myawesomepkg 0.1.5__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- myawesomepkg/TSAPY1/1 (A) Working with Numpy Arrays.py +1146 -0
- myawesomepkg/TSAPY1/1(B)Aggregation (1).py +319 -0
- myawesomepkg/TSAPY1/1(C) Broadcasting .py +328 -0
- myawesomepkg/TSAPY1/2(a) Comparison, Masking And Boolean Logic (1).py +497 -0
- myawesomepkg/TSAPY1/2(b)Fancy Indexing.py +594 -0
- myawesomepkg/TSAPY1/2(c) Sorting Arrays.py +528 -0
- myawesomepkg/TSAPY1/2(d) Structured Array.py +350 -0
- myawesomepkg/TSAPY1/3 (A) Handling Missing Data.py +1013 -0
- myawesomepkg/TSAPY1/4A_Merge_Joins.py +1209 -0
- myawesomepkg/TSAPY1/Aggregation_Groupin_Pivot_Filter_Vectorice_Time_Series.py +1999 -0
- myawesomepkg/TSAPY1/Combining_Joins.py +1209 -0
- myawesomepkg/TSAPY1/Pract3_C.py +482 -0
- myawesomepkg/TSAPY1/Pract5_Data_Visualization.py +481 -0
- myawesomepkg/TSAPY1/Practical 6.py +860 -0
- myawesomepkg/TSAPY1/pract3A-B.py +3212 -0
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/METADATA +1 -1
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/RECORD +19 -4
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/WHEEL +0 -0
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,350 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": 2,
|
6
|
+
"id": "a48de104",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import numpy as np"
|
11
|
+
]
|
12
|
+
},
|
13
|
+
{
|
14
|
+
"cell_type": "code",
|
15
|
+
"execution_count": 3,
|
16
|
+
"id": "2a44575b",
|
17
|
+
"metadata": {},
|
18
|
+
"outputs": [],
|
19
|
+
"source": [
|
20
|
+
"name = ['Alice', 'Bob', 'Cathy', 'Doug']\n",
|
21
|
+
"age = [25, 45, 37, 19]\n",
|
22
|
+
"weight = [55.0, 85.5, 68.0, 61.5]"
|
23
|
+
]
|
24
|
+
},
|
25
|
+
{
|
26
|
+
"cell_type": "code",
|
27
|
+
"execution_count": 4,
|
28
|
+
"id": "98f8f978",
|
29
|
+
"metadata": {},
|
30
|
+
"outputs": [],
|
31
|
+
"source": [
|
32
|
+
"x = np.zeros(4, dtype=int)\n"
|
33
|
+
]
|
34
|
+
},
|
35
|
+
{
|
36
|
+
"cell_type": "code",
|
37
|
+
"execution_count": 5,
|
38
|
+
"id": "62710353",
|
39
|
+
"metadata": {},
|
40
|
+
"outputs": [
|
41
|
+
{
|
42
|
+
"name": "stdout",
|
43
|
+
"output_type": "stream",
|
44
|
+
"text": [
|
45
|
+
"[('name', '<U10'), ('age', '<i4'), ('weight', '<f8')]\n"
|
46
|
+
]
|
47
|
+
}
|
48
|
+
],
|
49
|
+
"source": [
|
50
|
+
"# Use a compound data type for structured arrays\n",
|
51
|
+
"data = np.zeros(4, dtype={'names':('name', 'age', 'weight'), 'formats':('U10', 'i4', 'f8')})\n",
|
52
|
+
"print(data.dtype)"
|
53
|
+
]
|
54
|
+
},
|
55
