noshot 0.3.1__py3-none-any.whl → 0.3.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/1. PCA - EDA/PCA-EDA.ipynb +207 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/1. PCA - EDA/input.txt +625 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/KNN.ipynb +287 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/2. KNN Classifier/input.txt +625 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/LDA.ipynb +83 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/balance-scale.csv +626 -0
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis/input.txt +625 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/Linear-Regression.ipynb +117 -0
- noshot/data/ML TS XAI/ML/4. Linear Regression/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/Logistic-Regression.ipynb +137 -0
- noshot/data/ML TS XAI/ML/5. Logistic Regression/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/Bayesian.ipynb +87 -0
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/Handling TS Data.ipynb +247 -0
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data/raw_sales.csv +29581 -0
- noshot/data/ML TS XAI/TS/2. Feature Engineering/Feature Engineering-.ipynb +183 -0
- noshot/data/ML TS XAI/TS/3. Temporal Relationships/Exploring Temporal Relationships.ipynb +172 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/Up-Down-Sampling.ipynb +146 -0
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interploation/shampoo_sales.csv +37 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/Stationarity-Trend-Seasonality.ipynb +173 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality/daily-total-female-births.csv +366 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/ACF-PACF.ipynb +77 -0
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation/daily-min-temperatures.csv +3651 -0
- noshot/data/ML TS XAI/TS/AllinOne.ipynb +12676 -0
- noshot/main.py +18 -18
- noshot/utils/__init__.py +2 -2
- noshot/utils/shell_utils.py +56 -56
- {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/LICENSE.txt +20 -20
- {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/METADATA +55 -55
- noshot-0.3.2.dist-info/RECORD +36 -0
