48,64,54
74
+ hp,3000/iii,175,256,2000,0,3,24,22,20
75
+ harris,100,300,768,3000,0,6,24,36,23
76
+ harris,300,300,768,3000,6,6,24,44,25
77
+ harris,500,300,768,12000,6,6,24,50,52
78
+ harris,600,300,768,4500,0,1,24,45,27
79
+ harris,700,300,384,12000,6,1,24,53,50
80
+ harris,80,300,192,768,6,6,24,36,18
81
+ harris,800,180,768,12000,6,1,31,84,53
82
+ honeywell,dps:6/35,330,1000,3000,0,2,4,16,23
83
+ honeywell,dps:6/92,300,1000,4000,8,3,64,38,30
84
+ honeywell,dps:6/96,300,1000,16000,8,2,112,38,73
85
+ honeywell,dps:7/35,330,1000,2000,0,1,2,16,20
86
+ honeywell,dps:7/45,330,1000,4000,0,3,6,22,25
87
+ honeywell,dps:7/55,140,2000,4000,0,3,6,29,28
88
+ honeywell,dps:7/65,140,2000,4000,0,4,8,40,29
89
+ honeywell,dps:8/44,140,2000,4000,8,1,20,35,32
90
+ honeywell,dps:8/49,140,2000,32000,32,1,20,134,175
91
+ honeywell,dps:8/50,140,2000,8000,32,1,54,66,57
92
+ honeywell,dps:8/52,140,2000,32000,32,1,54,141,181
93
+ honeywell,dps:8/62,140,2000,32000,32,1,54,189,181
94
+ honeywell,dps:8/20,140,2000,4000,8,1,20,22,32
95
+ ibm,3033:s,57,4000,16000,1,6,12,132,82
96
+ ibm,3033:u,57,4000,24000,64,12,16,237,171
97
+ ibm,3081,26,16000,32000,64,16,24,465,361
98
+ ibm,3081:d,26,16000,32000,64,8,24,465,350
99
+ ibm,3083:b,26,8000,32000,0,8,24,277,220
100
+ ibm,3083:e,26,8000,16000,0,8,16,185,113
101
+ ibm,370/125-2,480,96,512,0,1,1,6,15
102
+ ibm,370/148,203,1000,2000,0,1,5,24,21
103
+ ibm,370/158-3,115,512,6000,16,1,6,45,35
104
+ ibm,38/3,1100,512,1500,0,1,1,7,18
105
+ ibm,38/4,1100,768,2000,0,1,1,13,20
106
+ ibm,38/5,600,768,2000,0,1,1,16,20
107
+ ibm,38/7,400,2000,4000,0,1,1,32,28
108
+ ibm,38/8,400,4000,8000,0,1,1,32,45
109
+ ibm,4321,900,1000,1000,0,1,2,11,18
110
+ ibm,4331-1,900,512,1000,0,1,2,11,17
111
+ ibm,4331-11,900,1000,4000,4,1,2,18,26
112
+ ibm,4331-2,900,1000,4000,8,1,2,22,28
113
+ ibm,4341,900,2000,4000,0,3,6,37,28
114
+ ibm,4341-1,225,2000,4000,8,3,6,40,31
115
+ ibm,4341-10,225,2000,4000,8,3,6,34,31
116
+ ibm,4341-11,180,2000,8000,8,1,6,50,42
117
+ ibm,4341-12,185,2000,16000,16,1,6,76,76
118
+ ibm,4341-2,180,2000,16000,16,1,6,66,76
119
+ ibm,4341-9,225,1000,4000,2,3,6,24,26
120
+ ibm,4361-4,25,2000,12000,8,1,4,49,59
121
+ ibm,4361-5,25,2000,12000,16,3,5,66,65
122
+ ibm,4381-1,17,4000,16000,8,6,12,100,101
123
+ ibm,4381-2,17,4000,16000,32,6,12,133,116
124
+ ibm,8130-a,1500,768,1000,0,0,0,12,18
125
+ ibm,8130-b,1500,768,2000,0,0,0,18,20
126
+ ibm,8140,800,768,2000,0,0,0,20,20
127
+ ipl,4436,50,2000,4000,0,3,6,27,30
128
+ ipl,4443,50,2000,8000,8,3,6,45,44
129
+ ipl,4445,50,2000,8000,8,1,6,56,44
130
+ ipl,4446,50,2000,16000,24,1,6,70,82
131
+ ipl,4460,50,2000,16000,24,1,6,80,82
132
+ ipl,4480,50,8000,16000,48,1,10,136,128
133
+ magnuson,m80/30,100,1000,8000,0,2,6,16,37
134
+ magnuson,m80/31,100,1000,8000,24,2,6,26,46
135
+ magnuson,m80/32,100,1000,8000,24,3,6,32,46
136
+ magnuson,m80/42,50,2000,16000,12,3,16,45,80
137
+ magnuson,m80/43,50,2000,16000,24,6,16,54,88
138
+ magnuson,m80/44,50,2000,16000,24,6,16,65,88
139
+ microdata,seq.ms/3200,150,512,4000,0,8,128,30,33
140
+ nas,as/3000,115,2000,8000,16,1,3,50,46
141
+ nas,as/3000-n,115,2000,4000,2,1,5,40,29
142
+ nas,as/5000,92,2000,8000,32,1,6,62,53
143