|
+
{
|
56
|
+
"cell_type": "code",
|
57
|
+
"execution_count": 6,
|
58
|
+
"id": "75429517",
|
59
|
+
"metadata": {},
|
60
|
+
"outputs": [
|
61
|
+
{
|
62
|
+
"name": "stdout",
|
63
|
+
"output_type": "stream",
|
64
|
+
"text": [
|
65
|
+
"[('Alice', 25, 55. ) ('Bob', 45, 85.5) ('Cathy', 37, 68. )\n",
|
66
|
+
" ('Doug', 19, 61.5)]\n"
|
67
|
+
]
|
68
|
+
}
|
69
|
+
],
|
70
|
+
"source": [
|
71
|
+
"data['name'] = name\n",
|
72
|
+
"data['age'] = age\n",
|
73
|
+
"data['weight'] = weight\n",
|
74
|
+
"print(data)\n"
|
75
|
+
]
|
76
|
+
},
|
77
|
+
{
|
78
|
+
"cell_type": "code",
|
79
|
+
"execution_count": 7,
|
80
|
+
"id": "81014a71",
|
81
|
+
"metadata": {},
|
82
|
+
"outputs": [
|
83
|
+
{
|
84
|
+
"data": {
|
85
|
+
"text/plain": [
|
86
|
+
"array(['Alice', 'Bob', 'Cathy', 'Doug'], dtype='<U10')"
|
87
|
+
]
|
88
|
+
},
|
89
|
+
"execution_count": 7,
|
90
|
+
"metadata": {},
|
91
|
+
"output_type": "execute_result"
|
92
|
+
}
|
93
|
+
],
|
94
|
+
"source": [
|
95
|
+
"# Get all names\n",
|
96
|
+
"data['name']"
|
97
|
+
]
|
98
|
+
},
|
99
|
+
{
|
100
|
+
"cell_type": "code",
|
101
|
+
"execution_count": 8,
|
102
|
+
"id": "4ab9cc78",
|
103
|
+
"metadata": {},
|
104
|
+
"outputs": [
|
105
|
+
{
|
106
|
+
"data": {
|
107
|
+
"text/plain": [
|
108
|
+
"('Alice', 25, 55.)"
|
109
|
+
]
|
110
|
+
},
|
111
|
+
"execution_count": 8,
|
112
|
+
"metadata": {},
|
113
|
+
"output_type": "execute_result"
|
114
|
+
}
|
115
|
+
],
|
116
|
+
"source": [
|
117
|
+
"# Get first row of data\n",
|
118
|
+
"data[0]\n"
|
119
|
+
]
|
120
|
+
},
|
121
|
+
{
|
122
|
+
"cell_type": "code",
|
123
|
+
"execution_count": 9,
|
124
|
+
"id": "97e72108",
|
125
|
+
"metadata": {},
|
126
|
+
"outputs": [
|
127
|
+
{
|
128
|
+
"data": {
|
129
|
+
"text/plain": [
|
130
|
+
"'Doug'"
|
131
|
+
]
|
132
|
+
},
|
133
|
+
"execution_count": 9,
|
134
|
+
"metadata": {},
|
135
|
+
"output_type": "execute_result"
|
136
|
+
}
|
137
|
+
],
|
138
|
+
"source": [
|
139
|
+
"# Get the name from the last row\n",
|
140
|
+
"data[-1]['name']"
|
141
|
+
]
|
142
|
+
},
|
143
|
+
{
|
144
|
+
"cell_type": "code",
|
145
|
+
"execution_count": 10,
|
146
|
+
"id": "f766b733",
|
147
|
+
"metadata": {},
|
148
|
+
"outputs": [
|
149
|
+
{
|
150
|
+
"data": {
|
151
|
+
"text/plain": [
|
152
|
+
"array(['Alice', 'Doug'], dtype='<U10')"
|
153
|
+
]
|
154
|
+
},
|
155
|
+
"execution_count": 10,
|
156
|
+
"metadata": {},
|
157
|
+
"output_type": "execute_result"
|
158
|
+
}
|
159
|
+
],
|
160
|
+
"source": [
|
161
|
+