- noshot-0.3.1.dist-info/RECORD +0 -9
- {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/WHEEL +0 -0
- {noshot-0.3.1.dist-info → noshot-0.3.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,625 @@
|
|
1
|
+
B,1,1,1,1
|
2
|
+
R,1,1,1,2
|
3
|
+
R,1,1,1,3
|
4
|
+
R,1,1,1,4
|
5
|
+
R,1,1,1,5
|
6
|
+
R,1,1,2,1
|
7
|
+
R,1,1,2,2
|
8
|
+
R,1,1,2,3
|
9
|
+
R,1,1,2,4
|
10
|
+
R,1,1,2,5
|
11
|
+
R,1,1,3,1
|
12
|
+
R,1,1,3,2
|
13
|
+
R,1,1,3,3
|
14
|
+
R,1,1,3,4
|
15
|
+
R,1,1,3,5
|
16
|
+
R,1,1,4,1
|
17
|
+
R,1,1,4,2
|
18
|
+
R,1,1,4,3
|
19
|
+
R,1,1,4,4
|
20
|
+
R,1,1,4,5
|
21
|
+
R,1,1,5,1
|
22
|
+
R,1,1,5,2
|
23
|
+
R,1,1,5,3
|
24
|
+
R,1,1,5,4
|
25
|
+
R,1,1,5,5
|
26
|
+
L,1,2,1,1
|
27
|
+
B,1,2,1,2
|
28
|
+
R,1,2,1,3
|
29
|
+
R,1,2,1,4
|
30
|
+
R,1,2,1,5
|
31
|
+
B,1,2,2,1
|
32
|
+
R,1,2,2,2
|
33
|
+
R,1,2,2,3
|
34
|
+
R,1,2,2,4
|
35
|
+
R,1,2,2,5
|
36
|
+
R,1,2,3,1
|
37
|
+
R,1,2,3,2
|
38
|
+
R,1,2,3,3
|
39
|
+
R,1,2,3,4
|
40
|
+
R,1,2,3,5
|
41
|
+
R,1,2,4,1
|
42
|
+
R,1,2,4,2
|
43
|
+
R,1,2,4,3
|
44
|
+
R,1,2,4,4
|
45
|
+
R,1,2,4,5
|
46
|
+
R,1,2,5,1
|
47
|
+
R,1,2,5,2
|
48
|
+
R,1,2,5,3
|
49
|
+
R,1,2,5,4
|
50
|
+
R,1,2,5,5
|
51
|
+
L,1,3,1,1
|
52
|
+
L,1,3,1,2
|
53
|
+
B,1,3,1,3
|
54
|
+
R,1,3,1,4
|
55
|
+
R,1,3,1,5
|
56
|
+
L,1,3,2,1
|
57
|
+
R,1,3,2,2
|
58
|
+
R,1,3,2,3
|
59
|
+
R,1,3,2,4
|
60
|
+
R,1,3,2,5
|
61
|
+
B,1,3,3,1
|
62
|
+
R,1,3,3,2
|
63
|
+
R,1,3,3,3
|
64
|
+
R,1,3,3,4
|
65
|
+
R,1,3,3,5
|
66
|
+
R,1,3,4,1
|
67
|
+
R,1,3,4,2
|
68
|
+
R,1,3,4,3
|
69
|
+
R,1,3,4,4
|
70
|
+
R,1,3,4,5
|
71
|
+
R,1,3,5,1
|
72
|
+
R,1,3,5,2
|
73
|
+
R,1,3,5,3
|
74
|
+
R,1,3,5,4
|
75
|
+
R,1,3,5,5
|
76
|
+
L,1,4,1,1
|
77
|
+
L,1,4,1,2
|
78
|
+
L,1,4,1,3
|
79
|
+
B,1,4,1,4
|
80
|
+
R,1,4,1,5
|
81
|
+
L,1,4,2,1
|
82
|
+
B,1,4,2,2
|
83
|
+
R,1,4,2,3
|
84
|
+
R,1,4,2,4
|
85
|
+
R,1,4,2,5
|
86
|
+
L,1,4,3,1
|
87
|
+
R,1,4,3,2
|
88
|
+
R,1,4,3,3
|
89
|
+
R,1,4,3,4
|
90
|
+
R,1,4,3,5
|
91
|
+
B,1,4,4,1
|
92
|
+
R,1,4,4,2
|
93
|
+
R,1,4,4,3
|
94
|
+
R,1,4,4,4
|
95
|
+
R,1,4,4,5
|
96
|
+
R,1,4,5,1
|
97
|
+
R,1,4,5,2
|
98
|
+
R,1,4,5,3
|
99
|
+
R,1,4,5,4
|
100
|
+
R,1,4,5,5
|
101
|
+
L,1,5,1,1
|
102
|
+
L,1,5,1,2
|
103
|
+
L,1,5,1,3
|
104
|
+
L,1,5,1,4
|
105