+ nas,as/5000-e,92,2000,8000,32,1,6,60,53
144
+ nas,as/5000-n,92,2000,8000,4,1,6,50,41
145
+ nas,as/6130,75,4000,16000,16,1,6,66,86
146
+ nas,as/6150,60,4000,16000,32,1,6,86,95
147
+ nas,as/6620,60,2000,16000,64,5,8,74,107
148
+ nas,as/6630,60,4000,16000,64,5,8,93,117
149
+ nas,as/6650,50,4000,16000,64,5,10,111,119
150
+ nas,as/7000,72,4000,16000,64,8,16,143,120
151
+ nas,as/7000-n,72,2000,8000,16,6,8,105,48
152
+ nas,as/8040,40,8000,16000,32,8,16,214,126
153
+ nas,as/8050,40,8000,32000,64,8,24,277,266
154
+ nas,as/8060,35,8000,32000,64,8,24,370,270
155
+ nas,as/9000-dpc,38,16000,32000,128,16,32,510,426
156
+ nas,as/9000-n,48,4000,24000,32,8,24,214,151
157
+ nas,as/9040,38,8000,32000,64,8,24,326,267
158
+ nas,as/9060,30,16000,32000,256,16,24,510,603
159
+ ncr,v8535:ii,112,1000,1000,0,1,4,8,19
160
+ ncr,v8545:ii,84,1000,2000,0,1,6,12,21
161
+ ncr,v8555:ii,56,1000,4000,0,1,6,17,26
162
+ ncr,v8565:ii,56,2000,6000,0,1,8,21,35
163
+ ncr,v8565:ii-e,56,2000,8000,0,1,8,24,41
164
+ ncr,v8575:ii,56,4000,8000,0,1,8,34,47
165
+ ncr,v8585:ii,56,4000,12000,0,1,8,42,62
166
+ ncr,v8595:ii,56,4000,16000,0,1,8,46,78
167
+ ncr,v8635,38,4000,8000,32,16,32,51,80
168
+ ncr,v8650,38,4000,8000,32,16,32,116,80
169
+ ncr,v8655,38,8000,16000,64,4,8,100,142
170
+ ncr,v8665,38,8000,24000,160,4,8,140,281
171
+ ncr,v8670,38,4000,16000,128,16,32,212,190
172
+ nixdorf,8890/30,200,1000,2000,0,1,2,25,21
173
+ nixdorf,8890/50,200,1000,4000,0,1,4,30,25
174
+ nixdorf,8890/70,200,2000,8000,64,1,5,41,67
175
+ perkin-elmer,3205,250,512,4000,0,1,7,25,24
176
+ perkin-elmer,3210,250,512,4000,0,4,7,50,24
177
+ perkin-elmer,3230,250,1000,16000,1,1,8,50,64
178
+ prime,50-2250,160,512,4000,2,1,5,30,25
179
+ prime,50-250-ii,160,512,2000,2,3,8,32,20
180
+ prime,50-550-ii,160,1000,4000,8,1,14,38,29
181
+ prime,50-750-ii,160,1000,8000,16,1,14,60,43
182
+ prime,50-850-ii,160,2000,8000,32,1,13,109,53
183
+ siemens,7.521,240,512,1000,8,1,3,6,19
184
+ siemens,7.531,240,512,2000,8,1,5,11,22
185
+ siemens,7.536,105,2000,4000,8,3,8,22,31
186
+ siemens,7.541,105,2000,6000,16,6,16,33,41
187
+ siemens,7.551,105,2000,8000,16,4,14,58,47
188
+ siemens,7.561,52,4000,16000,32,4,12,130,99
189
+ siemens,7.865-2,70,4000,12000,8,6,8,75,67
190
+ siemens,7.870-2,59,4000,12000,32,6,12,113,81
191
+ siemens,7.872-2,59,8000,16000,64,12,24,188,149
192
+ siemens,7.875-2,26,8000,24000,32,8,16,173,183
193
+ siemens,7.880-2,26,8000,32000,64,12,16,248,275
194
+ siemens,7.881-2,26,8000,32000,128,24,32,405,382
195
+ sperry,1100/61-h1,116,2000,8000,32,5,28,70,56
196
+ sperry,1100/81,50,2000,32000,24,6,26,114,182
197
+ sperry,1100/82,50,2000,32000,48,26,52,208,227
198
+ sperry,1100/83,50,2000,32000,112,52,104,307,341
199
+ sperry,1100/84,50,4000,32000,112,52,104,397,360
200
+ sperry,1100/93,30,8000,64000,96,12,176,915,919
201
+ sperry,1100/94,30,8000,64000,128,12,176,1150,978
202
+ sperry,80/3,180,262,4000,0,1,3,12,24
203
+ sperry,80/4,180,512,4000,0,1,3,14,24
204
+ sperry,80/5,180,262,4000,0,1,3,18,24
205
+ sperry,80/6,180,512,4000,0,1,3,21,24
206
+ sperry,80/8,124,1000,8000,0,1,8,42,37
207
+ sperry,90/80-model-3,98,1000,8000,32,2,8,46,50
208
+ sratus,32,125,2000,8000,0,2,14,52,41
209
