noshot 0.3.1__py3-none-any.whl → 0.3.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +87 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +247 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
- noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +183 -0
- noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +172 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +146 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +173 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +77 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/AllinOne.ipynb +12676 -0
- noshot/main.py +18 -18
- noshot/utils/__init__.py +2 -2
- noshot/utils/shell_utils.py +56 -56
- {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/LICENSE.txt +20 -20
- {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/METADATA +55 -55
- noshot-0.3.2.dist-info/RECORD +36 -0
- noshot-0.3.1.dist-info/RECORD +0 -9
- {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/WHEEL +0 -0
- {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,287 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "markdown",
|
5
|
+
"id": "def24f4a",
|
6
|
+
"metadata": {},
|
7
|
+
"source": [
|
8
|
+
"##### __Balance Scale Dataset__"
|
9
|
+
]
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"cell_type": "code",
|
13
|
+
"execution_count": null,
|
14
|
+
"id": "b4a8b5dc",
|
15
|
+
"metadata": {},
|
16
|
+
"outputs": [],
|
17
|
+
"source": [
|
18
|
+
"from sklearn.neighbors import KNeighborsClassifier\n",
|
19
|
+
"from sklearn.datasets import load_iris\n",
|
20
|
+
"from sklearn.model_selection import train_test_split\n",
|
21
|
+
"from sklearn import metrics\n",
|
22
|
+
"from sklearn.preprocessing import StandardScaler\n",
|
23
|
+
"import sklearn\n",
|
24
|
+
"import pandas as pd\n",
|
25
|
+
"import numpy as np"
|
26
|
+
]
|
27
|
+
},
|
28
|
+
{
|
29
|
+
"cell_type": "code",
|
30
|
+
"execution_count": null,
|
31
|
+
"id": "1c308767",
|
32
|
+
"metadata": {},
|
33
|
+
"outputs": [],
|
34
|
+
"source": [
|
35
|
+
"df = pd.read_csv('input.txt', delimiter = ',', names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
|
36
|
+
"#df = pd.read_csv('balance-scale.csv')\n",
|
37
|
+
"df.head()"
|
38
|
+
]
|
39
|
+
},
|
40
|
+
{
|
41
|
+
"cell_type": "code",
|
42
|
+
"execution_count": null,
|
43
|
+
"id": "23d0288e",
|
44
|
+
"metadata": {},
|
45
|
+
"outputs": [],
|
46
|
+
"source": [
|
47
|
+
"feature = ['left-weight','left-distance','right-weight','right-distance']\n",
|
48
|
+
"x = df.loc[:,feature]\n",
|
49
|
+
"y = df.loc[:,'class name']\n",
|
50
|
+
"x = StandardScaler().fit_transform(x)\n",
|
51
|
+
"X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.4,\n",
|
52
|
+
"random_state = 4)\n",
|
53
|
+
"print (X_train.shape)\n",
|
54
|
+
"print (X_test.shape)\n",
|
55
|
+
"knn = KNeighborsClassifier(n_neighbors = 15)\n",
|
56
|
+
"knn.fit(X_train, y_train) "
|
57
|
+
]
|
58
|
+
},
|
59
|
+
{
|
60
|
+
"cell_type": "code",
|
61
|
+
"execution_count": null,
|
62
|
+
"id": "366c003d",
|
63
|
+
"metadata": {},
|
64
|
+
"outputs": [],
|
65
|
+
"source": [
|
66
|
+
"y_pred = knn.predict(X_test)\n",
|
67
|
+
"print (metrics.accuracy_score(y_test, y_pred))"
|
68
|
+
]
|
69
|
+
},
|
70
|
+
{
|
71
|
+
"cell_type": "markdown",
|
72
|
+
"id": "6702687e",
|
73
|
+
"metadata": {},
|
74
|
+
"source": [
|
75
|
+
"##### __class for [1,1,1,1] = R (predicted)__"
|
76
|
+
]
|
77
|
+
},
|
78
|
+
{
|
79
|
+
"cell_type": "code",
|
80
|
+