|
+
B,1,5,1,5
|
106
|
+
L,1,5,2,1
|
107
|
+
L,1,5,2,2
|
108
|
+
R,1,5,2,3
|
109
|
+
R,1,5,2,4
|
110
|
+
R,1,5,2,5
|
111
|
+
L,1,5,3,1
|
112
|
+
R,1,5,3,2
|
113
|
+
R,1,5,3,3
|
114
|
+
R,1,5,3,4
|
115
|
+
R,1,5,3,5
|
116
|
+
L,1,5,4,1
|
117
|
+
R,1,5,4,2
|
118
|
+
R,1,5,4,3
|
119
|
+
R,1,5,4,4
|
120
|
+
R,1,5,4,5
|
121
|
+
B,1,5,5,1
|
122
|
+
R,1,5,5,2
|
123
|
+
R,1,5,5,3
|
124
|
+
R,1,5,5,4
|
125
|
+
R,1,5,5,5
|
126
|
+
L,2,1,1,1
|
127
|
+
B,2,1,1,2
|
128
|
+
R,2,1,1,3
|
129
|
+
R,2,1,1,4
|
130
|
+
R,2,1,1,5
|
131
|
+
B,2,1,2,1
|
132
|
+
R,2,1,2,2
|
133
|
+
R,2,1,2,3
|
134
|
+
R,2,1,2,4
|
135
|
+
R,2,1,2,5
|
136
|
+
R,2,1,3,1
|
137
|
+
R,2,1,3,2
|
138
|
+
R,2,1,3,3
|
139
|
+
R,2,1,3,4
|
140
|
+
R,2,1,3,5
|
141
|
+
R,2,1,4,1
|
142
|
+
R,2,1,4,2
|
143
|
+
R,2,1,4,3
|
144
|
+
R,2,1,4,4
|
145
|
+
R,2,1,4,5
|
146
|
+
R,2,1,5,1
|
147
|
+
R,2,1,5,2
|
148
|
+
R,2,1,5,3
|
149
|
+
R,2,1,5,4
|
150
|
+
R,2,1,5,5
|
151
|
+
L,2,2,1,1
|
152
|
+
L,2,2,1,2
|
153
|
+
L,2,2,1,3
|
154
|
+
B,2,2,1,4
|
155
|
+
R,2,2,1,5
|
156
|
+
L,2,2,2,1
|
157
|
+
B,2,2,2,2
|
158
|
+
R,2,2,2,3
|
159
|
+
R,2,2,2,4
|
160
|
+
R,2,2,2,5
|
161
|
+
L,2,2,3,1
|
162
|
+
R,2,2,3,2
|
163
|
+
R,2,2,3,3
|
164
|
+
R,2,2,3,4
|
165
|
+
R,2,2,3,5
|
166
|
+
B,2,2,4,1
|
167
|
+
R,2,2,4,2
|
168
|
+
R,2,2,4,3
|
169
|
+
R,2,2,4,4
|
170
|
+
R,2,2,4,5
|
171
|
+
R,2,2,5,1
|
172
|
+
R,2,2,5,2
|
173
|
+
R,2,2,5,3
|
174
|
+
R,2,2,5,4
|
175
|
+
R,2,2,5,5
|
176
|
+
L,2,3,1,1
|
177
|
+
L,2,3,1,2
|
178
|
+
L,2,3,1,3
|
179
|
+
L,2,3,1,4
|
180
|
+
L,2,3,1,5
|
181
|
+
L,2,3,2,1
|
182
|
+
L,2,3,2,2
|
183
|
+
B,2,3,2,3
|
184
|
+
R,2,3,2,4
|
185
|
+
R,2,3,2,5
|
186
|
+
L,2,3,3,1
|
187
|
+
B,2,3,3,2
|
188
|
+
R,2,3,3,3
|
189
|
+
R,2,3,3,4
|
190
|
+
R,2,3,3,5
|
191
|
+
L,2,3,4,1
|
192
|
+
R,2,3,4,2
|
193
|
+
R,2,3,4,3
|
194
|
+
R,2,3,4,4
|
195
|
+
R,2,3,4,5
|
196
|
+
L,2,3,5,1
|
197
|
+
R,2,3,5,2
|
198
|
+
R,2,3,5,3
|
199
|
+
R,2,3,5,4
|
200
|
+
R,2,3,5,5
|
201
|
+
L,2,4,1,1
|
202
|
+
L,2,4,1,2
|
203
|
+
L,2,4,1,3
|
204
|
+
L,2,4,1,4
|
205
|
+
L,2,4,1,5
|
206
|
+
L,2,4,2,1
|
207
|
+
L,2,4,2,2
|
208
|
+
L,2,4,2,3
|
209
|
+
B,2,4,2,4
|
210
|
+
R,2,4,2,5
|
211
|
+
L,2,4,3,1
|
212
|
+
L,2,4,3,2
|
213
|
+
