myawesomepkg 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. myawesomepkg/TSAPY1/1 (A) Working with Numpy Arrays.py +1146 -0
  2. myawesomepkg/TSAPY1/1(B)Aggregation (1).py +319 -0
  3. myawesomepkg/TSAPY1/1(C) Broadcasting .py +328 -0
  4. myawesomepkg/TSAPY1/10-A_Load_stringr.py +77 -0
  5. myawesomepkg/TSAPY1/10-B_Forcats.py +70 -0
  6. myawesomepkg/TSAPY1/2(a) Comparison, Masking And Boolean Logic (1).py +497 -0
  7. myawesomepkg/TSAPY1/2(b)Fancy Indexing.py +594 -0
  8. myawesomepkg/TSAPY1/2(c) Sorting Arrays.py +528 -0
  9. myawesomepkg/TSAPY1/2(d) Structured Array.py +350 -0
  10. myawesomepkg/TSAPY1/3 (A) Handling Missing Data.py +1013 -0
  11. myawesomepkg/TSAPY1/4A_Merge_Joins.py +1209 -0
  12. myawesomepkg/TSAPY1/9A_Dplyr.py +85 -0
  13. myawesomepkg/TSAPY1/9B_Tidyr.py +71 -0
  14. myawesomepkg/TSAPY1/Aggregation_Groupin_Pivot_Filter_Vectorice_Time_Series.py +1999 -0
  15. myawesomepkg/TSAPY1/Combining_Joins.py +1209 -0
  16. myawesomepkg/TSAPY1/P4-1-different_distance_methods_(euclidean)_with_prediction,_test_score_and_confusion_matrix1.py +131 -0
  17. myawesomepkg/TSAPY1/P4-2-k_means_clustering_with_prediction,_test_score_and_confusion_matrix2.py +150 -0
  18. myawesomepkg/TSAPY1/Pract3_C.py +482 -0
  19. myawesomepkg/TSAPY1/Pract5_Data_Visualization.py +481 -0
  20. myawesomepkg/TSAPY1/Practical 6.py +860 -0
  21. myawesomepkg/TSAPY1/Practical No 1.py +148 -0
  22. myawesomepkg/TSAPY1/Practical No 2.py +115 -0
  23. myawesomepkg/TSAPY1/Practical No 3.py +168 -0
  24. myawesomepkg/TSAPY1/Practical No 4 A.py +233 -0
  25. myawesomepkg/TSAPY1/Practical No 4 B.py +137 -0
  26. myawesomepkg/TSAPY1/Practical No 5.py +52 -0
  27. myawesomepkg/TSAPY1/Practical No 6.py +29 -0
  28. myawesomepkg/TSAPY1/Practical No 7.py +67 -0
  29. myawesomepkg/TSAPY1/Practical No 8.py +108 -0
  30. myawesomepkg/TSAPY1/Print_R.py +123 -0
  31. myawesomepkg/TSAPY1/R_Graph.py +32 -0
  32. myawesomepkg/TSAPY1/Working_Ggplot.py +53 -0
  33. myawesomepkg/TSAPY1/__init__.py +0 -0
  34. myawesomepkg/TSAPY1/p1_2_pca_iris.py +141 -0
  35. myawesomepkg/TSAPY1/p2_1_find_s.py +78 -0
  36. myawesomepkg/TSAPY1/p2_bcandidate_elimination_algorithm_(1).py +85 -0
  37. myawesomepkg/TSAPY1/p3_1_least_square_regression.py +105 -0
  38. myawesomepkg/TSAPY1/p3_2_logistic_regression_algorithm.py +79 -0
  39. myawesomepkg/TSAPY1/p5_1_hierarchical_clustering.py +143 -0
  40. myawesomepkg/TSAPY1/p5_2_k_nearest_neighbour_algorithm.py +104 -0
  41. myawesomepkg/TSAPY1/p6_1_id3_algorithm_.py +199 -0
  42. myawesomepkg/TSAPY1/p7_1_ann_backpropagation_algorithm.py +116 -0
  43. myawesomepkg/TSAPY1/p7_2_bds_association_rule_mining.py +99 -0
  44. myawesomepkg/TSAPY1/p8_1_gaussian_naive_bayes_.py +97 -0
  45. myawesomepkg/TSAPY1/p8_2_naive_bayes_document_classifier.py +111 -0
  46. myawesomepkg/TSAPY1/p9_1bayesian_network.py +91 -0
  47. myawesomepkg/TSAPY1/p9_b_loess_regression.py +113 -0
  48. myawesomepkg/TSAPY1/p_1_test_and_train.py +98 -0
  49. myawesomepkg/TSAPY1/pract3A-B.py +3212 -0
  50. myawesomepkg/TSAPY1/practical_no_3.py +167 -0