+ wang,vs-100,480,512,8000,32,0,0,67,47
210
+ wang,vs-90,480,1000,4000,0,0,0,45,25
@@ -0,0 +1,137 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "0fcc8bb7-4d22-4d3b-b58a-302bb24f8f2e",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import itertools\n",
11
+ "import numpy as np\n",
12
+ "import pandas as pd\n",
13
+ "import matplotlib.pyplot as plt\n",
14
+ "from sklearn import linear_model,datasets\n",
15
+ "from sklearn.model_selection import train_test_split\n",
16
+ "from sklearn.metrics import confusion_matrix\n",
17
+ "import warnings\n",
18
+ "warnings.filterwarnings('ignore')"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": null,
24
+ "id": "d28e507b-fb15-4058-a161-656859a27c65",
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "wine = datasets.load_wine()\n",
29
+ "type(wine)"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "id": "9ee44a66-dc4a-4c79-9dab-eec60669dd8b",
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "wine.data[:5,:]"
40
+ ]
41
+ },
42
+ {
43
+ "cell_type": "code",
44
+ "execution_count": null,
45
+ "id": "3eed721d-7956-40fb-9831-1a79f73cb906",
46
+ "metadata": {},
47
+ "outputs": [],
48
+ "source": [
49
+ "print(type(wine.feature_names))\n",
50
+ "wine.feature_names"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": null,
56
+ "id": "bd9d60dd-8272-46b4-8335-69d9751ed0c7",
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "X_train,X_test,y_train,y_test = train_test_split(wine.data, wine.target, test_size=0.30, random_state=7)\n",
61
+ "\n",
62
+ "log_reg_model = linear_model.LogisticRegression()\n",
63
+ "log_reg_model.fit(X_train,y_train)"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "code",
68
+ "execution_count": null,
69
+ "id": "7c8fca42-c8d8-4334-9cc4-da4f5e1b0a1e",
70
+ "metadata": {},
71
+ "outputs": [],
72
+ "source": [
73
+ "log_reg_base_score = log_reg_model.score(X_test,y_test)\n",
74
+ "print(\"The score for the Logistic Regression Model is : \", log_reg_base_score)"
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": null,
80
+ "id": "61bbb23e-cb29-41ae-9ea3-82e8d465c7f2",
81
+ "metadata": {},
82
+ "outputs": [],
83
+ "source": [
84
+ "cm = confusion_matrix(y_test, log_reg_model.predict(X_test))\n",
85
+ "print(cm)"
86
+ ]
87
+ },
88
+ {
89
+ "cell_type": "code",
90
+ "execution_count": null,
91
+ "id": "2fcd6449-feca-4b90-828f-420ba5bb8bcf",
92
+ "metadata": {},
93
+ "outputs": [],
94
+ "source": [
95
+ "X = wine.data[:,:2]\n",
96
+ "Y = wine.target\n",
97
+ "log_reg_model.fit(X,Y)\n",
98
+ "x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\n",
99
+ "y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\n",
100
+ "xx, yy = np.meshgrid(np.arange(x_min, x_max, .01), np.arange(y_min, y_max, .01))\n",
101
+ "Z = log_reg_model.predict(np.c_[xx.ravel(), yy.ravel()])\n",
102
+ "Z = Z.reshape(xx.shape)\n",
103
+ "plt.figure(1, figsize = (4, 3))\n",
104
+ "plt.pcolormesh(xx, yy, Z, cmap = plt.cm.Paired)\n",
105
+ "plt.scatter(X[:, 0], X[:, 1], c = Y, edgecolors = 'k', cmap = plt.cm.Paired)\n",
106
+ "plt.xlabel('X')\n",
107
+ "plt.ylabel('Y')\n",
108
+ "plt.xlim(xx.min(), xx.max())\n",
109
+ "plt.ylim(yy.min(), yy.max())\n",