R,2,4,3,3
|
214
|
+
R,2,4,3,4
|
215
|
+
R,2,4,3,5
|
216
|
+
L,2,4,4,1
|
217
|
+
B,2,4,4,2
|
218
|
+
R,2,4,4,3
|
219
|
+
R,2,4,4,4
|
220
|
+
R,2,4,4,5
|
221
|
+
L,2,4,5,1
|
222
|
+
R,2,4,5,2
|
223
|
+
R,2,4,5,3
|
224
|
+
R,2,4,5,4
|
225
|
+
R,2,4,5,5
|
226
|
+
L,2,5,1,1
|
227
|
+
L,2,5,1,2
|
228
|
+
L,2,5,1,3
|
229
|
+
L,2,5,1,4
|
230
|
+
L,2,5,1,5
|
231
|
+
L,2,5,2,1
|
232
|
+
L,2,5,2,2
|
233
|
+
L,2,5,2,3
|
234
|
+
L,2,5,2,4
|
235
|
+
B,2,5,2,5
|
236
|
+
L,2,5,3,1
|
237
|
+
L,2,5,3,2
|
238
|
+
L,2,5,3,3
|
239
|
+
R,2,5,3,4
|
240
|
+
R,2,5,3,5
|
241
|
+
L,2,5,4,1
|
242
|
+
L,2,5,4,2
|
243
|
+
R,2,5,4,3
|
244
|
+
R,2,5,4,4
|
245
|
+
R,2,5,4,5
|
246
|
+
L,2,5,5,1
|
247
|
+
B,2,5,5,2
|
248
|
+
R,2,5,5,3
|
249
|
+
R,2,5,5,4
|
250
|
+
R,2,5,5,5
|
251
|
+
L,3,1,1,1
|
252
|
+
L,3,1,1,2
|
253
|
+
B,3,1,1,3
|
254
|
+
R,3,1,1,4
|
255
|
+
R,3,1,1,5
|
256
|
+
L,3,1,2,1
|
257
|
+
R,3,1,2,2
|
258
|
+
R,3,1,2,3
|
259
|
+
R,3,1,2,4
|
260
|
+
R,3,1,2,5
|
261
|
+
B,3,1,3,1
|
262
|
+
R,3,1,3,2
|
263
|
+
R,3,1,3,3
|
264
|
+
R,3,1,3,4
|
265
|
+
R,3,1,3,5
|
266
|
+
R,3,1,4,1
|
267
|
+
R,3,1,4,2
|
268
|
+
R,3,1,4,3
|
269
|
+
R,3,1,4,4
|
270
|
+
R,3,1,4,5
|
271
|
+
R,3,1,5,1
|
272
|
+
R,3,1,5,2
|
273
|
+
R,3,1,5,3
|
274
|
+
R,3,1,5,4
|
275
|
+
R,3,1,5,5
|
276
|
+
L,3,2,1,1
|
277
|
+
L,3,2,1,2
|
278
|
+
L,3,2,1,3
|
279
|
+
L,3,2,1,4
|
280
|
+
L,3,2,1,5
|
281
|
+
L,3,2,2,1
|
282
|
+
L,3,2,2,2
|
283
|
+
B,3,2,2,3
|
284
|
+
R,3,2,2,4
|
285
|
+
R,3,2,2,5
|
286
|
+
L,3,2,3,1
|
287
|
+
B,3,2,3,2
|
288
|
+
R,3,2,3,3
|
289
|
+
R,3,2,3,4
|
290
|
+
R,3,2,3,5
|
291
|
+
L,3,2,4,1
|
292
|
+
R,3,2,4,2
|
293
|
+
R,3,2,4,3
|
294
|
+
R,3,2,4,4
|
295
|
+
R,3,2,4,5
|
296
|
+
L,3,2,5,1
|
297
|
+
R,3,2,5,2
|
298
|
+
R,3,2,5,3
|
299
|
+
R,3,2,5,4
|
300
|
+
R,3,2,5,5
|
301
|
+
L,3,3,1,1
|
302
|
+
L,3,3,1,2
|
303
|
+
L,3,3,1,3
|
304
|
+
L,3,3,1,4
|
305
|
+
L,3,3,1,5
|
306
|
+
L,3,3,2,1
|
307
|
+
L,3,3,2,2
|
308
|
+
L,3,3,2,3
|
309
|
+
L,3,3,2,4
|
310
|
+
R,3,3,2,5
|
311
|
+
L,3,3,3,1
|
312
|
+
L,3,3,3,2
|
313
|
+
B,3,3,3,3
|
314
|
+
R,3,3,3,4
|
315
|
+
R,3,3,3,5
|
316
|
+
L,3,3,4,1
|
317
|
+
L,3,3,4,2
|
318
|
+
R,3,3,4,3
|
319
|
+
R,3,3,4,4
|
320
|
+
R,3,3,4,5
|
321
|
+
L,3,3,5,1
|