  51. myawesomepkg/TSAPY1/practical_no_4.py +215 -0
  52. myawesomepkg/TSAPY1/practical_no_4b.py +78 -0
  53. myawesomepkg/TSAPY1/practical_no_5_ac_and_pca.py +39 -0
  54. myawesomepkg/TSAPY1/practical_no_6.py +37 -0
  55. myawesomepkg/TSAPY1/practical_no_7.py +69 -0
  56. myawesomepkg/TSAPY1/practical_no_8.py +79 -0
  57. myawesomepkg/TSAPY1/tsa_practical_no_1.py +287 -0
  58. myawesomepkg/TSAPY1/tsa_practical_no_2.py +121 -0
  59. myawesomepkg/__init__.py +1 -0
  60. myawesomepkg/core.py +2 -0
  61. myawesomepkg-0.1.8.dist-info/METADATA +17 -0
  62. myawesomepkg-0.1.8.dist-info/RECORD +64 -0
  63. myawesomepkg-0.1.8.dist-info/WHEEL +5 -0
  64. myawesomepkg-0.1.8.dist-info/top_level.txt +1 -0
@@ -0,0 +1,111 @@
1
+ # -*- coding: utf-8 -*-
2
+ """P8-2 Naive Bayes Document Classifier.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1R4hGEod7Xzfmett09KGokYk375k1xX5W
8
+ """
9
+
10
+ import pandas as pd
11
+
12
+ msg=pd.read_excel('/content/naivetext.xlsx')
13
+ msg
14
+
15
+ print('The dimensions of the dataset',msg.shape)
16
+
17
+ msg['labelnum']=msg.label.map({'pos':1,'neg':0})
18
+ X=msg.message
19
+ y=msg.labelnum
20
+ print(X)
21
+ print(y)
22
+
23
+ #splitting the dataset into train and test data
24
+ from sklearn.model_selection import train_test_split
25
+ xtrain,xtest,ytrain,ytest=train_test_split(X,y)
26
+
27
+ print ('\n The total number of Training Data :',ytrain.shape)
28
+
29
+ print ('\n The total number of Test Data :',ytest.shape)
30
+
31
+ #output of count vectoriser is a sparse matrix
32
+
33
+ from sklearn.feature_extraction.text import CountVectorizer
34
+ count_vect = CountVectorizer()
35
+ xtrain_dtm = count_vect.fit_transform(xtrain)
36
+ xtest_dtm=count_vect.transform(xtest)
37
+ print('\n The words or Tokens in the text documents \n',count_vect.get_feature_names_out())
38
+
39
+ df = pd.DataFrame(xtrain_dtm.toarray(), columns=count_vect.get_feature_names_out())
40
+
41
+ # Training Naive Bayes (NB) classifier on training data
42
+ from sklearn.naive_bayes import MultinomialNB
43
+
44
+ clf = MultinomialNB().fit(xtrain_dtm,ytrain)
45
+ predicted = clf.predict(xtest_dtm)
46
+
47
+ #printing accuracy, Confusion matrix, Precision and Recall
48
+ from sklearn import metrics
49
+ print('\n Accuracy of the classifer is ', metrics.accuracy_score(ytest,predicted))
50
+
51
+ #Checking the prediction made
52
+ print(xtest)
53
+ print(predicted)
54
+
55
+ print('\n Confusion matrix\n', metrics.confusion_matrix(ytest,predicted))
56
+ print('\n The value of Recall' ,
57
+ metrics.recall_score(ytest,predicted))
58
+
59
+ # Simple Naive Bayes Text Classifier
60
+
61
+
62
+
63
+ # my code+++++++++++++++++++
64
+ import pandas as pd
65
+ from sklearn.model_selection import train_test_split
66
+ from sklearn.feature_extraction.text import CountVectorizer
67
+ from sklearn.naive_bayes import MultinomialNB
68
+ from sklearn import metrics
69
+
70
+ # Load dataset
71
+ data = pd.read_excel("/content/naivetext.xlsx")
72
+ print("Dataset Loaded Successfully!")
