myawesomepkg 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. myawesomepkg/TSAPY1/1 (A) Working with Numpy Arrays.py +1146 -0
  2. myawesomepkg/TSAPY1/1(B)Aggregation (1).py +319 -0
  3. myawesomepkg/TSAPY1/1(C) Broadcasting .py +328 -0
  4. myawesomepkg/TSAPY1/10-A_Load_stringr.py +77 -0
  5. myawesomepkg/TSAPY1/10-B_Forcats.py +70 -0
  6. myawesomepkg/TSAPY1/2(a) Comparison, Masking And Boolean Logic (1).py +497 -0
  7. myawesomepkg/TSAPY1/2(b)Fancy Indexing.py +594 -0
  8. myawesomepkg/TSAPY1/2(c) Sorting Arrays.py +528 -0
  9. myawesomepkg/TSAPY1/2(d) Structured Array.py +350 -0
  10. myawesomepkg/TSAPY1/3 (A) Handling Missing Data.py +1013 -0
  11. myawesomepkg/TSAPY1/4A_Merge_Joins.py +1209 -0
  12. myawesomepkg/TSAPY1/9A_Dplyr.py +85 -0
  13. myawesomepkg/TSAPY1/9B_Tidyr.py +71 -0
  14. myawesomepkg/TSAPY1/Aggregation_Groupin_Pivot_Filter_Vectorice_Time_Series.py +1999 -0
  15. myawesomepkg/TSAPY1/Combining_Joins.py +1209 -0
  16. myawesomepkg/TSAPY1/P4-1-different_distance_methods_(euclidean)_with_prediction,_test_score_and_confusion_matrix1.py +131 -0
  17. myawesomepkg/TSAPY1/P4-2-k_means_clustering_with_prediction,_test_score_and_confusion_matrix2.py +150 -0
  18. myawesomepkg/TSAPY1/Pract3_C.py +482 -0
  19. myawesomepkg/TSAPY1/Pract5_Data_Visualization.py +481 -0
  20. myawesomepkg/TSAPY1/Practical 6.py +860 -0
  21. myawesomepkg/TSAPY1/Practical No 1.py +148 -0
  22. myawesomepkg/TSAPY1/Practical No 2.py +115 -0
  23. myawesomepkg/TSAPY1/Practical No 3.py +168 -0
  24. myawesomepkg/TSAPY1/Practical No 4 A.py +233 -0
  25. myawesomepkg/TSAPY1/Practical No 4 B.py +137 -0
  26. myawesomepkg/TSAPY1/Practical No 5.py +52 -0
  27. myawesomepkg/TSAPY1/Practical No 6.py +29 -0
  28. myawesomepkg/TSAPY1/Practical No 7.py +67 -0
  29. myawesomepkg/TSAPY1/Practical No 8.py +108 -0
  30. myawesomepkg/TSAPY1/Print_R.py +123 -0
  31. myawesomepkg/TSAPY1/R_Graph.py +32 -0
  32. myawesomepkg/TSAPY1/Working_Ggplot.py +53 -0
  33. myawesomepkg/TSAPY1/__init__.py +0 -0
  34. myawesomepkg/TSAPY1/p1_2_pca_iris.py +141 -0
  35. myawesomepkg/TSAPY1/p2_1_find_s.py +78 -0
  36. myawesomepkg/TSAPY1/p2_bcandidate_elimination_algorithm_(1).py +85 -0
  37. myawesomepkg/TSAPY1/p3_1_least_square_regression.py +105 -0
  38. myawesomepkg/TSAPY1/p3_2_logistic_regression_algorithm.py +79 -0
  39. myawesomepkg/TSAPY1/p5_1_hierarchical_clustering.py +143 -0
  40. myawesomepkg/TSAPY1/p5_2_k_nearest_neighbour_algorithm.py +104 -0
  41. myawesomepkg/TSAPY1/p6_1_id3_algorithm_.py +199 -0
  42. myawesomepkg/TSAPY1/p7_1_ann_backpropagation_algorithm.py +116 -0
  43. myawesomepkg/TSAPY1/p7_2_bds_association_rule_mining.py +99 -0
  44. myawesomepkg/TSAPY1/p8_1_gaussian_naive_bayes_.py +97 -0
  45. myawesomepkg/TSAPY1/p8_2_naive_bayes_document_classifier.py +111 -0
  46. myawesomepkg/TSAPY1/p9_1bayesian_network.py +91 -0
  47. myawesomepkg/TSAPY1/p9_b_loess_regression.py +113 -0
  48. myawesomepkg/TSAPY1/p_1_test_and_train.py +98 -0
  49. myawesomepkg/TSAPY1/pract3A-B.py +3212 -0