322
|
+
R,3,3,5,2
|
323
|
+
R,3,3,5,3
|
324
|
+
R,3,3,5,4
|
325
|
+
R,3,3,5,5
|
326
|
+
L,3,4,1,1
|
327
|
+
L,3,4,1,2
|
328
|
+
L,3,4,1,3
|
329
|
+
L,3,4,1,4
|
330
|
+
L,3,4,1,5
|
331
|
+
L,3,4,2,1
|
332
|
+
L,3,4,2,2
|
333
|
+
L,3,4,2,3
|
334
|
+
L,3,4,2,4
|
335
|
+
L,3,4,2,5
|
336
|
+
L,3,4,3,1
|
337
|
+
L,3,4,3,2
|
338
|
+
L,3,4,3,3
|
339
|
+
B,3,4,3,4
|
340
|
+
R,3,4,3,5
|
341
|
+
L,3,4,4,1
|
342
|
+
L,3,4,4,2
|
343
|
+
B,3,4,4,3
|
344
|
+
R,3,4,4,4
|
345
|
+
R,3,4,4,5
|
346
|
+
L,3,4,5,1
|
347
|
+
L,3,4,5,2
|
348
|
+
R,3,4,5,3
|
349
|
+
R,3,4,5,4
|
350
|
+
R,3,4,5,5
|
351
|
+
L,3,5,1,1
|
352
|
+
L,3,5,1,2
|
353
|
+
L,3,5,1,3
|
354
|
+
L,3,5,1,4
|
355
|
+
L,3,5,1,5
|
356
|
+
L,3,5,2,1
|
357
|
+
L,3,5,2,2
|
358
|
+
L,3,5,2,3
|
359
|
+
L,3,5,2,4
|
360
|
+
L,3,5,2,5
|
361
|
+
L,3,5,3,1
|
362
|
+
L,3,5,3,2
|
363
|
+
L,3,5,3,3
|
364
|
+
L,3,5,3,4
|
365
|
+
B,3,5,3,5
|
366
|
+
L,3,5,4,1
|
367
|
+
L,3,5,4,2
|
368
|
+
L,3,5,4,3
|
369
|
+
R,3,5,4,4
|
370
|
+
R,3,5,4,5
|
371
|
+
L,3,5,5,1
|
372
|
+
L,3,5,5,2
|
373
|
+
B,3,5,5,3
|
374
|
+
R,3,5,5,4
|
375
|
+
R,3,5,5,5
|
376
|
+
L,4,1,1,1
|
377
|
+
L,4,1,1,2
|
378
|
+
L,4,1,1,3
|
379
|
+
B,4,1,1,4
|
380
|
+
R,4,1,1,5
|
381
|
+
L,4,1,2,1
|
382
|
+
B,4,1,2,2
|
383
|
+
R,4,1,2,3
|
384
|
+
R,4,1,2,4
|
385
|
+
R,4,1,2,5
|
386
|
+
L,4,1,3,1
|
387
|
+
R,4,1,3,2
|
388
|
+
R,4,1,3,3
|
389
|
+
R,4,1,3,4
|
390
|
+
R,4,1,3,5
|
391
|
+
B,4,1,4,1
|
392
|
+
R,4,1,4,2
|
393
|
+
R,4,1,4,3
|
394
|
+
R,4,1,4,4
|
395
|
+
R,4,1,4,5
|
396
|
+
R,4,1,5,1
|
397
|
+
R,4,1,5,2
|
398
|
+
R,4,1,5,3
|
399
|
+
R,4,1,5,4
|
400
|
+
R,4,1,5,5
|
401
|
+
L,4,2,1,1
|
402
|
+
L,4,2,1,2
|
403
|
+
L,4,2,1,3
|
404
|
+
L,4,2,1,4
|
405
|
+
L,4,2,1,5
|
406
|
+
L,4,2,2,1
|
407
|
+
L,4,2,2,2
|
408
|
+
L,4,2,2,3
|
409
|
+
B,4,2,2,4
|
410
|
+
R,4,2,2,5
|
411
|
+
L,4,2,3,1
|
412
|
+
L,4,2,3,2
|
413
|
+
R,4,2,3,3
|
414
|
+
R,4,2,3,4
|
415
|
+
R,4,2,3,5
|
416
|
+
L,4,2,4,1
|
417
|
+
B,4,2,4,2
|
418
|
+
R,4,2,4,3
|
419
|
+
R,4,2,4,4
|
420
|
+
R,4,2,4,5
|
421
|
+
L,4,2,5,1
|
422
|
+
R,4,2,5,2
|
423
|
+
R,4,2,5,3
|
424
|
+
R,4,2,5,4
|
425
|
+
R,4,2,5,5
|
426
|
+
L,4,3,1,1
|
427
|
+
L,4,3,1,2
|
428
|
+
L,4,3,1,3
|
429
|
+
L,4,3,1,4
|
430
|
+