110
+ "plt.xticks(())\n",
111
+ "plt.yticks(())\n",
112
+ "plt.show()"
113
+ ]
114
+ }
115
+ ],
116
+ "metadata": {
117
+ "kernelspec": {
118
+ "display_name": "Python 3 (ipykernel)",
119
+ "language": "python",
120
+ "name": "python3"
121
+ },
122
+ "language_info": {
123
+ "codemirror_mode": {
124
+ "name": "ipython",
125
+ "version": 3
126
+ },
127
+ "file_extension": ".py",
128
+ "mimetype": "text/x-python",
129
+ "name": "python",
130
+ "nbconvert_exporter": "python",
131
+ "pygments_lexer": "ipython3",
132
+ "version": "3.12.4"
133
+ }
134
+ },
135
+ "nbformat": 4,
136
+ "nbformat_minor": 5
137
+ }
@@ -0,0 +1,179 @@
1
+ alcohol,malic_acid,ash,alcalinity_of_ash,magnesium,total_phenols,flavanoids,nonflavanoid_phenols,proanthocyanins,color_intensity,hue,od280/od315_of_diluted_wines,proline,target
2
+ 14.23,1.71,2.43,15.6,127.0,2.8,3.06,0.28,2.29,5.64,1.04,3.92,1065.0,0
3
+ 13.2,1.78,2.14,11.2,100.0,2.65,2.76,0.26,1.28,4.38,1.05,3.4,1050.0,0
4
+ 13.16,2.36,2.67,18.6,101.0,2.8,3.24,0.3,2.81,5.68,1.03,3.17,1185.0,0
5
+ 14.37,1.95,2.5,16.8,113.0,3.85,3.49,0.24,2.18,7.8,0.86,3.45,1480.0,0
6
+ 13.24,2.59,2.87,21.0,118.0,2.8,2.69,0.39,1.82,4.32,1.04,2.93,735.0,0
7
+ 14.2,1.76,2.45,15.2,112.0,3.27,3.39,0.34,1.97,6.75,1.05,2.85,1450.0,0
8
+ 14.39,1.87,2.45,14.6,96.0,2.5,2.52,0.3,1.98,5.25,1.02,3.58,1290.0,0
9
+ 14.06,2.15,2.61,17.6,121.0,2.6,2.51,0.31,1.25,5.05,1.06,3.58,1295.0,0
10
+ 14.83,1.64,2.17,14.0,97.0,2.8,2.98,0.29,1.98,5.2,1.08,2.85,1045.0,0
11
+ 13.86,1.35,2.27,16.0,98.0,2.98,3.15,0.22,1.85,7.22,1.01,3.55,1045.0,0
12
+ 14.1,2.16,2.3,18.0,105.0,2.95,3.32,0.22,2.38,5.75,1.25,3.17,1510.0,0
13
+ 14.12,1.48,2.32,16.8,95.0,2.2,2.43,0.26,1.57,5.0,1.17,2.82,1280.0,0
14
+ 13.75,1.73,2.41,16.0,89.0,2.6,2.76,0.29,1.81,5.6,1.15,2.9,1320.0,0
15
+ 14.75,1.73,2.39,11.4,91.0,3.1,3.69,0.43,2.81,5.4,1.25,2.73,1150.0,0
16
+ 14.38,1.87,2.38,12.0,102.0,3.3,3.64,0.29,2.96,7.5,1.2,3.0,1547.0,0
17
+ 13.63,1.81,2.7,17.2,112.0,2.85,2.91,0.3,1.46,7.3,1.28,2.88,1310.0,0
18
+ 14.3,1.92,2.72,20.0,120.0,2.8,3.14,0.33,1.97,6.2,1.07,2.65,1280.0,0
19
+ 13.83,1.57,2.62,20.0,115.0,2.95,3.4,0.4,1.72,6.6,1.13,2.57,1130.0,0
20
+ 14.19,1.59,2.48,16.5,108.0,3.3,3.93,0.32,1.86,8.7,1.23,2.82,1680.0,0
21
+ 13.64,3.1,2.56,15.2,116.0,2.7,3.03,0.17,1.66,5.1,0.96,3.36,845.0,0
22
+ 14.06,1.63,2.28,16.0,126.0,3.0,3.17,0.24,2.1,5.65,1.09,3.71,780.0,0
23
+ 12.93,3.8,2.65,18.6,102.0,2.41,2.41,0.25,1.98,4.5,1.03,3.52,770.0,0
24
+ 13.71,1.86,2.36,16.6,101.0,2.61,2.88,0.27,1.69,3.8,1.11,4.0,1035.0,0
25
+ 12.85,1.6,2.52,17.8,95.0,2.48,2.37,0.26,1.46,3.93,1.09,3.63,1015.0,0
26
+ 13.5,1.81,2.61,20.0,96.0,2.53,2.61,0.28,1.66,3.52,1.12,3.82,845.0,0
27
+ 13.05,2.05,3.22,25.0,124.0,2.63,2.68,0.47,1.92,3.58,1.13,3.2,830.0,0
28
+ 13.39,1.77,2.62,16.1,93.0,2.85,2.94,0.34,1.45,4.8,0.92,3.22,1195.0,0
29
+ 13.3,1.72,2.14,17.0,94.0,2.4,2.19,0.27,1.35,3.95,1.02,2.77,1285.0,0
30
+ 13.87,1.9,2.8,19.4,107.0,2.95,2.97,0.37,1.76,4.5,1.25,3.4,915.0,0
31
+ 14.02,1.68,2.21,16.0,96.0,2.65,2.33,0.26,1.98,4.7,1.04,3.59,1035.0,0
32
+ 13.73,1.5,2.7,22.5,101.0,3.0,3.25,0.29,2.38,5.7,1.19,2.71,1285.0,0
33
+ 13.58,1.66,2.36,19.1,106.0,2.86,3.19,0.22,1.95,6.9,1.09,2.88,1515.0,0