"execution_count": null,
|
81
|
+
"id": "22e96c2a",
|
82
|
+
"metadata": {},
|
83
|
+
"outputs": [],
|
84
|
+
"source": [
|
85
|
+
"y_pred = knn.predict(np.array([1,1,1,1]).reshape(1, -1))[0]\n",
|
86
|
+
"print(\"Class Predicted:\", y_pred)"
|
87
|
+
]
|
88
|
+
},
|
89
|
+
{
|
90
|
+
"cell_type": "markdown",
|
91
|
+
"id": "13d70944",
|
92
|
+
"metadata": {},
|
93
|
+
"source": [
|
94
|
+
"##### __Iris Dataset__"
|
95
|
+
]
|
96
|
+
},
|
97
|
+
{
|
98
|
+
"cell_type": "code",
|
99
|
+
"execution_count": null,
|
100
|
+
"id": "3192e255",
|
101
|
+
"metadata": {},
|
102
|
+
"outputs": [],
|
103
|
+
"source": [
|
104
|
+
"def to_category(val):\n",
|
105
|
+
" match val:\n",
|
106
|
+
" case 0: return \"setosa\"\n",
|
107
|
+
" case 1: return \"versicolor\"\n",
|
108
|
+
" case 2: return \"virginica\"\n",
|
109
|
+
"iris = load_iris()\n",
|
110
|
+
"df2 = pd.DataFrame(data=iris.data, columns=iris.feature_names)\n",
|
111
|
+
"df2['class'] = iris.target\n",
|
112
|
+
"df2['class'] = df2['class'].apply(to_category)\n",
|
113
|
+
"print(df2.shape)\n",
|
114
|
+
"df2.head()"
|
115
|
+
]
|
116
|
+
},
|
117
|
+
{
|
118
|
+
"cell_type": "code",
|
119
|
+
"execution_count": null,
|
120
|
+
"id": "4115986d",
|
121
|
+
"metadata": {
|
122
|
+
"scrolled": true
|
123
|
+
},
|
124
|
+
"outputs": [],
|
125
|
+
"source": [
|
126
|
+
"feature = ['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)']\n",
|
127
|
+
"x = df2.loc[:,feature]\n",
|
128
|
+
"y = df2.loc[:,'class']\n",
|
129
|
+
"x = StandardScaler().fit_transform(x)\n",
|
130
|
+
"X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.4,\n",
|
131
|
+
"random_state = 4)\n",
|
132
|
+
"print (X_train.shape)\n",
|
133
|
+
"print (X_test.shape)\n",
|
134
|
+
"knn = KNeighborsClassifier(n_neighbors = 15)\n",
|
135
|
+
"knn.fit(X_train, y_train) "
|
136
|
+
]
|
137
|
+
},
|
138
|
+
{
|
139
|
+
"cell_type": "code",
|
140
|
+
"execution_count": null,
|
141
|
+
"id": "8252b0f1",
|
142
|
+
"metadata": {},
|
143
|
+
"outputs": [],
|
144
|
+
"source": [
|
145
|
+
"y_pred = knn.predict(X_test)\n",
|
146
|
+
"print (metrics.accuracy_score(y_test, y_pred))"
|
147
|
+
]
|
148
|
+
},
|
149
|
+
{
|
150
|
+
"cell_type": "markdown",
|
151
|
+
"id": "06559281",
|
152
|
+
"metadata": {},
|
153
|
+
"source": [
|
154
|
+
"##### __class for [5.2,3.5,1.1,0.2] = virginica (predicted)__"
|
155
|
+
]
|
156
|
+
},
|
157
|
+
{
|
158
|
+
"cell_type": "code",
|
159
|
+
"execution_count": null,
|
160
|
+
"id": "085896ef",
|
161
|
+
"metadata": {},
|
162
|
+
"outputs": [],
|
163
|
+
"source": [
|
164
|
+
"y_pred = knn.predict(np.array([5.2, 3.5, 1.1, 0.2]).reshape(1, -1))[0]\n",
|
165
|
+
"print(\"Class Predicted:\", y_pred)"
|
166
|
+
]
|
167
|
+
},
|
168
|
+
{
|
169
|
+
"cell_type": "markdown",
|
170
|
+
"id": "cdd56944",
|
171
|
+
"metadata": {},
|
172
|
+
"source": [
|
173
|
+
"##### __Iris Dataset Visualization__"
|
174
|
+
]
|
175
|
+
},
|
176
|
+
{
|
177
|
+
"cell_type": "code",
|
178
|
+
"execution_count": null,
|
179
|
+
"id": "a549df51",
|
180
|
+
"metadata": {},
|
181
|
+
"outputs": [],
|
182
|
+
"source": [
|
183
|
+
"from sklearn.svm import SVC\n",
|
184
|
+
"import numpy as np\n",
|
185
|
+
"import matplotlib.pyplot as plt\n",
|
186
|
+
"from sklearn import svm, datasets\n",
|
187
|
+
"\n",
|
188
|
+
"iris = load_iris()\n",
|
189
|
+
"X = iris.data[:, :2]\n",
|
190
|
+
"y = iris.target\n",
|
191
|
+
"\n",
|
192
|
+
"def make_meshgrid(x, y, h=.02):\n",
|
193
|
+