L,4,3,1,5
|
431
|
+
L,4,3,2,1
|
432
|
+
L,4,3,2,2
|
433
|
+
L,4,3,2,3
|
434
|
+
L,4,3,2,4
|
435
|
+
L,4,3,2,5
|
436
|
+
L,4,3,3,1
|
437
|
+
L,4,3,3,2
|
438
|
+
L,4,3,3,3
|
439
|
+
B,4,3,3,4
|
440
|
+
R,4,3,3,5
|
441
|
+
L,4,3,4,1
|
442
|
+
L,4,3,4,2
|
443
|
+
B,4,3,4,3
|
444
|
+
R,4,3,4,4
|
445
|
+
R,4,3,4,5
|
446
|
+
L,4,3,5,1
|
447
|
+
L,4,3,5,2
|
448
|
+
R,4,3,5,3
|
449
|
+
R,4,3,5,4
|
450
|
+
R,4,3,5,5
|
451
|
+
L,4,4,1,1
|
452
|
+
L,4,4,1,2
|
453
|
+
L,4,4,1,3
|
454
|
+
L,4,4,1,4
|
455
|
+
L,4,4,1,5
|
456
|
+
L,4,4,2,1
|
457
|
+
L,4,4,2,2
|
458
|
+
L,4,4,2,3
|
459
|
+
L,4,4,2,4
|
460
|
+
L,4,4,2,5
|
461
|
+
L,4,4,3,1
|
462
|
+
L,4,4,3,2
|
463
|
+
L,4,4,3,3
|
464
|
+
L,4,4,3,4
|
465
|
+
L,4,4,3,5
|
466
|
+
L,4,4,4,1
|
467
|
+
L,4,4,4,2
|
468
|
+
L,4,4,4,3
|
469
|
+
B,4,4,4,4
|
470
|
+
R,4,4,4,5
|
471
|
+
L,4,4,5,1
|
472
|
+
L,4,4,5,2
|
473
|
+
L,4,4,5,3
|
474
|
+
R,4,4,5,4
|
475
|
+
R,4,4,5,5
|
476
|
+
L,4,5,1,1
|
477
|
+
L,4,5,1,2
|
478
|
+
L,4,5,1,3
|
479
|
+
L,4,5,1,4
|
480
|
+
L,4,5,1,5
|
481
|
+
L,4,5,2,1
|
482
|
+
L,4,5,2,2
|
483
|
+
L,4,5,2,3
|
484
|
+
L,4,5,2,4
|
485
|
+
L,4,5,2,5
|
486
|
+
L,4,5,3,1
|
487
|
+
L,4,5,3,2
|
488
|
+
L,4,5,3,3
|
489
|
+
L,4,5,3,4
|
490
|
+
L,4,5,3,5
|
491
|
+
L,4,5,4,1
|
492
|
+
L,4,5,4,2
|
493
|
+
L,4,5,4,3
|
494
|
+
L,4,5,4,4
|
495
|
+
B,4,5,4,5
|
496
|
+
L,4,5,5,1
|
497
|
+
L,4,5,5,2
|
498
|
+
L,4,5,5,3
|
499
|
+
B,4,5,5,4
|
500
|
+
R,4,5,5,5
|
501
|
+
L,5,1,1,1
|
502
|
+
L,5,1,1,2
|
503
|
+
L,5,1,1,3
|
504
|
+
L,5,1,1,4
|
505
|
+
B,5,1,1,5
|
506
|
+
L,5,1,2,1
|
507
|
+
L,5,1,2,2
|
508
|
+
R,5,1,2,3
|
509
|
+
R,5,1,2,4
|
510
|
+
R,5,1,2,5
|
511
|
+
L,5,1,3,1
|
512
|
+
R,5,1,3,2
|
513
|
+
R,5,1,3,3
|
514
|
+
R,5,1,3,4
|
515
|
+
R,5,1,3,5
|
516
|
+
L,5,1,4,1
|
517
|
+
R,5,1,4,2
|
518
|
+
R,5,1,4,3
|
519
|
+
R,5,1,4,4
|
520
|
+
R,5,1,4,5
|
521
|
+
B,5,1,5,1
|
522
|
+
R,5,1,5,2
|
523
|
+
R,5,1,5,3
|
524
|
+
R,5,1,5,4
|
525
|
+
R,5,1,5,5
|
526
|
+
L,5,2,1,1
|
527
|
+
L,5,2,1,2
|
528
|
+
L,5,2,1,3
|
529
|
+
L,5,2,1,4
|
530
|
+
L,5,2,1,5
|
531
|
+
L,5,2,2,1
|
532
|
+
L,5,2,2,2
|
533
|
+
L,5,2,2,3
|
534
|
+
L,5,2,2,4
|
535
|
+
B,5,2,2,5
|
536
|
+
L,5,2,3,1
|
537
|
+
L,5,2,3,2
|
538
|
+
L,5,2,3,3