73
+ print("Shape of Dataset:", data.shape)
74
+
75
+ # Convert labels to numbers (pos = 1, neg = 0)
76
+ data['labelnum'] = data['label'].map({'pos': 1, 'neg': 0})
77
+
78
+ # Split input (X) and output (y)
79
+ X = data['message']
80
+ y = data['labelnum']
81
+
82
+ # Split data into training and testing
83
+ x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
84
+ print("\nTraining Samples:", len(x_train))
85
+ print("Testing Samples:", len(x_test))
86
+
87
+ # Convert text into numeric features
88
+ vectorizer = CountVectorizer()
89
+ x_train_dtm = vectorizer.fit_transform(x_train)
90
+ x_test_dtm = vectorizer.transform(x_test)
91
+
92
+ print("\nWords (Tokens):")
93
+ print(vectorizer.get_feature_names_out())
94
+
95
+ # Train Naive Bayes model
96
+ model = MultinomialNB()
97
+ model.fit(x_train_dtm, y_train)
98
+
99
+ # Predict on test data
100
+ y_pred = model.predict(x_test_dtm)
101
+
102
+ # Show results
103
+ print("\nAccuracy:", metrics.accuracy_score(y_test, y_pred))
104
+ print("\nConfusion Matrix:\n", metrics.confusion_matrix(y_test, y_pred))
105
+ print("\nRecall:", metrics.recall_score(y_test, y_pred))
106
+
107
+ # Check few predictions
108
+ print("\nSample Predictions:")
109
+ for msg, pred in zip(x_test[:5], y_pred[:5]):
110
+ print(f"Message: {msg} --> Predicted Label: {'pos' if pred == 1 else 'neg'}")
111
+
@@ -0,0 +1,91 @@
1
+ # -*- coding: utf-8 -*-
2
+ """P9-1Bayesian Network.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1K14g_pZINxfYSFzX4UtRfyawHgOG9TI1
8
+ """
9
+
10
+ pip install pgmpy
11
+
12
+ import numpy as np
13
+ import csv
14
+ import pandas as pd
15
+ from pgmpy.models import BayesianNetwork
16
+ from pgmpy.estimators import MaximumLikelihoodEstimator
17
+ from pgmpy.inference import VariableElimination
18
+
19
+ #read Cleveland Heart Disease data
20
+ heartDisease = pd.read_csv('/content/heart (1).csv')
21
+ heartDisease = heartDisease.replace('?',np.nan)
22
+
23
+ #display the data
24
+ print('Few examples from the dataset are given below')
25
+ print(heartDisease.head())
26
+
27
+ #Model Bayesian Network
28
+ #ImportError: BayesianNetwork has been deprecated. Please use DiscreteBayesianNetwork instead.
29
+
30
+ model=DiscreteBayesianNetwork([('age','target'),('sex','target'),
31
+ ('exang','target'),('cp','target'),
32
+ ('target','restecg'),('target','chol')])
33
+
34
+ #Learning CPDs using Maximum Likelihood Estimators
35
+ print('\n Learning CPD using Maximum likelihood estimators')
36
+ model.fit(heartDisease,estimator=MaximumLikelihoodEstimator)
37
+
38
+ # Inferencing with Bayesian Network
39
+ print('\n Inferencing with Bayesian Network:')
40
+ HeartDisease_infer = VariableElimination(model)
41
+
42
+ #computing the Probability of RestEcg given HeartDisease is present
43
+ print('\n 1. Probability of HeartDisease given RestEcg')
44
+ q=HeartDisease_infer.query(variables=['restecg'],evidence ={'target':1}, joint=False)
45
+ print(q['restecg'])
46
+
47
+ #computing the Probability of HeartDisease given Chestpain
48
+ print('\n 2. Probability of HeartDisease given Chestpain')
49
+ q=HeartDisease_infer.query(variables=['target'],evidence ={'cp':3}, joint=False)
50
+ print(q['target'])
51
+
52
+ import pandas as pd
53
+ import numpy as np
54
+ from pgmpy.models import DiscreteBayesianNetwork
55
+ from pgmpy.estimators import MaximumLikelihoodEstimator
56
+ from pgmpy.inference import VariableElimination
57
+
58
+ # Load dataset
59
+ data = pd.read_csv('/content/heart (1).csv')
60
+ data = data.replace('?', np.nan)
61
+
62
+ print("Sample data:")
63
+ print(data.head())
64
+
65
+ # Define the Bayesian Network structure using DiscreteBayesianNetwork
66
+ model = DiscreteBayesianNetwork([