  50. myawesomepkg/TSAPY1/practical_no_3.py +167 -0
  51. myawesomepkg/TSAPY1/practical_no_4.py +215 -0
  52. myawesomepkg/TSAPY1/practical_no_4b.py +78 -0
  53. myawesomepkg/TSAPY1/practical_no_5_ac_and_pca.py +39 -0
  54. myawesomepkg/TSAPY1/practical_no_6.py +37 -0
  55. myawesomepkg/TSAPY1/practical_no_7.py +69 -0
  56. myawesomepkg/TSAPY1/practical_no_8.py +79 -0
  57. myawesomepkg/TSAPY1/tsa_practical_no_1.py +287 -0
  58. myawesomepkg/TSAPY1/tsa_practical_no_2.py +121 -0
  59. myawesomepkg/__init__.py +1 -0
  60. myawesomepkg/core.py +2 -0
  61. myawesomepkg-0.1.8.dist-info/METADATA +17 -0
  62. myawesomepkg-0.1.8.dist-info/RECORD +64 -0
  63. myawesomepkg-0.1.8.dist-info/WHEEL +5 -0
  64. myawesomepkg-0.1.8.dist-info/top_level.txt +1 -0
@@ -0,0 +1,137 @@
1
+ PRCTICAL 4 B
2
+
3
+
4
+
5
+ def test_stationarity(dataFrame, var):
6
+ dataFrame['rollMean']=dataFrame[var].rolling(window=12).mean()
7
+ dataFrame['rollStd']=dataFrame[var].rolling(window=12).std()
8
+
9
+ from statsmodels.tsa.stattools import adfuller
10
+ import seaborn as sns
11
+ adfTest = adfuller(dataFrame[var], autolag='AIC')
12
+ stats=pd.Series(adfTest[0:4],index=['Test Statistic','p-value', '#lags used', 'number of observations used'])
13
+ print(stats)
14
+
15
+ for key, value in adfTest[4].items():
16
+ print('\t%s: %.3f' % (key, value))
17
+
18
+ sns.lineplot(data=dataFrame, x=dataFrame.index, y=var)
19
+ sns.lineplot(data=dataFrame, x=dataFrame.index, y='rollMean')
20
+ sns.lineplot(data=dataFrame, x=dataFrame.index, y='rollStd')
21
+
22
+
23
+ ********
24
+
25
+
26
+
27
+ import pandas as pd
28
+ import numpy as np
29
+
30
+ #Reading the airline-passengers data
31
+
32
+ data = pd.read_csv('/content/drive/MyDrive/MScDS TSA/AirPassengers.csv', index_col='Month')
33
+
34
+ #Checking for some values of the data.
35
+
36
+ data.head()
37
+
38
+
39
+
40
+ ************
41
+
42
+
43
+
44
+ air_df=data[['Passengers']]
45
+ air_df.head()
46
+
47
+
48
+
49
+
50
+ **********
51
+
52
+ air_df['shift']=air_df.Passengers.shift()
53
+ air_df['shiftDiff']=air_df.Passengers - air_df['shift']
54
+ air_df.head()
55
+
56
+
57
+ **********
58
+
59
+ test_stationarity(air_df.dropna(),'shiftDiff')
60
+
61
+
62
+ ***********
63
+
64
+ log_df=air_df[['Passengers']]
65
+ log_df['log']=np.log(log_df['Passengers'])
66
+ log_df.head()
67
+
68
+
69
+ ************
70
+
71
+ test_stationarity(log_df,'log')
72
+
73
+
74
+
75
+ sqrt_df=air_df[['Passengers']]
76
+ sqrt_df['sqrt']=np.sqrt(air_df['Passengers'])
77
+ sqrt_df.head()
78
+
79
+
80
+ ********
81
+
82
+ test_stationarity(sqrt_df,'sqrt')
83
+
84
+
85
+ ***********
86
+
87
+ cbrt_df=air_df[['Passengers']]
88
+ cbrt_df['cbrt']=np.cbrt(air_df['Passengers'])
89
+ cbrt_df.head()
90
+
91
+ ***********
92
+
93
+ test_stationarity(cbrt_df,'cbrt')
94
+
95
+
96
+
97
+
98
+ ************
99
+
100
+
101
+ log_df2=log_df[['Passengers','log']]
102
+ log_df2['log_sqrt']=np.sqrt(log_df['log'])
103
+ log_df2.head()
104
+
105
+ **********
106
+
107
+
108
+ test_stationarity(log_df2,'log_sqrt')
109
+
110
+
111
+
112