34
+ 13.68,1.83,2.36,17.2,104.0,2.42,2.69,0.42,1.97,3.84,1.23,2.87,990.0,0
35
+ 13.76,1.53,2.7,19.5,132.0,2.95,2.74,0.5,1.35,5.4,1.25,3.0,1235.0,0
36
+ 13.51,1.8,2.65,19.0,110.0,2.35,2.53,0.29,1.54,4.2,1.1,2.87,1095.0,0
37
+ 13.48,1.81,2.41,20.5,100.0,2.7,2.98,0.26,1.86,5.1,1.04,3.47,920.0,0
38
+ 13.28,1.64,2.84,15.5,110.0,2.6,2.68,0.34,1.36,4.6,1.09,2.78,880.0,0
39
+ 13.05,1.65,2.55,18.0,98.0,2.45,2.43,0.29,1.44,4.25,1.12,2.51,1105.0,0
40
+ 13.07,1.5,2.1,15.5,98.0,2.4,2.64,0.28,1.37,3.7,1.18,2.69,1020.0,0
41
+ 14.22,3.99,2.51,13.2,128.0,3.0,3.04,0.2,2.08,5.1,0.89,3.53,760.0,0
42
+ 13.56,1.71,2.31,16.2,117.0,3.15,3.29,0.34,2.34,6.13,0.95,3.38,795.0,0
43
+ 13.41,3.84,2.12,18.8,90.0,2.45,2.68,0.27,1.48,4.28,0.91,3.0,1035.0,0
44
+ 13.88,1.89,2.59,15.0,101.0,3.25,3.56,0.17,1.7,5.43,0.88,3.56,1095.0,0
45
+ 13.24,3.98,2.29,17.5,103.0,2.64,2.63,0.32,1.66,4.36,0.82,3.0,680.0,0
46
+ 13.05,1.77,2.1,17.0,107.0,3.0,3.0,0.28,2.03,5.04,0.88,3.35,885.0,0
47
+ 14.21,4.04,2.44,18.9,111.0,2.85,2.65,0.3,1.25,5.24,0.87,3.33,1080.0,0
48
+ 14.38,3.59,2.28,16.0,102.0,3.25,3.17,0.27,2.19,4.9,1.04,3.44,1065.0,0
49
+ 13.9,1.68,2.12,16.0,101.0,3.1,3.39,0.21,2.14,6.1,0.91,3.33,985.0,0
50
+ 14.1,2.02,2.4,18.8,103.0,2.75,2.92,0.32,2.38,6.2,1.07,2.75,1060.0,0
51
+ 13.94,1.73,2.27,17.4,108.0,2.88,3.54,0.32,2.08,8.9,1.12,3.1,1260.0,0
52
+ 13.05,1.73,2.04,12.4,92.0,2.72,3.27,0.17,2.91,7.2,1.12,2.91,1150.0,0
53
+ 13.83,1.65,2.6,17.2,94.0,2.45,2.99,0.22,2.29,5.6,1.24,3.37,1265.0,0
54
+ 13.82,1.75,2.42,14.0,111.0,3.88,3.74,0.32,1.87,7.05,1.01,3.26,1190.0,0
55
+ 13.77,1.9,2.68,17.1,115.0,3.0,2.79,0.39,1.68,6.3,1.13,2.93,1375.0,0
56
+ 13.74,1.67,2.25,16.4,118.0,2.6,2.9,0.21,1.62,5.85,0.92,3.2,1060.0,0
57
+ 13.56,1.73,2.46,20.5,116.0,2.96,2.78,0.2,2.45,6.25,0.98,3.03,1120.0,0
58
+ 14.22,1.7,2.3,16.3,118.0,3.2,3.0,0.26,2.03,6.38,0.94,3.31,970.0,0
59
+ 13.29,1.97,2.68,16.8,102.0,3.0,3.23,0.31,1.66,6.0,1.07,2.84,1270.0,0
60
+ 13.72,1.43,2.5,16.7,108.0,3.4,3.67,0.19,2.04,6.8,0.89,2.87,1285.0,0
61
+ 12.37,0.94,1.36,10.6,88.0,1.98,0.57,0.28,0.42,1.95,1.05,1.82,520.0,1
62
+ 12.33,1.1,2.28,16.0,101.0,2.05,1.09,0.63,0.41,3.27,1.25,1.67,680.0,1
63
+ 12.64,1.36,2.02,16.8,100.0,2.02,1.41,0.53,0.62,5.75,0.98,1.59,450.0,1
64
+ 13.67,1.25,1.92,18.0,94.0,2.1,1.79,0.32,0.73,3.8,1.23,2.46,630.0,1
65
+ 12.37,1.13,2.16,19.0,87.0,3.5,3.1,0.19,1.87,4.45,1.22,2.87,420.0,1
66
+ 12.17,1.45,2.53,19.0,104.0,1.89,1.75,0.45,1.03,2.95,1.45,2.23,355.0,1
67
+ 12.37,1.21,2.56,18.1,98.0,2.42,2.65,0.37,2.08,4.6,1.19,2.3,678.0,1
68
+ 13.11,1.01,1.7,15.0,78.0,2.98,3.18,0.26,2.28,5.3,1.12,3.18,502.0,1
69
+ 12.37,1.17,1.92,19.6,78.0,2.11,2.0,0.27,1.04,4.68,1.12,3.48,510.0,1
70
+ 13.34,0.94,2.36,17.0,110.0,2.53,1.3,0.55,0.42,3.17,1.02,1.93,750.0,1
71
+ 12.21,1.19,1.75,16.8,151.0,1.85,1.28,0.14,2.5,2.85,1.28,3.07,718.0,1
72
+ 12.29,1.61,2.21,20.4,103.0,1.1,1.02,0.37,1.46,3.05,0.906,1.82,870.0,1
73
+ 13.86,1.51,2.67,25.0,86.0,2.95,2.86,0.21,1.87,3.38,1.36,3.16,410.0,1
74
+ 13.49,1.66,2.24,24.0,87.0,1.88,1.84,0.27,1.03,3.74,0.98,2.78,472.0,1
75
+ 12.99,1.67,2.6,30.0,139.0,3.3,2.89,0.21,1.96,3.35,1.31,3.5,985.0,1
76
+ 11.96,1.09,2.3,21.0,101.0,3.38,2.14,0.13,1.65,3.21,0.99,3.13,886.0,1