"# Get names where age is under 30\n",
|
162
|
+
"data[data['age'] < 30]['name']"
|
163
|
+
]
|
164
|
+
},
|
165
|
+
{
|
166
|
+
"cell_type": "code",
|
167
|
+
"execution_count": 11,
|
168
|
+
"id": "97755d62",
|
169
|
+
"metadata": {},
|
170
|
+
"outputs": [
|
171
|
+
{
|
172
|
+
"data": {
|
173
|
+
"text/plain": [
|
174
|
+
"dtype([('name', '<U10'), ('age', '<i4'), ('weight', '<f8')])"
|
175
|
+
]
|
176
|
+
},
|
177
|
+
"execution_count": 11,
|
178
|
+
"metadata": {},
|
179
|
+
"output_type": "execute_result"
|
180
|
+
}
|
181
|
+
],
|
182
|
+
"source": [
|
183
|
+
"#Creating Structured Arrays\n",
|
184
|
+
"np.dtype({'names':('name', 'age', 'weight'), 'formats':('U10', 'i4', 'f8')})\n"
|
185
|
+
]
|
186
|
+
},
|
187
|
+
{
|
188
|
+
"cell_type": "code",
|
189
|
+
"execution_count": 12,
|
190
|
+
"id": "42dc0929",
|
191
|
+
"metadata": {},
|
192
|
+
"outputs": [
|
193
|
+
{
|
194
|
+
"data": {
|
195
|
+
"text/plain": [
|
196
|
+
"dtype([('name', 'S10'), ('age', '<i4'), ('weight', '<f8')])"
|
197
|
+
]
|
198
|
+
},
|
199
|
+
"execution_count": 12,
|
200
|
+
"metadata": {},
|
201
|
+
"output_type": "execute_result"
|
202
|
+
}
|
203
|
+
],
|
204
|
+
"source": [
|
205
|
+
"np.dtype([('name', 'S10'), ('age', 'i4'), ('weight', 'f8')])"
|
206
|
+
]
|
207
|
+
},
|
208
|
+
{
|
209
|
+
"cell_type": "code",
|
210
|
+
"execution_count": 13,
|
211
|
+
"id": "49dba453",
|
212
|
+
"metadata": {},
|
213
|
+
"outputs": [
|
214
|
+
{
|
215
|
+
"data": {
|
216
|
+
"text/plain": [
|
217
|
+
"dtype([('f0', 'S10'), ('f1', '<i4'), ('f2', '<f8')])"
|
218
|
+
]
|
219
|
+
},
|
220
|
+
"execution_count": 13,
|
221
|
+
"metadata": {},
|
222
|
+
"output_type": "execute_result"
|
223
|
+
}
|
224
|
+
],
|
225
|
+
"source": [
|
226
|
+
"np.dtype('S10,i4,f8')\n"
|
227
|
+
]
|
228
|
+
},
|
229
|
+
{
|
230
|
+
"cell_type": "code",
|
231
|
+
"execution_count": 14,
|
232
|
+
"id": "322c3d0b",
|
233
|
+
"metadata": {},
|
234
|
+
"outputs": [
|
235
|
+
{
|
236
|
+
"name": "stdout",
|
237
|
+
"output_type": "stream",
|
238
|
+
"text": [
|
239
|
+
"(0, [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]])\n",
|
240
|
+
"[[0. 0. 0.]\n",
|
241
|
+
" [0. 0. 0.]\n",
|
242
|
+
" [0. 0. 0.]]\n"
|
243
|
+
]
|
244
|
+
}
|
245
|
+
],
|
246
|
+
"source": [
|
247
|
+
"#More Advanced Compound Types\n",
|
248
|
+
"tp = np.dtype([('id', 'i8'), ('mat', 'f8', (3, 3))])\n",
|
249
|
+
"X = np.zeros(1, dtype=tp)\n",
|
250
|
+
"print(X[0])\n",
|
251
|
+
"print(X['mat'][0])"
|
252
|
+
]
|
253
|
+
},
|
254
|
+
{
|
255
|
+
"cell_type": "code",