+ ********
113
+
114
+
115
+ log_df2=log_df[['Passengers','log']]
116
+ log_df2['log_sqrt']=np.sqrt(log_df['log'])
117
+ log_df2['logShiftDiff']=log_df2['log_sqrt']-log_df2['log_sqrt'].shift()
118
+ log_df2.head()
119
+
120
+
121
+
122
+ *********
123
+
124
+
125
+ test_stationarity(log_df2.dropna(),'logShiftDiff')
126
+
127
+ *************88
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
@@ -0,0 +1,52 @@
1
+ Aim: Implementing auto correlation and partial auto-correlation on timeseries
2
+
3
+
4
+ # ACF plot of time series
5
+ from pandas import read_csv
6
+ from matplotlib import pyplot
7
+ #from statsmodels.graphics.tsaplots import plot_acf
8
+ from pandas.plotting import autocorrelation_plot
9
+ series = read_csv('/content/drive/MyDrive/MScDS TSA/daily-min-temperatures.csv', header=0, index_col=0,parse_dates=True, squeeze=True)
10
+ #plot_acf(series)
11
+ autocorrelation_plot(series)
12
+ pyplot.show()
13
+
14
+
15
+
16
+
17
+ *********
18
+
19
+
20
+ # zoomed-in ACF plot of time series
21
+ from pandas import read_csv
22
+ from matplotlib import pyplot
23
+ from statsmodels.graphics.tsaplots import plot_acf
24
+ series = read_csv('/content/drive/MyDrive/MScDS TSA/daily-min-temperatures.csv', header=0, index_col=0,parse_dates=True, squeeze=True)
25
+ plot_acf(series, lags=50)
26
+ pyplot.show()
27
+
28
+
29
+
30
+ **************
31
+
32
+
33
+
34
+ # PACF plot of time series
35
+ from pandas import read_csv
36
+ from matplotlib import pyplot
37
+ from statsmodels.graphics.tsaplots import plot_pacf
38
+ series = read_csv('/content/drive/MyDrive/MScDS TSA/daily-min-temperatures.csv', header=0, index_col=0,
39
+ parse_dates=True, squeeze=True)
40
+ plot_pacf(series, lags=50)
41
+ pyplot.show()
42
+
43
+
44
+
45
+ ***************8
46
+
47
+
48
+
49
+
50
+
51
+
52
+
@@ -0,0 +1,29 @@
1
+ Aim: Perform autoregression on time series data
2
+
3
+
4
+ # create and evaluate a static autoregressive model
5
+ from pandas import read_csv
6
+ from matplotlib import pyplot
7
+ from statsmodels.tsa.ar_model import AutoReg
8
+ from sklearn.metrics import mean_squared_error
9
+ from math import sqrt
10
+ # load dataset
11
+ series = read_csv('/content/drive/MyDrive/MScDS TSA/daily-min-temperatures.csv', header=0, index_col=0,parse_dates=True, squeeze=True)
12
+ # split dataset
13
+ X = series.values
14
+ train, test = X[1:len(X)-7], X[len(X)-7:]
15
+ # train autoregression
16
+ model = AutoReg(train,30)
17
+ model_fit = model.fit()
18
+ print('Lag: %s' % model_fit.ar_lags)
19
+ print('Coefficients: %s' % model_fit.params)
20
+ # make predictions
21
+ predictions = model_fit.predict(start=len(train), end=len(train)+len(test)-1, dynamic=False)
22
+ for i in range(len(predictions)):
23
+ print('predicted=%f, expected=%f' % (predictions[i], test[i]))
24
+ rmse = sqrt(mean_squared_error(test, predictions))
25
+ print('Test RMSE: %.3f' % rmse)
26
+ # plot results
27
+ pyplot.plot(test)
28
+ pyplot.plot(predictions, color='red')
29
+ pyplot.show()
@@ -0,0 +1,67 @@
1
+ Aim: Forecasting using MA model.