77
+ 11.66,1.88,1.92,16.0,97.0,1.61,1.57,0.34,1.15,3.8,1.23,2.14,428.0,1
78
+ 13.03,0.9,1.71,16.0,86.0,1.95,2.03,0.24,1.46,4.6,1.19,2.48,392.0,1
79
+ 11.84,2.89,2.23,18.0,112.0,1.72,1.32,0.43,0.95,2.65,0.96,2.52,500.0,1
80
+ 12.33,0.99,1.95,14.8,136.0,1.9,1.85,0.35,2.76,3.4,1.06,2.31,750.0,1
81
+ 12.7,3.87,2.4,23.0,101.0,2.83,2.55,0.43,1.95,2.57,1.19,3.13,463.0,1
82
+ 12.0,0.92,2.0,19.0,86.0,2.42,2.26,0.3,1.43,2.5,1.38,3.12,278.0,1
83
+ 12.72,1.81,2.2,18.8,86.0,2.2,2.53,0.26,1.77,3.9,1.16,3.14,714.0,1
84
+ 12.08,1.13,2.51,24.0,78.0,2.0,1.58,0.4,1.4,2.2,1.31,2.72,630.0,1
85
+ 13.05,3.86,2.32,22.5,85.0,1.65,1.59,0.61,1.62,4.8,0.84,2.01,515.0,1
86
+ 11.84,0.89,2.58,18.0,94.0,2.2,2.21,0.22,2.35,3.05,0.79,3.08,520.0,1
87
+ 12.67,0.98,2.24,18.0,99.0,2.2,1.94,0.3,1.46,2.62,1.23,3.16,450.0,1
88
+ 12.16,1.61,2.31,22.8,90.0,1.78,1.69,0.43,1.56,2.45,1.33,2.26,495.0,1
89
+ 11.65,1.67,2.62,26.0,88.0,1.92,1.61,0.4,1.34,2.6,1.36,3.21,562.0,1
90
+ 11.64,2.06,2.46,21.6,84.0,1.95,1.69,0.48,1.35,2.8,1.0,2.75,680.0,1
91
+ 12.08,1.33,2.3,23.6,70.0,2.2,1.59,0.42,1.38,1.74,1.07,3.21,625.0,1
92
+ 12.08,1.83,2.32,18.5,81.0,1.6,1.5,0.52,1.64,2.4,1.08,2.27,480.0,1
93
+ 12.0,1.51,2.42,22.0,86.0,1.45,1.25,0.5,1.63,3.6,1.05,2.65,450.0,1
94
+ 12.69,1.53,2.26,20.7,80.0,1.38,1.46,0.58,1.62,3.05,0.96,2.06,495.0,1
95
+ 12.29,2.83,2.22,18.0,88.0,2.45,2.25,0.25,1.99,2.15,1.15,3.3,290.0,1
96
+ 11.62,1.99,2.28,18.0,98.0,3.02,2.26,0.17,1.35,3.25,1.16,2.96,345.0,1
97
+ 12.47,1.52,2.2,19.0,162.0,2.5,2.27,0.32,3.28,2.6,1.16,2.63,937.0,1
98
+ 11.81,2.12,2.74,21.5,134.0,1.6,0.99,0.14,1.56,2.5,0.95,2.26,625.0,1
99
+ 12.29,1.41,1.98,16.0,85.0,2.55,2.5,0.29,1.77,2.9,1.23,2.74,428.0,1
100
+ 12.37,1.07,2.1,18.5,88.0,3.52,3.75,0.24,1.95,4.5,1.04,2.77,660.0,1
101
+ 12.29,3.17,2.21,18.0,88.0,2.85,2.99,0.45,2.81,2.3,1.42,2.83,406.0,1
102
+ 12.08,2.08,1.7,17.5,97.0,2.23,2.17,0.26,1.4,3.3,1.27,2.96,710.0,1
103
+ 12.6,1.34,1.9,18.5,88.0,1.45,1.36,0.29,1.35,2.45,1.04,2.77,562.0,1
104
+ 12.34,2.45,2.46,21.0,98.0,2.56,2.11,0.34,1.31,2.8,0.8,3.38,438.0,1
105
+ 11.82,1.72,1.88,19.5,86.0,2.5,1.64,0.37,1.42,2.06,0.94,2.44,415.0,1
106
+ 12.51,1.73,1.98,20.5,85.0,2.2,1.92,0.32,1.48,2.94,1.04,3.57,672.0,1
107
+ 12.42,2.55,2.27,22.0,90.0,1.68,1.84,0.66,1.42,2.7,0.86,3.3,315.0,1
108
+ 12.25,1.73,2.12,19.0,80.0,1.65,2.03,0.37,1.63,3.4,1.0,3.17,510.0,1
109
+ 12.72,1.75,2.28,22.5,84.0,1.38,1.76,0.48,1.63,3.3,0.88,2.42,488.0,1
110
+ 12.22,1.29,1.94,19.0,92.0,2.36,2.04,0.39,2.08,2.7,0.86,3.02,312.0,1
111
+ 11.61,1.35,2.7,20.0,94.0,2.74,2.92,0.29,2.49,2.65,0.96,3.26,680.0,1
112
+ 11.46,3.74,1.82,19.5,107.0,3.18,2.58,0.24,3.58,2.9,0.75,2.81,562.0,1
113
+ 12.52,2.43,2.17,21.0,88.0,2.55,2.27,0.26,1.22,2.0,0.9,2.78,325.0,1
114
+ 11.76,2.68,2.92,20.0,103.0,1.75,2.03,0.6,1.05,3.8,1.23,2.5,607.0,1
115
+ 11.41,0.74,2.5,21.0,88.0,2.48,2.01,0.42,1.44,3.08,1.1,2.31,434.0,1
116
+ 12.08,1.39,2.5,22.5,84.0,2.56,2.29,0.43,1.04,2.9,0.93,3.19,385.0,1
117
+ 11.03,1.51,2.2,21.5,85.0,2.46,2.17,0.52,2.01,1.9,1.71,2.87,407.0,1
118
+ 11.82,1.47,1.99,20.8,86.0,1.98,1.6,0.3,1.53,1.95,0.95,3.33,495.0,1
119
+ 12.42,1.61,2.19,22.5,108.0,2.0,2.09,0.34,1.61,2.06,1.06,2.96,345.0,1
120