|
256
|
+
"execution_count": 15,
|
257
|
+
"id": "5f12d9cd",
|
258
|
+
"metadata": {},
|
259
|
+
"outputs": [
|
260
|
+
{
|
261
|
+
"data": {
|
262
|
+
"text/plain": [
|
263
|
+
"array([25, 45, 37, 19])"
|
264
|
+
]
|
265
|
+
},
|
266
|
+
"execution_count": 15,
|
267
|
+
"metadata": {},
|
268
|
+
"output_type": "execute_result"
|
269
|
+
}
|
270
|
+
],
|
271
|
+
"source": [
|
272
|
+
"#RecordArrays: Structured Arrays with a Twist\n",
|
273
|
+
"data['age']\n"
|
274
|
+
]
|
275
|
+
},
|
276
|
+
{
|
277
|
+
"cell_type": "code",
|
278
|
+
"execution_count": 16,
|
279
|
+
"id": "0c450acf",
|
280
|
+
"metadata": {},
|
281
|
+
"outputs": [
|
282
|
+
{
|
283
|
+
"data": {
|
284
|
+
"text/plain": [
|
285
|
+
"array([25, 45, 37, 19])"
|
286
|
+
]
|
287
|
+
},
|
288
|
+
"execution_count": 16,
|
289
|
+
"metadata": {},
|
290
|
+
"output_type": "execute_result"
|
291
|
+
}
|
292
|
+
],
|
293
|
+
"source": [
|
294
|
+
"data_rec = data.view(np.recarray)\n",
|
295
|
+
"data_rec.age"
|
296
|
+
]
|
297
|
+
},
|
298
|
+
{
|
299
|
+
"cell_type": "code",
|
300
|
+
"execution_count": 17,
|
301
|
+
"id": "dfb95656",
|
302
|
+
"metadata": {},
|
303
|
+
"outputs": [
|
304
|
+
{
|
305
|
+
"name": "stdout",
|
306
|
+
"output_type": "stream",
|
307
|
+
"text": [
|
308
|
+
"141 ns ± 11 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)\n",
|
309
|
+
"2.31 µs ± 130 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n",
|
310
|
+
"3.74 µs ± 171 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n"
|
311
|
+
]
|
312
|
+
}
|
313
|
+
],
|
314
|
+
"source": [
|
315
|
+
"%timeit data['age']\n",
|
316
|
+
"%timeit data_rec['age']\n",
|
317
|
+
"%timeit data_rec.age"
|
318
|
+
]
|
319
|
+
},
|
320
|
+
{
|
321
|
+
"cell_type": "code",
|
322
|
+
"execution_count": null,
|
323
|
+
"id": "7dfe30fe",
|
324
|
+
"metadata": {},
|
325
|
+
"outputs": [],
|
326
|
+
"source": []
|
327
|
+
}
|
328
|
+
],
|
329
|
+
"metadata": {
|
330
|
+
"kernelspec": {
|
331
|
+
"display_name": "Python 3 (ipykernel)",
|
332
|
+
"language": "python",
|
333
|
+
"name": "python3"
|
334
|
+
},
|
335
|
+
"language_info": {
|
336
|
+
"codemirror_mode": {
|
337
|
+
"name": "ipython",
|
338
|
+
"version": 3
|
339
|
+
},
|
340
|
+
"file_extension": ".py",
|
341
|
+
"mimetype": "text/x-python",
|
342
|
+
"name": "python",
|
343
|
+
"nbconvert_exporter": "python",
|
344
|
+
"pygments_lexer": "ipython3",
|
345
|
+
"version": "3.9.13"
|
346
|
+
}
|
347
|
+
},
|
348
|
+
"nbformat": 4,
|
349
|
+
"nbformat_minor": 5
|
350
|
+
}
|