2
+
3
+
4
+ # correct forecasts with a model of forecast residual errors
5
+ from pandas import read_csv
6
+ from pandas import DataFrame
7
+ from pandas import concat
8
+ from statsmodels.tsa.ar_model import AutoReg
9
+ from matplotlib import pyplot
10
+ from sklearn.metrics import mean_squared_error
11
+ from math import sqrt
12
+ # load data
13
+ series = read_csv('/content/drive/MyDrive/MScDS TSA/daily-total-female-births-CA.csv', header=0, index_col=0, parse_dates=True,squeeze=True)
14
+ # create lagged dataset
15
+ values = DataFrame(series.values)
16
+ dataframe = concat([values.shift(1), values], axis=1)
17
+ dataframe.columns = ['t', 't+1']
18
+ print(dataframe)
19
+ X = dataframe.values
20
+
21
+
22
+ *******
23
+
24
+
25
+ # split into train and test sets
26
+ X = dataframe.values
27
+ train_size = int(len(X) * 0.66)
28
+ train, test = X[1:train_size], X[train_size:]
29
+ train_X, train_y = train[:,0], train[:,1]
30
+ test_X, test_y = test[:,0], test[:,1]
31
+ # persistence model on training set
32
+ train_pred = [x for x in train_X]
33
+ # calculate residuals
34
+ train_resid = [train_y[i]-train_pred[i] for i in range(len(train_pred))]
35
+ # model the training set residuals
36
+ model = AutoReg(train_resid,20)
37
+ model_fit = model.fit()
38
+ window = len(model_fit.ar_lags)
39
+ coef = model_fit.params
40
+ # walk forward over time steps in test
41
+ history = train_resid[len(train_resid)-window:]
42
+ history = [history[i] for i in range(len(history))]
43
+ predictions = list()
44
+ for t in range(len(test_y)):
45
+ # persistence
46
+ yhat = test_X[t]
47
+ error = test_y[t] - yhat
48
+ # predict error
49
+ length = len(history)
50
+ lag = [history[i] for i in range(length-window,length)]
51
+ pred_error = coef[0]
52
+ for d in range(window):
53
+ pred_error += coef[d+1] * lag[window-d-1]
54
+ # correct the prediction
55
+ yhat = yhat + pred_error
56
+ predictions.append(yhat)
57
+ history.append(error)
58
+ print('predicted=%f, expected=%f' % (yhat, test_y[t]))
59
+ # error
60
+ rmse = sqrt(mean_squared_error(test_y, predictions))
61
+ print('Test RMSE: %.3f' % rmse)
62
+ # plot predicted error
63
+ pyplot.plot(test_y)
64
+ pyplot.plot(predictions, color='red')
65
+ pyplot.show()
66
+
67
+
@@ -0,0 +1,108 @@
1
+ Aim: Forecasting using ARIMA model --TEMPERATURE
2
+ Time Series Forecasting With ARIMA Model in Python for Temperature Prediction.
3
+
4
+ 1) Reading Time Series Data in Python using Pandas library
5
+
6
+ import pandas as pd
7
+ df=pd.read_csv('/content/drive/MyDrive/MScDS TSA/MaunaLoaDailyTemps.csv',index_col='DATE',parse_dates=True)
8
+ df=df.dropna()
9
+ print('Shape of data',df.shape)
10
+ df.head()
11
+ df
12
+
13
+ **********
14
+
15
+ df['AvgTemp'].plot(figsize=(12,5))
16
+
17
+
18
+ *******
19
+
20
+ 2) Checking for stationarity of time series model
21
+
22
+
23
+ from statsmodels.tsa.stattools import adfuller
24
+ def adf_test(dataset):
25
+ dftest = adfuller(dataset, autolag = 'AIC')
26
+ print("1. ADF : ",dftest[0])
27
