myawesomepkg 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. myawesomepkg/TSAPY1/1 (A) Working with Numpy Arrays.py +1146 -0
  2. myawesomepkg/TSAPY1/1(B)Aggregation (1).py +319 -0
  3. myawesomepkg/TSAPY1/1(C) Broadcasting .py +328 -0
  4. myawesomepkg/TSAPY1/10-A_Load_stringr.py +77 -0
  5. myawesomepkg/TSAPY1/10-B_Forcats.py +70 -0
  6. myawesomepkg/TSAPY1/2(a) Comparison, Masking And Boolean Logic (1).py +497 -0
  7. myawesomepkg/TSAPY1/2(b)Fancy Indexing.py +594 -0
  8. myawesomepkg/TSAPY1/2(c) Sorting Arrays.py +528 -0
  9. myawesomepkg/TSAPY1/2(d) Structured Array.py +350 -0
  10. myawesomepkg/TSAPY1/3 (A) Handling Missing Data.py +1013 -0
  11. myawesomepkg/TSAPY1/4A_Merge_Joins.py +1209 -0
  12. myawesomepkg/TSAPY1/9A_Dplyr.py +85 -0
  13. myawesomepkg/TSAPY1/9B_Tidyr.py +71 -0
  14. myawesomepkg/TSAPY1/Aggregation_Groupin_Pivot_Filter_Vectorice_Time_Series.py +1999 -0
  15. myawesomepkg/TSAPY1/Combining_Joins.py +1209 -0
  16. myawesomepkg/TSAPY1/P4-1-different_distance_methods_(euclidean)_with_prediction,_test_score_and_confusion_matrix1.py +131 -0
  17. myawesomepkg/TSAPY1/P4-2-k_means_clustering_with_prediction,_test_score_and_confusion_matrix2.py +150 -0
  18. myawesomepkg/TSAPY1/Pract3_C.py +482 -0
  19. myawesomepkg/TSAPY1/Pract5_Data_Visualization.py +481 -0
  20. myawesomepkg/TSAPY1/Practical 6.py +860 -0
  21. myawesomepkg/TSAPY1/Practical No 1.py +148 -0
  22. myawesomepkg/TSAPY1/Practical No 2.py +115 -0
  23. myawesomepkg/TSAPY1/Practical No 3.py +168 -0
  24. myawesomepkg/TSAPY1/Practical No 4 A.py +233 -0
  25. myawesomepkg/TSAPY1/Practical No 4 B.py +137 -0
  26. myawesomepkg/TSAPY1/Practical No 5.py +52 -0
  27. myawesomepkg/TSAPY1/Practical No 6.py +29 -0
  28. myawesomepkg/TSAPY1/Practical No 7.py +67 -0
  29. myawesomepkg/TSAPY1/Practical No 8.py +108 -0
  30. myawesomepkg/TSAPY1/Print_R.py +123 -0
  31. myawesomepkg/TSAPY1/R_Graph.py +32 -0
  32. myawesomepkg/TSAPY1/Working_Ggplot.py +53 -0
  33. myawesomepkg/TSAPY1/__init__.py +0 -0
  34. myawesomepkg/TSAPY1/p1_2_pca_iris.py +141 -0
  35. myawesomepkg/TSAPY1/p2_1_find_s.py +78 -0
  36. myawesomepkg/TSAPY1/p2_bcandidate_elimination_algorithm_(1).py +85 -0
  37. myawesomepkg/TSAPY1/p3_1_least_square_regression.py +105 -0
  38. myawesomepkg/TSAPY1/p3_2_logistic_regression_algorithm.py +79 -0
  39. myawesomepkg/TSAPY1/p5_1_hierarchical_clustering.py +143 -0
  40. myawesomepkg/TSAPY1/p5_2_k_nearest_neighbour_algorithm.py +104 -0
  41. myawesomepkg/TSAPY1/p6_1_id3_algorithm_.py +199 -0
  42. myawesomepkg/TSAPY1/p7_1_ann_backpropagation_algorithm.py +116 -0
  43. myawesomepkg/TSAPY1/p7_2_bds_association_rule_mining.py +99 -0
  44. myawesomepkg/TSAPY1/p8_1_gaussian_naive_bayes_.py +97 -0
  45. myawesomepkg/TSAPY1/p8_2_naive_bayes_document_classifier.py +111 -0
  46. myawesomepkg/TSAPY1/p9_1bayesian_network.py +91 -0
  47. myawesomepkg/TSAPY1/p9_b_loess_regression.py +113 -0
  48. myawesomepkg/TSAPY1/p_1_test_and_train.py +98 -0
  49. myawesomepkg/TSAPY1/pract3A-B.py +3212 -0
  50. myawesomepkg/TSAPY1/practical_no_3.py +167 -0
  51. myawesomepkg/TSAPY1/practical_no_4.py +215 -0
  52. myawesomepkg/TSAPY1/practical_no_4b.py +78 -0
  53. myawesomepkg/TSAPY1/practical_no_5_ac_and_pca.py +39 -0
  54. myawesomepkg/TSAPY1/practical_no_6.py +37 -0
  55. myawesomepkg/TSAPY1/practical_no_7.py +69 -0