67
+ ('age', 'target'),
68
+ ('sex', 'target'),
69
+ ('exang', 'target'),
70
+ ('cp', 'target'),
71
+ ('target', 'restecg'),
72
+ ('target', 'chol')
73
+ ])
74
+
75
+ # Fit the model
76
+ model.fit(data, estimator=MaximumLikelihoodEstimator)
77
+ print("\nModel training complete using Maximum Likelihood Estimation")
78
+
79
+ # Inference
80
+ infer = VariableElimination(model)
81
+
82
+ # Query 1: Probability of RestEcg given HeartDisease
83
+ print("\n1. Probability of RestEcg given HeartDisease:")
84
+ q1 = infer.query(variables=['restecg'], evidence={'target': 1})
85
+ print(q1)
86
+
87
+ # Query 2: Probability of HeartDisease given Chest Pain (cp=3)
88
+ print("\n2. Probability of HeartDisease given Chest Pain:")
89
+ q2 = infer.query(variables=['target'], evidence={'cp': 3})
90
+ print(q2)
91
+
@@ -0,0 +1,113 @@
1
+ # -*- coding: utf-8 -*-
2
+ """P9-B-Loess Regression.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1acJ-zD2I0flDn0hYujYD4B6NI2hEALAS
8
+ """
9
+
10
+ import matplotlib.pyplot as plt
11
+ import pandas as pd
12
+ import numpy as np
13
+ def kernel(point, xmat, k):
14
+ m,n = np.shape(xmat)
15
+ weights = np.asmatrix(np.eye((m)))
16
+ for j in range(m):
17
+ diff = point - xmat[j]
18
+ weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
19
+ return weights
20
+
21
+ def localWeight(point, xmat, ymat, k):
22
+ wei = kernel(point,xmat,k)
23
+ W = (xmat.T*(wei*xmat)).I*(xmat.T*(wei*ymat.T))
24
+ return W
25
+
26
+ def localWeightRegression(xmat, ymat, k):
27
+ m,n = np.shape(xmat) #Determine the dimensions of xmat(X)
28
+ ypred = np.zeros(m) #Set ypred
29
+ for i in range(m):
30
+ ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
31
+ return ypred
32
+
33
+ # load data points
34
+ data = pd.read_csv('/content/10-dataset.csv')
35
+ bill = np.array(data.total_bill)
36
+ tip = np.array(data.tip)
37
+
38
+ #`np.mat` was removed in the NumPy 2.0 release. Use `np.asmatrix` instead.
39
+
40
+ #preparing and add 1 in bill
41
+ mbill = np.asmatrix(bill)
42
+ mtip = np.asmatrix(tip)
43
+
44
+ m= np.shape(mbill)[1]
45
+ one = np.asmatrix(np.ones(m))
46
+ X = np.hstack((one.T,mbill.T))
47
+
48
+ #set k here
49
+ ypred = localWeightRegression(X,mtip,0.4)
50
+ SortIndex = X[:,1].argsort(0)
51
+ xsort = X[SortIndex][:,0]
52
+
53
+ fig = plt.figure()
54
+ ax = fig.add_subplot(1,1,1)
55
+ ax.scatter(bill,tip, color='green')
56
+ ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
57
+ plt.xlabel('Total bill')
58
+ plt.ylabel('Tip')
59
+ plt.show();
60
+
61
+ import numpy as np
62
+ import pandas as pd
63
+ import matplotlib.pyplot as plt
64
+
65
+ # Load dataset
66
+ data = pd.read_csv('/content/10-dataset.csv')
67
+ bill = data['total_bill'].values
68
+ tip = data['tip'].values
69
+
70
+ # Prepare X matrix with intercept term
71
+ X = np.column_stack((np.ones(len(bill)), bill))
72
+ y = tip.reshape(-1, 1)
73
+
74
+ # Gaussian Kernel function to calculate weights
75
+ def kernel(point, X, k):
76
+ m = X.shape[0]
77
+ W = np.eye(m)
78
+ for i in range(m):
79
+ diff = point - X[i]
80
+ W[i,i] = np.exp(-(diff @ diff.T) / (2 * k**2))
81
+ return W
82
+
83
+ # Calculate weights and regression coefficients for a point
84
+ def lwlr_point(point, X, y, k):
85
+ W = kernel(point, X, k)
86
+ theta = np.linalg.inv(X.T @ W @ X) @ (X.T @ W @ y)
87
+ return point @ theta
88
+
89
+ # Predict for all points
90
+ def lwlr(X, y, k):
91
+ y_pred = np.zeros(len(X))
92
+ for i in range(len(X)):
93
+ y_pred[i] = lwlr_point(X[i], X, y, k)
94
+ return y_pred
95
+
96
+ # Apply LWLR with bandwidth k=0.4
97
+ k = 0.4
98
+ y_pred = lwlr(X, y, k)
99
+
100
+ # Sort X for plotting smooth curve
101
+ sort_idx = X[:,1].argsort()
102