|
539
|
+
R,5,2,3,4
|
540
|
+
R,5,2,3,5
|
541
|
+
L,5,2,4,1
|
542
|
+
L,5,2,4,2
|
543
|
+
R,5,2,4,3
|
544
|
+
R,5,2,4,4
|
545
|
+
R,5,2,4,5
|
546
|
+
L,5,2,5,1
|
547
|
+
B,5,2,5,2
|
548
|
+
R,5,2,5,3
|
549
|
+
R,5,2,5,4
|
550
|
+
R,5,2,5,5
|
551
|
+
L,5,3,1,1
|
552
|
+
L,5,3,1,2
|
553
|
+
L,5,3,1,3
|
554
|
+
L,5,3,1,4
|
555
|
+
L,5,3,1,5
|
556
|
+
L,5,3,2,1
|
557
|
+
L,5,3,2,2
|
558
|
+
L,5,3,2,3
|
559
|
+
L,5,3,2,4
|
560
|
+
L,5,3,2,5
|
561
|
+
L,5,3,3,1
|
562
|
+
L,5,3,3,2
|
563
|
+
L,5,3,3,3
|
564
|
+
L,5,3,3,4
|
565
|
+
B,5,3,3,5
|
566
|
+
L,5,3,4,1
|
567
|
+
L,5,3,4,2
|
568
|
+
L,5,3,4,3
|
569
|
+
R,5,3,4,4
|
570
|
+
R,5,3,4,5
|
571
|
+
L,5,3,5,1
|
572
|
+
L,5,3,5,2
|
573
|
+
B,5,3,5,3
|
574
|
+
R,5,3,5,4
|
575
|
+
R,5,3,5,5
|
576
|
+
L,5,4,1,1
|
577
|
+
L,5,4,1,2
|
578
|
+
L,5,4,1,3
|
579
|
+
L,5,4,1,4
|
580
|
+
L,5,4,1,5
|
581
|
+
L,5,4,2,1
|
582
|
+
L,5,4,2,2
|
583
|
+
L,5,4,2,3
|
584
|
+
L,5,4,2,4
|
585
|
+
L,5,4,2,5
|
586
|
+
L,5,4,3,1
|
587
|
+
L,5,4,3,2
|
588
|
+
L,5,4,3,3
|
589
|
+
L,5,4,3,4
|
590
|
+
L,5,4,3,5
|
591
|
+
L,5,4,4,1
|
592
|
+
L,5,4,4,2
|
593
|
+
L,5,4,4,3
|
594
|
+
L,5,4,4,4
|
595
|
+
B,5,4,4,5
|
596
|
+
L,5,4,5,1
|
597
|
+
L,5,4,5,2
|
598
|
+
L,5,4,5,3
|
599
|
+
B,5,4,5,4
|
600
|
+
R,5,4,5,5
|
601
|
+
L,5,5,1,1
|
602
|
+
L,5,5,1,2
|
603
|
+
L,5,5,1,3
|
604
|
+
L,5,5,1,4
|
605
|
+
L,5,5,1,5
|
606
|
+
L,5,5,2,1
|
607
|
+
L,5,5,2,2
|
608
|
+
L,5,5,2,3
|
609
|
+
L,5,5,2,4
|
610
|
+
L,5,5,2,5
|
611
|
+
L,5,5,3,1
|
612
|
+
L,5,5,3,2
|
613
|
+
L,5,5,3,3
|
614
|
+
L,5,5,3,4
|
615
|
+
L,5,5,3,5
|
616
|
+
L,5,5,4,1
|
617
|
+
L,5,5,4,2
|
618
|
+
L,5,5,4,3
|
619
|
+
L,5,5,4,4
|
620
|
+
L,5,5,4,5
|
621
|
+
L,5,5,5,1
|
622
|
+
L,5,5,5,2
|
623
|
+
L,5,5,5,3
|
624
|
+
L,5,5,5,4
|
625
|
+
B,5,5,5,5
|
@@ -0,0 +1,83 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": null,
|
6
|
+
"id": "96ac04a5-6577-4da4-8454-3b10535351f8",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import matplotlib.pyplot as plt\n",
|
11
|
+
"from sklearn import datasets\n",
|
12
|
+
"from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\n",
|
13
|
+
"import pandas as pd\n",
|
14
|
+
"import matplotlib.pyplot as plt\n",
|
15
|
+