  56. myawesomepkg/TSAPY1/practical_no_8.py +79 -0
  57. myawesomepkg/TSAPY1/tsa_practical_no_1.py +287 -0
  58. myawesomepkg/TSAPY1/tsa_practical_no_2.py +121 -0
  59. myawesomepkg/__init__.py +1 -0
  60. myawesomepkg/core.py +2 -0
  61. myawesomepkg-0.1.8.dist-info/METADATA +17 -0
  62. myawesomepkg-0.1.8.dist-info/RECORD +64 -0
  63. myawesomepkg-0.1.8.dist-info/WHEEL +5 -0
  64. myawesomepkg-0.1.8.dist-info/top_level.txt +1 -0
@@ -0,0 +1,131 @@
1
+ # -*- coding: utf-8 -*-
2
+ """different Distance methods (Euclidean) with Prediction, Test Score and Confusion Matrix1.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1FAIOs_ScwVaM7Q1T7kf39YA35Jjte2Pd
8
+ """
9
+
10
+ # Importing required libraries
11
+ import pandas as pd
12
+ from sklearn.model_selection import train_test_split
13
+ from sklearn.preprocessing import LabelEncoder
14
+ from sklearn.neighbors import KNeighborsClassifier
15
+ from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
16
+
17
+ # Load the dataset
18
+ data = pd.read_csv("/content/Irisdata.csv")
19
+
20
+ # Selecting features and target
21
+ X = data.iloc[:, [1, 2, 3, 4]].values
22
+ y = data.iloc[:, 5].values
23
+
24
+ # Encoding target labels
25
+ le = LabelEncoder()
26
+ y = le.fit_transform(y)
27
+
28
+ # Splitting data into training and testing sets
29
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
30
+
31
+ # Creating KNN model using Euclidean distance
32
+ model = KNeighborsClassifier(n_neighbors=5, metric='euclidean')
33
+ model.fit(X_train, y_train)
34
+
35
+ # Making predictions
36
+ y_pred = model.predict(X_test)
37
+
38
+ # Evaluating model performance
39
+ cm = confusion_matrix(y_test, y_pred)
40
+ acc = accuracy_score(y_test, y_pred)
41
+
42
+ print("Confusion Matrix:\n", cm)
43
+ print("\nAccuracy Score:", round(acc * 100, 2), "%")
44
+ print("\nClassification Report:\n", classification_report(y_test, y_pred, target_names=le.classes_))
45
+
46
+ # Example prediction
47
+ sample = [[5.1, 3.5, 1.4, 0.2]]
48
+ predicted_class = model.predict(sample)
49
+ print("\nPredicted Class for", sample, ":", le.inverse_transform(predicted_class)[0])
50
+
51
+ # ---- Visualization of KNN Results ----
52
+ import matplotlib.pyplot as plt
53
+ import numpy as np
54
+
55
+ # Only for 2D plotting (we'll use the first two features: SepalLength and SepalWidth)
56
+ X_plot = X_train[:, :2]
57
+ y_plot = y_train
58
+
59
+ # Train again using only first 2 features (for visualization)
60
+ model_2d = KNeighborsClassifier(n_neighbors=5, metric='euclidean')
61
+ model_2d.fit(X_plot, y_plot)
62
+
63
+ # Create a meshgrid for background decision boundary
64
+ x_min, x_max = X_plot[:, 0].min() - 1, X_plot[:, 0].max() + 1
65
+ y_min, y_max = X_plot[:, 1].min() - 1, X_plot[:, 1].max() + 1
66
+ xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
67
+ np.arange(y_min, y_max, 0.1))
68
+
69
+ # Predict for each point in meshgrid
70
+ Z = model_2d.predict(np.c_[xx.ravel(), yy.ravel()])
71
+ Z = Z.reshape(xx.shape)
72
+
73
+ # Plot decision boundary and training points
74
+ plt.figure(figsize=(8,6))
75
+ plt.contourf(xx, yy, Z, alpha=0.3)
76
+ plt.scatter(X_plot[:, 0], X_plot[:, 1], c=y_plot, s=40, edgecolor='k')
77
+ plt.title("KNN Classification (Euclidean Distance)")
78
+ plt.xlabel("Sepal Length")
79
+ plt.ylabel("Sepal Width")