" x_min, x_max = x.min() - 1, x.max() + 1\n",
|
194
|
+
" y_min, y_max = y.min() - 1, y.max() + 1\n",
|
195
|
+
" xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))\n",
|
196
|
+
" return xx, yy\n",
|
197
|
+
"\n",
|
198
|
+
"def plot_contours(ax, clf, xx, yy, **params):\n",
|
199
|
+
" Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n",
|
200
|
+
" Z = Z.reshape(xx.shape)\n",
|
201
|
+
" out = ax.contourf(xx, yy, Z, **params)\n",
|
202
|
+
" return out\n",
|
203
|
+
"\n",
|
204
|
+
"model = svm.SVC(kernel='linear')\n",
|
205
|
+
"clf = model.fit(X, y)\n",
|
206
|
+
"\n",
|
207
|
+
"fig, ax = plt.subplots()\n",
|
208
|
+
"# title for the plots\n",
|
209
|
+
"title = ('Decision surface of linear SVC ')\n",
|
210
|
+
"# Set-up grid for plotting.\n",
|
211
|
+
"X0, X1 = X[:, 0], X[:, 1]\n",
|
212
|
+
"xx, yy = make_meshgrid(X0, X1)\n",
|
213
|
+
"\n",
|
214
|
+
"plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)\n",
|
215
|
+
"ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')\n",
|
216
|
+
"ax.set_ylabel('y label here')\n",
|
217
|
+
"ax.set_xlabel('x label here')\n",
|
218
|
+
"ax.set_xticks(())\n",
|
219
|
+
"ax.set_yticks(())\n",
|
220
|
+
"ax.set_title(title)\n",
|
221
|
+
"#ax.legend()\n",
|
222
|
+
"plt.show()"
|
223
|
+
]
|
224
|
+
},
|
225
|
+
{
|
226
|
+
"cell_type": "code",
|
227
|
+
"execution_count": null,
|
228
|
+
"id": "01719650",
|
229
|
+
"metadata": {},
|
230
|
+
"outputs": [],
|
231
|
+
"source": [
|
232
|
+
"from sklearn.svm import SVC\n",
|
233
|
+
"import numpy as np\n",
|
234
|
+
"import matplotlib.pyplot as plt\n",
|
235
|
+
"from sklearn import svm, datasets\n",
|
236
|
+
"from mpl_toolkits.mplot3d import Axes3D\n",
|
237
|
+
"\n",
|
238
|
+
"iris = datasets.load_iris()\n",
|
239
|
+
"X = iris.data[:, :3] # we only take the first three features.\n",
|
240
|
+
"Y = iris.target\n",
|
241
|
+
"\n",
|
242
|
+
"#make it binary classification problem\n",
|
243
|
+
"X = X[np.logical_or(Y==0,Y==1)]\n",
|
244
|
+
"Y = Y[np.logical_or(Y==0,Y==1)]\n",
|
245
|
+
"\n",
|
246
|
+
"model = svm.SVC(kernel='linear')\n",
|
247
|
+
"clf = model.fit(X, Y)\n",
|
248
|
+
"\n",
|
249
|
+
"# The equation of the separating plane is given by all x so that np.dot(svc.coef_[0], x) + b = 0.\n",
|
250
|
+
"# Solve for w3 (z)\n",
|
251
|
+
"z = lambda x,y: (-clf.intercept_[0]-clf.coef_[0][0]*x -clf.coef_[0][1]*y) / clf.coef_[0][2]\n",
|
252
|
+
"\n",
|
253
|
+
"tmp = np.linspace(-5,5,30)\n",
|
254
|
+
"x,y = np.meshgrid(tmp,tmp)\n",
|
255
|
+
"\n",
|
256
|
+
"fig = plt.figure()\n",
|
257
|
+
"ax = fig.add_subplot(111, projection='3d')\n",
|
258
|
+
"ax.plot3D(X[Y==0,0], X[Y==0,1], X[Y==0,2],'ob')\n",
|
259
|
+
"ax.plot3D(X[Y==1,0], X[Y==1,1], X[Y==1,2],'sr')\n",
|
260
|
+
"ax.plot_surface(x, y, z(x,y))\n",
|
261
|
+
"ax.view_init(30, 60)\n",
|
262
|
+
"plt.show()"
|
263
|
+
]
|
264
|
+
}
|
265
|
+
],
|
266
|
+
"metadata": {
|
267
|
+
"kernelspec": {
|
268
|
+
"display_name": "Python 3 (ipykernel)",
|
269
|
+
"language": "python",
|
270
|
+
"name": "python3"
|
271
|
+
},
|
272
|
+
"language_info": {
|
273
|
+
"codemirror_mode": {
|
274
|
+
"name": "ipython",
|
275
|
+
"version": 3
|
276
|
+
},
|
277
|
+
"file_extension": ".py",
|
278
|
+
"mimetype": "text/x-python",
|
279
|
+
"name": "python",
|
280
|
+
"nbconvert_exporter": "python",
|
281
|
+
"pygments_lexer": "ipython3",
|
282
|
+
"version": "3.12.4"
|
283
|
+
}
|
284
|
+
},
|
285
|
+
"nbformat": 4,
|
286
|
+
"nbformat_minor": 5
|
287
|
+
}
|