myawesomepkg 0.1.5__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- myawesomepkg/TSAPY1/1 (A) Working with Numpy Arrays.py +1146 -0
- myawesomepkg/TSAPY1/1(B)Aggregation (1).py +319 -0
- myawesomepkg/TSAPY1/1(C) Broadcasting .py +328 -0
- myawesomepkg/TSAPY1/2(a) Comparison, Masking And Boolean Logic (1).py +497 -0
- myawesomepkg/TSAPY1/2(b)Fancy Indexing.py +594 -0
- myawesomepkg/TSAPY1/2(c) Sorting Arrays.py +528 -0
- myawesomepkg/TSAPY1/2(d) Structured Array.py +350 -0
- myawesomepkg/TSAPY1/3 (A) Handling Missing Data.py +1013 -0
- myawesomepkg/TSAPY1/4A_Merge_Joins.py +1209 -0
- myawesomepkg/TSAPY1/Aggregation_Groupin_Pivot_Filter_Vectorice_Time_Series.py +1999 -0
- myawesomepkg/TSAPY1/Combining_Joins.py +1209 -0
- myawesomepkg/TSAPY1/Pract3_C.py +482 -0
- myawesomepkg/TSAPY1/Pract5_Data_Visualization.py +481 -0
- myawesomepkg/TSAPY1/Practical 6.py +860 -0
- myawesomepkg/TSAPY1/pract3A-B.py +3212 -0
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/METADATA +1 -1
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/RECORD +19 -4
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/WHEEL +0 -0
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,497 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": 4,
|
6
|
+
"id": "13511edf",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [
|
9
|
+
{
|
10
|
+
"data": {
|
11
|
+
"text/plain": [
|
12
|
+
"(365,)"
|
13
|
+
]
|
14
|
+
},
|
15
|
+
"execution_count": 4,
|
16
|
+
"metadata": {},
|
17
|
+
"output_type": "execute_result"
|
18
|
+
}
|
19
|
+
],
|
20
|
+
"source": [
|
21
|
+
" import numpy as np\n",
|
22
|
+
" import pandas as pd\n",
|
23
|
+
" # use Pandas to extract rainfall inches as a NumPy array\n",
|
24
|
+
" rainfall = pd.read_csv('D://data//Seattle2014.csv')['PRCP'].values\n",
|
25
|
+
" inches = rainfall / 254 # 1/10mm -> inches\n",
|
26
|
+
" inches.shape"
|
27
|
+
]
|
28
|
+
},
|
29
|
+
{
|
30
|
+
"cell_type": "code",
|
31
|
+
"execution_count": 5,
|
32
|
+
"id": "32368a23",
|
33
|
+
"metadata": {},
|
34
|
+
"outputs": [],
|
35
|
+
"source": [
|
36
|
+
"%matplotlib inline\n",
|
37
|
+
"import matplotlib.pyplot as plt\n",
|
38
|
+