80
+ plt.show()
81
+
82
+
83
+
84
+ #second code
85
+
86
+ 4.a Euclidean
87
+ import numpy as np
88
+ import pandas as pd
89
+ from sklearn.model_selection import train_test_split
90
+ from sklearn.metrics import confusion_matrix, accuracy_score
91
+
92
+ # --- Step 1: Sample dataset ---
93
+ # For simplicity, use an example dataset
94
+ from sklearn.datasets import load_iris
95
+ data = load_iris()
96
+ X = data.data
97
+ y = data.target
98
+
99
+ # --- Step 2: Split into training and testing ---
100
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
101
+
102
+ # --- Step 3: Define a function for Euclidean distance ---
103
+ def euclidean_distance(x1, x2):
104
+ return np.sqrt(np.sum((x1 - x2)**2))
105
+
106
+ # --- Step 4: Implement KNN manually using Euclidean distance ---
107
+ def knn_predict(X_train, y_train, X_test, k=3):
108
+ predictions = []
109
+ for test_point in X_test:
110
+ # Calculate all distances
111
+ distances = [euclidean_distance(test_point, x_train) for x_train in X_train]
112
+ # Get indices of k nearest neighbors
113
+ k_indices = np.argsort(distances)[:k]
114
+ # Get the labels of k nearest points
115
+ k_neighbor_labels = [y_train[i] for i in k_indices]
116
+ # Take the majority vote
117
+ most_common = max(set(k_neighbor_labels), key=k_neighbor_labels.count)
118
+ predictions.append(most_common)
119
+ return np.array(predictions)
120
+
121
+ # --- Step 5: Make predictions ---
122
+ y_pred = knn_predict(X_train, y_train, X_test, k=3)
123
+
124
+ # --- Step 6: Evaluate model ---
125
+ acc = accuracy_score(y_test, y_pred)
126
+ cm = confusion_matrix(y_test, y_pred)
127
+
128
+ print("Predictions:", y_pred)
129
+ print("\nTest Accuracy:", acc)
130
+ print("\nConfusion Matrix:\n", cm)
131
+
@@ -0,0 +1,150 @@
1
+ # -*- coding: utf-8 -*-
2
+ """K-Means clustering with Prediction, Test Score and Confusion Matrix2.ipynb
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1PhxwPtvymskRZcO18J6px8vkMhN1KNUR
8
+ """
9
+
10
+ # Importing required libraries
11
+ import pandas as pd
12
+ import numpy as np
13
+ import matplotlib.pyplot as plt
14
+ from sklearn.cluster import KMeans
15
+ from sklearn.preprocessing import LabelEncoder
16
+ from sklearn.metrics import confusion_matrix, accuracy_score
17
+
18
+ # Load the Iris dataset
19
+ data = pd.read_csv("/content/Irisdata.csv")
20
+
21
+ # Selecting features (independent variables)
22
+ X = data.iloc[:, [1, 2, 3, 4]].values
23
+
24
+ # Extracting actual target labels (species)
25
+ y = data.iloc[:, 5].values
26
+
27
+ # Encoding string labels into numbers
28
+ le = LabelEncoder()
29
+ y_encoded = le.fit_transform(y)
30
+
31
+ # Finding the optimal number of clusters using the Elbow method
32
+ wcss = []
33
+ for i in range(1, 11):
34
+ kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
35
+ kmeans.fit(X)
36
+ wcss.append(kmeans.inertia_)
37
+
38
+ # Plotting the Elbow graph
39
+ plt.plot(range(1, 11), wcss, marker='o')
40
+ plt.title('The Elbow Method')
41
+ plt.xlabel('Number of Clusters')
42
+ plt.ylabel('WCSS (Within Cluster Sum of Squares)')
43
+ plt.show()
44
+
45
+ # Applying K-Means with 3 clusters (based on Elbow method)
46
+ kmeans = KMeans(n_clusters=3, init='k-means++', max_iter=300, n_init=10, random_state=0)
47
+ y_kmeans = kmeans.fit_predict(X)
48
+
49