+ X_sorted = X[sort_idx]
103
+ y_pred_sorted = y_pred[sort_idx]
104
+
105
+ # Plot results
106
+ plt.scatter(bill, tip, color='green', label='Data points')
107
+ plt.plot(X_sorted[:,1], y_pred_sorted, color='red', linewidth=2, label='LWLR fit')
108
+ plt.xlabel('Total bill')
109
+ plt.ylabel('Tip')
110
+ plt.title('Locally Weighted Linear Regression')
111
+ plt.legend()
112
+ plt.show()
113
+
@@ -0,0 +1,98 @@
1
+ # -*- coding: utf-8 -*-
2
+ """P-1_test and train.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/14lT2R6bt-YH_7p_1kdPFnVQ3YIIiaBLJ
8
+ """
9
+
10
+ #Design a simple machine learning model to train the training instances and test the same
11
+ import pandas as pd
12
+ import matplotlib.pyplot as plt
13
+ df = pd.read_csv("/content/Cars.csv") #Read data
14
+ df.head()
15
+
16
+ plt.scatter(df['Milage'],df['Sell Price']) #Plot to compare Milage(Independant variable) with Sell Price(Dependant variable)
17
+ plt.show()
18
+ plt.scatter(df['Age'],df['Sell Price'])#Plot to compare Age(Independant variable) with Sell Price(Dependant variable)
19
+ plt.show()
20
+ X = df[['Milage','Age']] #Determine X
21
+ Y = df['Sell Price'] # Determine Y
22
+ X #Display X
23
+ Y #Display Y
24
+ from sklearn.model_selection import train_test_split
25
+ X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2)#Create a training set and testing set
26
+ len(X_train)
27
+ len(X_test)
28
+ from sklearn.linear_model import LinearRegression
29
+ clf = LinearRegression()
30
+ clf.fit(X_train,Y_train) # Train the model
31
+ clf.predict(X_test) # Use the rained model to predict the testing set
32
+ clf.score(X_test,Y_test) #Calculate the accuracy
33
+
34
+ # my coode
35
+
36
+ # Importing necessary libraries
37
+ import pandas as pd
38
+ import matplotlib.pyplot as plt
39
+ from sklearn.model_selection import train_test_split
40
+ from sklearn.linear_model import LinearRegression
41
+ from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
42
+
43
+ # Load dataset
44
+ df = pd.read_csv(r"/content/Cars.csv") # Use raw string for Windows path
45
+ print("✅ Data Loaded Successfully!")
46
+ print(df.head())
47
+
48
+ # Data visualization
49
+ plt.figure(figsize=(10,4))
50
+ plt.subplot(1,2,1)
51
+ plt.scatter(df['Milage'], df['Sell Price'], color='blue')
52
+ plt.title('Milage vs Sell Price')
53
+ plt.xlabel('Milage')
54
+ plt.ylabel('Sell Price')
55
+
56
+ plt.subplot(1,2,2)
57
+ plt.scatter(df['Age'], df['Sell Price'], color='green')
58
+ plt.title('Age vs Sell Price')
59
+ plt.xlabel('Age')
60
+ plt.ylabel('Sell Price')
61
+
62
+ plt.tight_layout()
63
+ plt.show()
64
+
65
+ # Features (X) and Target (Y)
66
+ X = df[['Milage', 'Age']]
67
+ Y = df['Sell Price']
68
+
69
+ # Splitting data into training and testing sets (80% train, 20% test)
70
+ X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
71
+
72
+ # Create and train the Linear Regression model
73
+ model = LinearRegression()
74
+ model.fit(X_train, Y_train)
75
+
76
+ # Predict the test set results
77
+ Y_pred = model.predict(X_test)
78
+
79
+ # Evaluate the model
80
+ r2 = r2_score(Y_test, Y_pred)
81
+ mae = mean_absolute_error(Y_test, Y_pred)
82
+ mse = mean_squared_error(Y_test, Y_pred)
83
+
84
+ # Display metrics
85
+ print("\n📊 Model Evaluation Metrics:")
86
+ print(f"R² Score (Accuracy): {r2:.4f}")
87
+ print(f"Mean Absolute Error: {mae:.2f}")
88
+ print(f"Mean Squared Error: {mse:.2f}")
89
+
90
+ # Compare actual vs predicted values visually
91
+ plt.figure(figsize=(6,4))
92
+ plt.scatter(Y_test, Y_pred, color='purple')
93
+ plt.xlabel('Actual Sell Price')
94
+ plt.ylabel('Predicted Sell Price')
95
+ plt.title('Actual vs Predicted Sell Price')
96
+ plt.grid(True)
97
+ plt.show()
98
+