+ 12.77,3.43,1.98,16.0,80.0,1.63,1.25,0.43,0.83,3.4,0.7,2.12,372.0,1
121
+ 12.0,3.43,2.0,19.0,87.0,2.0,1.64,0.37,1.87,1.28,0.93,3.05,564.0,1
122
+ 11.45,2.4,2.42,20.0,96.0,2.9,2.79,0.32,1.83,3.25,0.8,3.39,625.0,1
123
+ 11.56,2.05,3.23,28.5,119.0,3.18,5.08,0.47,1.87,6.0,0.93,3.69,465.0,1
124
+ 12.42,4.43,2.73,26.5,102.0,2.2,2.13,0.43,1.71,2.08,0.92,3.12,365.0,1
125
+ 13.05,5.8,2.13,21.5,86.0,2.62,2.65,0.3,2.01,2.6,0.73,3.1,380.0,1
126
+ 11.87,4.31,2.39,21.0,82.0,2.86,3.03,0.21,2.91,2.8,0.75,3.64,380.0,1
127
+ 12.07,2.16,2.17,21.0,85.0,2.6,2.65,0.37,1.35,2.76,0.86,3.28,378.0,1
128
+ 12.43,1.53,2.29,21.5,86.0,2.74,3.15,0.39,1.77,3.94,0.69,2.84,352.0,1
129
+ 11.79,2.13,2.78,28.5,92.0,2.13,2.24,0.58,1.76,3.0,0.97,2.44,466.0,1
130
+ 12.37,1.63,2.3,24.5,88.0,2.22,2.45,0.4,1.9,2.12,0.89,2.78,342.0,1
131
+ 12.04,4.3,2.38,22.0,80.0,2.1,1.75,0.42,1.35,2.6,0.79,2.57,580.0,1
132
+ 12.86,1.35,2.32,18.0,122.0,1.51,1.25,0.21,0.94,4.1,0.76,1.29,630.0,2
133
+ 12.88,2.99,2.4,20.0,104.0,1.3,1.22,0.24,0.83,5.4,0.74,1.42,530.0,2
134
+ 12.81,2.31,2.4,24.0,98.0,1.15,1.09,0.27,0.83,5.7,0.66,1.36,560.0,2
135
+ 12.7,3.55,2.36,21.5,106.0,1.7,1.2,0.17,0.84,5.0,0.78,1.29,600.0,2
136
+ 12.51,1.24,2.25,17.5,85.0,2.0,0.58,0.6,1.25,5.45,0.75,1.51,650.0,2
137
+ 12.6,2.46,2.2,18.5,94.0,1.62,0.66,0.63,0.94,7.1,0.73,1.58,695.0,2
138
+ 12.25,4.72,2.54,21.0,89.0,1.38,0.47,0.53,0.8,3.85,0.75,1.27,720.0,2
139
+ 12.53,5.51,2.64,25.0,96.0,1.79,0.6,0.63,1.1,5.0,0.82,1.69,515.0,2
140
+ 13.49,3.59,2.19,19.5,88.0,1.62,0.48,0.58,0.88,5.7,0.81,1.82,580.0,2
141
+ 12.84,2.96,2.61,24.0,101.0,2.32,0.6,0.53,0.81,4.92,0.89,2.15,590.0,2
142
+ 12.93,2.81,2.7,21.0,96.0,1.54,0.5,0.53,0.75,4.6,0.77,2.31,600.0,2
143
+ 13.36,2.56,2.35,20.0,89.0,1.4,0.5,0.37,0.64,5.6,0.7,2.47,780.0,2
144
+ 13.52,3.17,2.72,23.5,97.0,1.55,0.52,0.5,0.55,4.35,0.89,2.06,520.0,2
145
+ 13.62,4.95,2.35,20.0,92.0,2.0,0.8,0.47,1.02,4.4,0.91,2.05,550.0,2
146
+ 12.25,3.88,2.2,18.5,112.0,1.38,0.78,0.29,1.14,8.21,0.65,2.0,855.0,2
147
+ 13.16,3.57,2.15,21.0,102.0,1.5,0.55,0.43,1.3,4.0,0.6,1.68,830.0,2
148
+ 13.88,5.04,2.23,20.0,80.0,0.98,0.34,0.4,0.68,4.9,0.58,1.33,415.0,2
149
+ 12.87,4.61,2.48,21.5,86.0,1.7,0.65,0.47,0.86,7.65,0.54,1.86,625.0,2
150
+ 13.32,3.24,2.38,21.5,92.0,1.93,0.76,0.45,1.25,8.42,0.55,1.62,650.0,2
151
+ 13.08,3.9,2.36,21.5,113.0,1.41,1.39,0.34,1.14,9.4,0.57,1.33,550.0,2
152
+ 13.5,3.12,2.62,24.0,123.0,1.4,1.57,0.22,1.25,8.6,0.59,1.3,500.0,2
153
+ 12.79,2.67,2.48,22.0,112.0,1.48,1.36,0.24,1.26,10.8,0.48,1.47,480.0,2
154
+ 13.11,1.9,2.75,25.5,116.0,2.2,1.28,0.26,1.56,7.1,0.61,1.33,425.0,2
155
+ 13.23,3.3,2.28,18.5,98.0,1.8,0.83,0.61,1.87,10.52,0.56,1.51,675.0,2
156
+ 12.58,1.29,2.1,20.0,103.0,1.48,0.58,0.53,1.4,7.6,0.58,1.55,640.0,2
157
+ 13.17,5.19,2.32,22.0,93.0,1.74,0.63,0.61,1.55,7.9,0.6,1.48,725.0,2
158
+ 13.84,4.12,2.38,19.5,89.0,1.8,0.83,0.48,1.56,9.01,0.57,1.64,480.0,2
159
+ 12.45,3.03,2.64,27.0,97.0,1.9,0.58,0.63,1.14,7.5,0.67,1.73,880.0,2
160
+ 14.34,1.68,2.7,25.0,98.0,2.8,1.31,0.53,2.7,13.0,0.57,1.96,660.0,2
161
+ 13.48,1.67,2.64,22.5,89.0,2.6,1.1,0.52,2.29,11.75,0.57,1.78,620.0,2
162
+ 12.36,3.83,2.38,21.0,88.0,2.3,0.92,0.5,1.04,7.65,0.56,1.58,520.0,2
163