+ # Aligning K-Means cluster labels with actual species labels
50
+ from scipy.stats import mode
51
+
52
+ labels = np.zeros_like(y_kmeans)
53
+ for i in range(3):
54
+ mask = (y_kmeans == i)
55
+ labels[mask] = mode(y_encoded[mask])[0]
56
+
57
+ # Calculating confusion matrix and accuracy
58
+ cm = confusion_matrix(y_encoded, labels)
59
+ acc = accuracy_score(y_encoded, labels)
60
+
61
+ print("\nConfusion Matrix:\n", cm)
62
+ print("\nAccuracy Score:", round(acc * 100, 2), "%")
63
+
64
+ # Visualizing the clusters
65
+ plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s=100, c='red', label='Cluster 1')
66
+ plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s=100, c='blue', label='Cluster 2')
67
+ plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s=100, c='green', label='Cluster 3')
68
+
69
+ # Plotting centroids
70
+ plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
71
+ s=200, c='yellow', label='Centroids', marker='X')
72
+
73
+ plt.title('K-Means Clustering (Iris Dataset)')
74
+ plt.xlabel('Sepal Length')
75
+ plt.ylabel('Sepal Width')
76
+ plt.legend()
77
+ plt.show()
78
+
79
+ # Example Prediction
80
+ sample = [[5.1, 3.5, 1.4, 0.2]]
81
+ pred_cluster = kmeans.predict(sample)
82
+ print("\nPredicted Cluster for sample", sample, ":", pred_cluster[0])
83
+
84
+
85
+
86
+ #second code+++++++++++++++++++++++++++++++++++++++++++=
87
+
88
+
89
+ import numpy as np
90
+ import matplotlib.pyplot as plt
91
+ import pandas as pd
92
+ from sklearn.cluster import KMeans
93
+
94
+ # Load dataset
95
+ dataset = pd.read_csv('/content/Irisdata.csv')
96
+ print(dataset.head())
97
+
98
+ # Select features (make sure to exclude ID or non-numeric columns)
99
+ X = dataset.iloc[:, [1, 2, 3, 4]].values
100
+
101
+ # Elbow method to find optimal number of clusters
102
+ wcss = []
103
+ for i in range(1, 11):
104
+ kmeans = KMeans(
105
+ n_clusters=i,
106
+ init='k-means++',
107
+ max_iter=300,
108
+ n_init=10,
109
+ random_state=0
110
+ )
111
+ kmeans.fit(X)
112
+ wcss.append(kmeans.inertia_)
113
+
114
+ # Plot Elbow Curve
115
+ plt.figure(figsize=(8, 5))
116
+ plt.plot(range(1, 11), wcss, marker='o')
117
+ plt.title('Elbow Method for Optimal k')
118
+ plt.xlabel('Number of Clusters')
119
+ plt.ylabel('WCSS (Within Cluster Sum of Squares)')
120
+ plt.grid(True)
121
+ plt.show()
122
+
123
+ # Applying KMeans with optimal clusters (3 for Iris)
124
+ kmeans = KMeans(
125
+ n_clusters=3,
126
+ init='k-means++',
127
+ max_iter=300,
128
+ n_init=10,
129
+ random_state=0
130
+ )
131
+ y_kmeans = kmeans.fit_predict(X)
132
+
133
+ # Plot the clusters (using the first two features for 2D visualization)
134
+ plt.figure(figsize=(8, 6))
135
+ plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s=100, c='red', label='Iris-setosa')
136
+ plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s=100, c='blue', label='Iris-versicolour')
137
+ plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s=100, c='green', label='Iris-virginica')
138
+
139
+ # Plot centroids
140
+ plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
141
+ s=200, c='yellow', edgecolor='black', marker='X', label='Centroids')
142
+
143
+ plt.title('Clusters of Iris Species')
144
+ plt.xlabel('Feature 1')
145
+ plt.ylabel('Feature 2')
146
+ plt.legend()
147
+ plt.grid(True)
148
+ plt.show()
149
+
150
+