+ print("2. P-Value : ", dftest[1])
28
+ print("3. Num Of Lags : ", dftest[2])
29
+ print("4. Num Of Observations Used For ADF Regression:", dftest[3])
30
+ print("5. Critical Values :")
31
+ for key, val in dftest[4].items():
32
+ print("\t",key, ": ", val)
33
+ adf_test(df['AvgTemp'])
34
+
35
+
36
+ *************
37
+
38
+
39
+ Auto Arima Function to select order of Auto Regression Model
40
+
41
+ pip install pmdarima
42
+
43
+
44
+
45
+ from pmdarima import auto_arima
46
+ import warnings
47
+ warnings.filterwarnings("ignore")
48
+ stepwise_fit=auto_arima(df['AvgTemp'],trace=True,suppress_warnings=True)
49
+ stepwise_fit.summary()
50
+
51
+
52
+
53
+ ************8
54
+
55
+
56
+ Split Your Dataset
57
+
58
+ print(df.shape)
59
+ train=df.iloc[:-30]
60
+ test=df.iloc[-30:]
61
+ print(train.shape,test.shape)
62
+
63
+
64
+
65
+
66
+
67
+ from statsmodels.tsa.arima.model import ARIMA
68
+ model=ARIMA(train['AvgTemp'],order=(1,0,5))
69
+ model=model.fit()
70
+ model.summary()
71
+
72
+
73
+
74
+
75
+ **************
76
+
77
+
78
+
79
+ Check How Good Your Model Is
80
+
81
+
82
+ start=len(train)
83
+ end=len(train)+len(test)-1
84
+ pred=model.predict(start=start,end=end,typ='levels').rename('ARIMA Predictions')
85
+ print(pred)
86
+ pred.index=df.index[start:end+1]
87
+ pred.plot(legend=True)
88
+ test['AvgTemp'].plot(legend=True)
89
+
90
+
91
+
92
+
93
+
94
+ ***********8
95
+
96
+
97
+ Check your Accuracy Metric
98
+
99
+
100
+ from sklearn.metrics import mean_squared_error
101
+ from math import sqrt
102
+ test['AvgTemp'].mean()
103
+ rmse=sqrt(mean_squared_error(pred,test['AvgTemp']))
104
+ print(rmse)
105
+
106
+
107
+
108
+
@@ -0,0 +1,123 @@
1
+ 1. Print in R
2
+ r
3
+ Copy
4
+ Edit
5
+ print("Hello Boss!")
6
+ 🔹 2. Comments in R
7
+ r
8
+ Copy
9
+ Edit
10
+ # This is a single-line comment
11
+ 🔹 3. Variables in R
12
+ r
13
+ Copy
14
+ Edit
15
+ x <- 10
16
+ y <- "Data"
17
+ 🔹 4. Concatenate Elements
18
+ r
19
+ Copy
20
+ Edit
21
+ v <- c(1, 2, 3, 4)
22
+ print(v)
23
+ 🔹 5. Multiple Variables
24
+ r
25
+ Copy
26
+ Edit
27
+ a <- 5
28
+ b <- 10
29
+ c <- a + b
30
+ print(c)
31
+ 🔹 6. Variable Names
32
+ r
33
+ Copy
34
+ Edit
35
+ user_name <- "Boss"
36
+ user_age <- 25
37
+ 🔹 7. Data Types
38
+ r
39
+ Copy
40
+ Edit
41
+ num <- 10.5 # Numeric
42
+ str <- "Hello" # Character
43
+ bool <- TRUE # Logical
44
+ vec <- c(1, 2, 3) # Vector
45
+ 🔹 8. Strings
46
+ r
47
+ Copy
48
+ Edit
49
+ name <- "R Programming"
50
+ paste("Welcome to", name)
51
+ 🔹 9. Boolean
52
+ r
53
+ Copy
54
+ Edit
55
+ is_true <- TRUE
56
+ is_false <- FALSE
57
+ 🔹 10. Operators
58
+ r
59
+ Copy
60
+ Edit
61
+ a <- 10
62
+ b <- 3
63
+ a + b # Addition
64
+ a > b # Comparison
65
+ a == b # Equal
66
+ a %% b # Modulus
67
+ 🔹 11. If Else
68
+ r
69
+ Copy
70
+ Edit
71
+ x <- 10
72
+ if (x > 5) {
73
+ print("Greater than 5")
74
+ } else {
75
+ print("5 or less")
76
+ }
77
+ 🔹 12. List
78
+ r
79
+ Copy
80
+ Edit
81
+ my_list <- list(name="Boss", age=25, scores=c(90, 85))
82
+ print(my_list)
83
+ 🔹 13. Matrices
84