+ 13.69,3.26,2.54,20.0,107.0,1.83,0.56,0.5,0.8,5.88,0.96,1.82,680.0,2
164
+ 12.85,3.27,2.58,22.0,106.0,1.65,0.6,0.6,0.96,5.58,0.87,2.11,570.0,2
165
+ 12.96,3.45,2.35,18.5,106.0,1.39,0.7,0.4,0.94,5.28,0.68,1.75,675.0,2
166
+ 13.78,2.76,2.3,22.0,90.0,1.35,0.68,0.41,1.03,9.58,0.7,1.68,615.0,2
167
+ 13.73,4.36,2.26,22.5,88.0,1.28,0.47,0.52,1.15,6.62,0.78,1.75,520.0,2
168
+ 13.45,3.7,2.6,23.0,111.0,1.7,0.92,0.43,1.46,10.68,0.85,1.56,695.0,2
169
+ 12.82,3.37,2.3,19.5,88.0,1.48,0.66,0.4,0.97,10.26,0.72,1.75,685.0,2
170
+ 13.58,2.58,2.69,24.5,105.0,1.55,0.84,0.39,1.54,8.66,0.74,1.8,750.0,2
171
+ 13.4,4.6,2.86,25.0,112.0,1.98,0.96,0.27,1.11,8.5,0.67,1.92,630.0,2
172
+ 12.2,3.03,2.32,19.0,96.0,1.25,0.49,0.4,0.73,5.5,0.66,1.83,510.0,2
173
+ 12.77,2.39,2.28,19.5,86.0,1.39,0.51,0.48,0.64,9.899999,0.57,1.63,470.0,2
174
+ 14.16,2.51,2.48,20.0,91.0,1.68,0.7,0.44,1.24,9.7,0.62,1.71,660.0,2
175
+ 13.71,5.65,2.45,20.5,95.0,1.68,0.61,0.52,1.06,7.7,0.64,1.74,740.0,2
176
+ 13.4,3.91,2.48,23.0,102.0,1.8,0.75,0.43,1.41,7.3,0.7,1.56,750.0,2
177
+ 13.27,4.28,2.26,20.0,120.0,1.59,0.69,0.43,1.35,10.2,0.59,1.56,835.0,2
178
+ 13.17,2.59,2.37,20.0,120.0,1.65,0.68,0.53,1.46,9.3,0.6,1.62,840.0,2
179
+ 14.13,4.1,2.74,24.5,96.0,2.05,0.76,0.56,1.35,9.2,0.61,1.6,560.0,2
@@ -0,0 +1,87 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "939c616d-2779-4e21-adcf-1d070898d65b",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "from sklearn import datasets\n",
11
+ "from sklearn.metrics import confusion_matrix\n",
12
+ "from sklearn.model_selection import train_test_split\n",
13
+ "from sklearn.naive_bayes import GaussianNB"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "code",
18
+ "execution_count": null,
19
+ "id": "17720a0d-e788-4b1d-b2b2-a542f6b824a2",
20
+ "metadata": {},
21
+ "outputs": [],
22
+ "source": [
23
+ "wine = datasets.load_wine()"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": null,
29
+ "id": "a050923e-4382-4ff7-93bf-446b117c0ef5",
30
+ "metadata": {},
31
+ "outputs": [],
32
+ "source": [
33
+ "X = wine.data\n",
34
+ "X"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "id": "9f1a4355-718e-40ed-b892-3e3d03c4ef3c",
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "y = wine.target\n",
45
+ "y"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": null,
51
+ "id": "dd3f31ef-c0d2-48dd-9fb7-338c10f9fbf9",
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)\n",
56
+ "\n",
57
+ "gnb = GaussianNB().fit(X_train, y_train)\n",
58
+ "gnb_predictions = gnb.predict(X_test)\n",
59
+ "accuracy = gnb.score(X_test, y_test)\n",
60
+ "accuracy\n",
61
+ "cm = confusion_matrix(y_test, gnb_predictions)\n",
62
+ "cm"
63
+ ]
64
+ }
65
+ ],
66
+ "metadata": {
67
+ "kernelspec": {
68
+ "display_name": "Python 3 (ipykernel)",
69
+ "language": "python",
70
+ "name": "python3"
71
+ },
72
+ "language_info": {
73
+ "codemirror_mode": {
74
+ "name": "ipython",
75
+ "version": 3
76
+ },
77
+ "file_extension": ".py",
78
+ "mimetype": "text/x-python",
79
+ "name": "python",
80
+ "nbconvert_exporter": "python",
81
+ "pygments_lexer": "ipython3",
82
+ "version": "3.12.4"
83
+ }
84
+ },
85
+ "nbformat": 4,
86
+ "nbformat_minor": 5
87
+ }