"from sklearn.preprocessing import StandardScaler"
|
16
|
+
]
|
17
|
+
},
|
18
|
+
{
|
19
|
+
"cell_type": "code",
|
20
|
+
"execution_count": null,
|
21
|
+
"id": "b1ffa4dc-488f-4238-877b-5cbd6fb48e4e",
|
22
|
+
"metadata": {},
|
23
|
+
"outputs": [],
|
24
|
+
"source": [
|
25
|
+
"df = pd.read_table('input.txt', delimiter = \",\", names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
|
26
|
+
"df = pd.read_csv('balance-scale.csv')\n",
|
27
|
+
"df.head()"
|
28
|
+
]
|
29
|
+
},
|
30
|
+
{
|
31
|
+
"cell_type": "markdown",
|
32
|
+
"id": "ac328950-540f-4a27-b9d4-0880058064f5",
|
33
|
+
"metadata": {},
|
34
|
+
"source": [
|
35
|
+
"##### __LDA__"
|
36
|
+
]
|
37
|
+
},
|
38
|
+
{
|
39
|
+
"cell_type": "code",
|
40
|
+
"execution_count": null,
|
41
|
+
"id": "7a947959-791f-4ffe-95f0-e300d97cf179",
|
42
|
+
"metadata": {},
|
43
|
+
"outputs": [],
|
44
|
+
"source": [
|
45
|
+
"feature = ['left-weight','left-distance','right-weight','right-distance']\n",
|
46
|
+
"x = df.loc[:,feature]\n",
|
47
|
+
"y = df.loc[:,'class name']\n",
|
48
|
+
"lda = LDA(n_components=2)\n",
|
49
|
+
"lda_X = lda.fit(x,y).transform(x)\n",
|
50
|
+
"plt.scatter(lda_X[y == 'L', 0], lda_X[y == 'L', 1], s =50, c = 'orange',\n",
|
51
|
+
"label = 'L')\n",
|
52
|
+
"plt.scatter(lda_X[y == 'B', 0], lda_X[y == 'B', 1], s =50, c = 'blue',\n",
|
53
|
+
"label = 'B')\n",
|
54
|
+
"\n",
|
55
|
+
"16\n",
|
56
|
+
"plt.scatter(lda_X[y == 'R', 0], lda_X[y == 'R', 1], s =50, c = 'green',\n",
|
57
|
+
"label = 'R')\n",
|
58
|
+
"plt.title('LDA plot for cmc DataSet')"
|
59
|
+
]
|
60
|
+
}
|
61
|
+
],
|
62
|
+
"metadata": {
|
63
|
+
"kernelspec": {
|
64
|
+
"display_name": "Python 3 (ipykernel)",
|
65
|
+
"language": "python",
|
66
|
+
"name": "python3"
|
67
|
+
},
|
68
|
+
"language_info": {
|
69
|
+
"codemirror_mode": {
|
70
|
+
"name": "ipython",
|
71
|
+
"version": 3
|
72
|
+
},
|
73
|
+
"file_extension": ".py",
|
74
|
+
"mimetype": "text/x-python",
|
75
|
+
"name": "python",
|
76
|
+
"nbconvert_exporter": "python",
|
77
|
+
"pygments_lexer": "ipython3",
|
78
|
+
"version": "3.12.4"
|
79
|
+
}
|
80
|
+
},
|
81
|
+
"nbformat": 4,
|
82
|
+
"nbformat_minor": 5
|
83
|
+
}
|