+ r
85
+ Copy
86
+ Edit
87
+ matrix_data <- matrix(1:6, nrow=2, ncol=3)
88
+ print(matrix_data)
89
+ 🔹 14. Data Frames
90
+ r
91
+ Copy
92
+ Edit
93
+ df <- data.frame(Name=c("A", "B"), Age=c(20, 25))
94
+ print(df)
95
+ 🔹 15. Functions
96
+ r
97
+ Copy
98
+ Edit
99
+ add_numbers <- function(x, y) {
100
+ return(x + y)
101
+ }
102
+ 🔹 16. Call a Function
103
+ r
104
+ Copy
105
+ Edit
106
+ result <- add_numbers(5, 3)
107
+ print(result)
108
+ 🔹 17. Global Variable
109
+ r
110
+ Copy
111
+ Edit
112
+ x <- 5
113
+ my_func <- function() {
114
+ x <<- 10 # Modify global x
115
+ }
116
+ my_func()
117
+ print(x)
118
+ 🔹 18. Vectors
119
+ r
120
+ Copy
121
+ Edit
122
+ my_vector <- c(1, 2, 3, 4, 5)
123
+ print(my_vector)
@@ -0,0 +1,32 @@
1
+ 1. Line Plot
2
+ r
3
+ Copy
4
+ Edit
5
+ x <- c(1, 2, 3, 4, 5)
6
+ y <- c(2, 4, 6, 8, 10)
7
+
8
+ plot(x, y, type="l", col="blue", main="Line Plot", xlab="X-axis", ylab="Y-axis")
9
+ 🔹 2. Scatter Plot
10
+ r
11
+ Copy
12
+ Edit
13
+ x <- c(1, 2, 3, 4, 5)
14
+ y <- c(5, 3, 6, 2, 7)
15
+
16
+ plot(x, y, main="Scatter Plot", xlab="X", ylab="Y", col="red", pch=19)
17
+ 🔹 3. Pie Chart
18
+ r
19
+ Copy
20
+ Edit
21
+ slices <- c(10, 20, 30, 40)
22
+ labels <- c("A", "B", "C", "D")
23
+
24
+ pie(slices, labels=labels, main="Pie Chart")
25
+ 🔹 4. Bar Chart
26
+ r
27
+ Copy
28
+ Edit
29
+ values <- c(5, 10, 15, 20)
30
+ names <- c("A", "B", "C", "D")
31
+
32
+ barplot(values, names.arg=names, col="green", main="Bar Chart", ylab="Values")
@@ -0,0 +1,53 @@
1
+ ✅ Step 1: Install & Load ggplot2
2
+ r
3
+ Copy
4
+ Edit
5
+ install.packages("ggplot2") # Run once
6
+ library(ggplot2)
7
+ ✅ Step 2: Sample Data
8
+ r
9
+ Copy
10
+ Edit
11
+ data <- data.frame(
12
+ category = rep(c("A", "B", "C"), each=4),
13
+ subcat = rep(c("X", "Y"), times=6),
14
+ value = c(4, 7, 6, 9, 5, 3, 8, 4, 7, 5, 6, 2)
15
+ )
16
+ ✅ Step 3: Basic ggplot
17
+ r
18
+ Copy
19
+ Edit
20
+ ggplot(data, aes(x=subcat, y=value)) +
21
+ geom_bar(stat="identity", fill="steelblue") +
22
+ ggtitle("Basic Bar Chart")
23
+ ✅ Step 4: Facets
24
+ r
25
+ Copy
26
+ Edit
27
+ ggplot(data, aes(x=subcat, y=value)) +
28
+ geom_bar(stat="identity", fill="tomato") +
29
+ facet_wrap(~ category) +
30
+ ggtitle("Faceted by Category")
31
+ ✅ Step 5: Geometric Objects
32
+ r
33
+ Copy
34
+ Edit
35
+ ggplot(data, aes(x=subcat, y=value, fill=category)) +
36
+ geom_bar(stat="identity", position="dodge") + # Bar chart
37
+ geom_point(aes(color=category), size=3, shape=21) + # Add points
38
+ ggtitle("Geometric Objects: Bars + Points")
39
+ ✅ Step 6: Position Adjustment
40
+ r
41
+ Copy
42
+ Edit
43
+ ggplot(data, aes(x=subcat, y=value, fill=category)) +
44
+ geom_bar(stat="identity", position=position_dodge(width=0.7)) +
45
+ ggtitle("Position: Dodge for Side-by-Side Bars")
46
+ ✅ Step 7: Coordinate System (Flip Axis)
47
+ r
48
+ Copy
49
+ Edit
50
+ ggplot(data, aes(x=subcat, y=value, fill=category)) +
51
+ geom_bar(stat="identity") +
52
+ coord_flip() +
53
+ ggtitle("Flipped Coordinates")
File without changes