"import seaborn; seaborn.set() # set plot styles"
|
39
|
+
]
|
40
|
+
},
|
41
|
+
{
|
42
|
+
"cell_type": "code",
|
43
|
+
"execution_count": 6,
|
44
|
+
"id": "791bec4d",
|
45
|
+
"metadata": {},
|
46
|
+
"outputs": [
|
47
|
+
{
|
48
|
+
"data": {
|
49
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGgCAYAAACE80yQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmhElEQVR4nO3df3AU92H38c/tCf2ydCBRITF4ElMRSY8wFpFRLE8jsOVq3Bh7nqpMhkksZwyU4HZGFGNQx4YEuzEGFxUMrgWOEbaalEJSSMfD1E1lT1MnDkNAaTLYIAgekBODkM0PHUjozrrb5w8/unKIH7fSSfre3vs1o4nY/e7q+9F64ZPdvTuPbdu2AAAADGSN9QQAAABuhKICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADBWylhPIB5s21Y4HP/3rbMsz4js13TJmJvMySEZM0vJmZvM5rMsjzwezy3HuaKohMO2zp/vies+U1Is5eTcJr+/V/394bju22TJmJvMZHazZMxN5sTInJt7m7zeWxcVbv0AAABjUVQAAICxKCoAAMBYFBUAAGAsR0Xl4sWL+u53v6vZs2ervLxc3/jGN3To0KHI+qefflrFxcVRX7Nnz46sD4fD2rJli6qqqlRWVqaFCxeqo6MjfmkAAICrOHrVz/Lly3Xu3Dlt3LhRubm52rlzpxYtWqS9e/eqsLBQx44d0xNPPKG6urrINl6vN/J9U1OTdu3apXXr1ik/P18bNmzQ4sWLtW/fPqWmpsYvFQAAcIWYr6h0dHTovffe05o1azRr1iz98R//sVatWqX8/Hzt27dPoVBIJ06c0IwZM5SXlxf5ys3NlSQFg0Ht2LFD9fX1mjNnjkpKSrRp0yadPXtWra2tIxYQAAAkrpiLSk5Ojr7//e/rzjvvjCzzeDyybVvd3d06deqUAoGACgsLr7t9e3u7enp6VFlZGVnm8/lUWlqqgwcPDiMCAABwq5hv/fh8Ps2ZMydq2VtvvaWPPvpIX/3qV3X8+HF5PB61tLTo3XfflWVZmjNnjpYtW6bs7Gx1dnZKkiZPnhy1j0mTJunMmTPDD5IS3+eCvV4r6n+TRTLmJnNySMbMUnLmJrO7DPmdadva2vTMM8/ogQceUHV1tbZs2SLLsjRlyhRt27ZNHR0devHFF3X8+HG1tLToypUrkjToWZS0tDR1d3cPK4RleZSTc9uw9nEjPl/GiOzXdMmYm8zJIRkzS8mZm8zuMKSi8vbbb2vFihUqKyvTxo0bJUn19fV6/PHH5fP5JElFRUXKy8vT/PnzdfjwYaWnp0v6/FmVge8lKRAIKCNjeL/YcNiW3987rH1cy+u15PNlyO+/olAoMd6OOB6SMTeZyexmyZibzImR2efLiOkKkOOi8sMf/lBr165VTU2NGhsbI1dIPB5PpKQMKCoqkiR1dnZGbvl0dXXpC1/4QmRMV1eXSkpKnE5jkJH6bINQKJwwn5sQT8mYm8zJIRkzS8mZm8zu4Ohm1s6dO/W9731Pjz76qF566aWo2zhPPfWUFi1aFDX+8OHDkqRp06appKREWVlZOnDgQGS93+/XkSNHNGvWrOFkAAAALhXzFZWTJ0/qhRdeUE1NjZYsWaJz585F1qWnp+vhhx/WX/3VX2nr1q2aO3euTp48qb/7u7/Tww8/HHklUF1dnRobG5Wbm6spU6Zow4YNKigoUE1NTfyTAQCAhBdzUfnpT3+qzz77TK2trYPe96S2tlbr16/X5s2btW3bNm3btk3Z2dl65JFHtGzZssi4pUuXqr+/X6tXr1ZfX58qKirU3NzMm70BAIDr8ti2bY/1JIYrFArr/PmeuO4zJcVSTs5tjh5MCodthcOJ/escyH3hQo/r7nPeCJnJ7GbJmJvMiZE5N/e2kXmYNll4PB6Fw7ajl3qFQmFdvNib8GUFAABTUFRuwLI8siyPGv+5TX84e+mW42/Pz9aKR++WZXkoKgAAxAlF5Rb+cPaSPvx4eG9IBwAAhsZ977ULAABcg6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABjLUVG5ePGivvvd72r27NkqLy/XN77xDR06dCiy/ujRo6qrq9PMmTN13333qbm5OWr7cDisLVu2qKqqSmVlZVq4cKE6OjrikwQAALiOo6KyfPly/fa3v9XGjRv1r//6r5o+fboWLVqkDz/8UBcuXNCCBQt0xx13aM+ePaqvr9fmzZu1Z8+eyPZNTU3atWuXnn/+ee3evVsej0eLFy9WMBiMezAAAJD4UmId2NHRoffee0//8i//ovLycknSqlWr9O6772rfvn1KT09Xamqqnn32WaWkpKiwsFAdHR167bXXNG/ePAWDQe3YsUMrV67UnDlzJEmbNm1SVVWVWltbNXfu3JFJCAAAElbMRSUnJ0ff//73deedd0aWeTwe2bat7u5uvf/++6qoqFBKyv/usrKyUq+++qrOnTunjz/+WD09PaqsrIys9/l8Ki0t1cGDB4ddVFJS4vu4jWV5hrSd15vYj/0MzD/RczhB5uSQjJml5MxNZneJuaj4fL7IlZABb731lj766CN99atf1aZNm1RUVBS1ftKkSZKk06dPq7OzU5I0efLkQWPOnDkzpMkPsCyPcnJuG9Y+4sXnyxjrKcSFW3I4QebkkIyZpeTMTWZ3iLmoXKutrU3PPPOMHnjgAVVXV2vdunVKTU2NGpOWliZJCgQCunLliiRdd0x3d/dQpyFJCodt+f29w9rHtcaN8yorK93xdn7/FYVC4bjOZTR5vZZ8voyEz+EEmcnsZsmYm8yJkdnny4jpCtCQisrbb7+tFStWqKysTBs3bpQkpaenD3ooNhAISJIyMzOVnv75P/rBYDDy/cCYjIzhN8D+/vgemKFePguFwnGfy1hwSw4nyJwckjGzlJy5yewOjv81/uEPf6j6+nrNnj1br732WqR0FBQUqKurK2rswJ/z8/Mjt3yuN6agoGBIkwcAAO7mqKjs3LlT3/ve9/Too4/qpZdeirqNU1FRoba2NoVCociy/fv3a+rUqZo4caJKSkqUlZWlAwcORNb7/X4dOXJEs2bNikMUAADgNjEXlZMnT+qFF15QTU2NlixZonPnzumTTz7RJ598okuXLmnevHm6fPmyVq1apRMnTmjv3r1qaWnRkiVLJH3+bEpdXZ0aGxv1zjvvqL29XU8++aQKCgpUU1MzYgEBAEDiivkZlZ/+9Kf67LPP1NraqtbW1qh1tbW1Wr9+vbZv3661a9eqtrZWeXl5amhoUG1tbWTc0qVL1d/fr9WrV6uvr08VFRVqbm4e9IAtAACAJHls27bHehLDFQqFdf58T1z3mZaWIp8vQ8s2/kwffnzrVyUVThmvl5bfpwsXehL6QaaUFEs5ObclfA4nyExmN0vG3GROjMy5ubfF9MIV970zDAAAcA2KCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMNayi0tTUpMceeyxq2dNPP63i4uKor9mzZ0fWh8NhbdmyRVVVVSorK9PChQvV0dExnGkAAACXGnJReeONN7Rly5ZBy48dO6YnnnhCv/jFLyJf//Zv/xZZ39TUpF27dun555/X7t275fF4tHjxYgWDwaFOBQAAuJTjonL27Fn95V/+pTZv3qypU6dGrQuFQjpx4oRmzJihvLy8yFdubq4kKRgMaseOHaqvr9ecOXNUUlKiTZs26ezZs2ptbY1PIgAA4BopTjf44IMPNH78eL355pt65ZVX9PHHH0fWnTp1SoFAQIWFhdfdtr29XT09PaqsrIws8/l8Ki0t1cGDBzV37twhRPhcSkp8H7exLM+QtvN6E/uxn4H5J3oOJ8icHJIxs5ScucnsLo6LSnV1taqrq6+77vjx4/J4PGppadG7774ry7I0Z84cLVu2TNnZ2ers7JQkTZ48OWq7SZMm6cyZM0OY/ucsy6OcnNuGvH08+XwZYz2FuHBLDifInBySMbOUnLnJ7A6Oi8rN/O53v5NlWZoyZYq2bdumjo4Ovfjiizp+/LhaWlp05coVSVJqamrUdmlpaeru7h7yzw2Hbfn9vcOa+7XGjfMqKyvd8XZ+/xWFQuG4zmU0eb2WfL6MhM/hBJnJ7GbJmJvMiZHZ58uI6QpQXItKfX29Hn/8cfl8PklSUVGR8vLyNH/+fB0+fFjp6Z//wx8MBiPfS1IgEFBGxvBaYH9/fA/MUC+fhULhuM9lLLglhxNkTg7JmFlKztxkdoe43szyeDyRkjKgqKhIktTZ2Rm55dPV1RU1pqurSwUFBfGcCgAAcIG4FpWnnnpKixYtilp2+PBhSdK0adNUUlKirKwsHThwILLe7/fryJEjmjVrVjynAgAAXCCuReXhhx/We++9p61bt+qjjz7Sf//3f+uZZ57Rww8/rMLCQqWmpqqurk6NjY1655131N7erieffFIFBQWqqamJ51QAAIALxPUZlfvvv1+bN2/Wtm3btG3bNmVnZ+uRRx7RsmXLImOWLl2q/v5+rV69Wn19faqoqFBzc/OgB2wBAACGVVTWr18/aNmDDz6oBx988IbbeL1erVy5UitXrhzOjwYAAEnAfe8MAwAAXIOiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGGlZRaWpq0mOPPRa17OjRo6qrq9PMmTN13333qbm5OWp9OBzWli1bVFVVpbKyMi1cuFAdHR3DmQYAAHCpIReVN954Q1u2bIladuHCBS1YsEB33HGH9uzZo/r6em3evFl79uyJjGlqatKuXbv0/PPPa/fu3fJ4PFq8eLGCweDQUwAAAFdKcbrB2bNntWrVKrW1tWnq1KlR6370ox8pNTVVzz77rFJSUlRYWKiOjg699tprmjdvnoLBoHbs2KGVK1dqzpw5kqRNmzapqqpKra2tmjt3bnxSAQAAV3B8ReWDDz7Q+PHj9eabb6qsrCxq3aFDh1RRUaGUlP/tP5WVlTp58qTOnTun9vZ29fT0qLKyMrLe5/OptLRUBw8eHEYMAADgRo6vqFRXV6u6uvq66zo7O1VUVBS1bNKkSZKk06dPq7OzU5I0efLkQWPOnDnjdCpRUlLi+1ywZXmGtJ3Xm9jPJw/MP9FzOEHm5JCMmaXkzE1md3FcVG6mr69PqampUcvS0tIkSYFAQFeuXJGk647p7u4e8s+1LI9ycm4b8vbx5PNljPUU4sItOZwgc3JIxsxScuYmszvEtaikp6cPeig2EAhIkjIzM5Weni5JCgaDke8HxmRkDP2XGw7b8vt7h7z99Ywb51VWVvqtB17D77+iUCgc17mMJq/Xks+XkfA5nCAzmd0sGXOTOTEy+3wZMV0BimtRKSgoUFdXV9SygT/n5+erv78/suwLX/hC1JiSkpJh/ez+/vgemKFePguFwnGfy1hwSw4nyJwckjGzlJy5yewOcb2ZVVFRoba2NoVCociy/fv3a+rUqZo4caJKSkqUlZWlAwcORNb7/X4dOXJEs2bNiudUAACAC8S1qMybN0+XL1/WqlWrdOLECe3du1ctLS1asmSJpM+fTamrq1NjY6Peeecdtbe368knn1RBQYFqamriORUAAOACcb31M3HiRG3fvl1r165VbW2t8vLy1NDQoNra2siYpUuXqr+/X6tXr1ZfX58qKirU3Nw86AFbAACAYRWV9evXD1p21113affu3Tfcxuv1auXKlVq5cuVwfjQAAEgC7nvBNQAAcA2KCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMFfei8vHHH6u4uHjQ149//GNJ0tGjR1VXV6eZM2fqvvvuU3Nzc7ynAAAAXCIl3js8duyY0tLS9Pbbb8vj8USWZ2dn68KFC1qwYIH+9E//VM8995x+85vf6LnnntOECRM0b968eE8FAAAkuLgXlePHj2vq1KmaNGnSoHUtLS1KTU3Vs88+q5SUFBUWFqqjo0OvvfYaRQUAAAwS91s/x44d07Rp06677tChQ6qoqFBKyv/2o8rKSp08eVLnzp2L91QAAECCG5ErKnl5efrmN7+pU6dO6Ytf/KL++q//WlVVVers7FRRUVHU+IErL6dPn9bEiROH/HNTUuLbuSzLc+tB1+H1JvbzyQPzT/QcTpA5OSRjZik5c5PZXeJaVILBoE6dOqWMjAw1NDQoMzNTb775phYvXqzXX39dfX19Sk1NjdomLS1NkhQIBIb8cy3Lo5yc24Y193jx+TLGegpx4ZYcTpA5OSRjZik5c5PZHeJaVFJTU3Xw4EGlpKRECsmdd96pDz/8UM3NzUpPT1cwGIzaZqCgZGZmDvnnhsO2/P7eoU/8OsaN8yorK93xdn7/FYVC4bjOZTR5vZZ8voyEz+EEmcnsZsmYm8yJkdnny4jpClDcb/1cr3AUFRXpF7/4hQoKCtTV1RW1buDP+fn5w/q5/f3xPTBDvXwWCoXjPpex4JYcTpA5OSRjZik5c5PZHeJ6M6u9vV1f/vKXdejQoajl77//vqZNm6aKigq1tbUpFApF1u3fv19Tp04d1vMpAADAneJaVIqKivSlL31Jzz33nA4dOqQPP/xQ69at029+8xs98cQTmjdvni5fvqxVq1bpxIkT2rt3r1paWrRkyZJ4TgMAALhEXG/9WJalbdu2qbGxUcuWLZPf71dpaalef/11FRcXS5K2b9+utWvXqra2Vnl5eWpoaFBtbW08pwEAAFwi7s+o5Obm6oUXXrjh+rvuuku7d++O948FAAAu5L4XXAMAANegqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYK2WsJ4BbsyyPLMsT09hw2FY4bI/wjAAAGB0UFcNZlkcTJmTK643t4lcoFNbFi72UFQCAK1BUDGdZHnm9lhr/uU1/OHvppmNvz8/WikfvlmV5KCoAAFegqCSIP5y9pA8/7h7raQAAMKp4mBYAABiLKypxFuuzJDz0CgDArVFU4mRCdprCYVs+X0ZM40OhsC5d6pNt37ysxFp8AABwI4pKnGRljJNleWJ66PX/TM3V4v87QxMmZI7S7AAASEwUlTiL5aHX2ydlxVxqyksm6VsPlcZzigAAJAyKyhiKtdQAAJCseAACAAAYi6ICAACMRVEBAADG4hkVF3LykmbezwUAYDKKios4fS8XiQ8xBACYjaLiIk7ey0VKjg8xtCyPLMtz0zEDV6A8npuPAwCMPoqKCzn9AMOrbxUNfH+920dObhPFUhCGsl8nLMujCRMyY74Vlp2dHtO7BQ/gthkAjDyKShK72a2i6y2L9TaR04IwUrefLMsjr9casXcL5rYZAIw8ikoSc3KraOA20bhxXoVC4ZuO9XqtmAvCaNx+ive7BUvJcdsMAExAUUFM/5AP5UFdJ7egTHmlktPbZmPNyS22q93sFt+ARLvVB8CdKCqIiZOrL04+n2ior1Qy5ZOnx/LTrT0ej7Kz0x3NIRS25b2qUNzs955ot/oAuNOYFJVwOKx//Md/1I9//GP5/X7dfffdWrNmjb74xS+OxXTgQLw/n8jpK5VM+eRppwXr2oIQr7GSYv7dDRTIeN+Sc/IsELfMADg1JkWlqalJu3bt0rp165Sfn68NGzZo8eLF2rdvn1JTU8diShhjsd5yMeWTp4dyhWmkxjr53UnxvyU3MCbRbpslg4ESKd36WHJLDqYa9aISDAa1Y8cOrVy5UnPmzJEkbdq0SVVVVWptbdXcuXNHe0pIQKZ88rSTeYzU2JEwlFtyJrjZszKx/oMdDyb8o3/tLblbHctYb6k6ZcLvAoMl0nNlo15U2tvb1dPTo8rKysgyn8+n0tJSHTx4kKICGGCknkkaSbE+KzPwD7bTW2yObt8Z8BzOSL48P9F+F4iWaM+Veex41+db+M///E/V19frt7/9rdLT0yPL/+Zv/kZ9fX169dVXHe/TtuPf9jweybIsXbwUUP8tXo4rSWmpXmVnpsY03oSxpswjEedsyjwScc4pXuv/X6259XyHwrIsXe4NKnSLvw/GpVjKTB8X01in472WR1mZqSOW0YlY/w4bOIbx/t2N5e/CsiwjjsFocpI51nPl6mMY77ZgWZ6Y3hF81K+oXLlyRZIGPYuSlpam7u6h3d/2eDzyekfm7c8nZKeN2HgTxpoyj0ScsynzSMQ5W9bI3X7Jyoz9OTcnY52OH8mMTjg5LiP1uxur34Upx2A0OcmcCMdQkkb9Jw9cRQkGg1HLA4GAMjIS6344AAAYWaNeVCZPnixJ6urqilre1dWlgoKC0Z4OAAAw2KgXlZKSEmVlZenAgQORZX6/X0eOHNGsWbNGezoAAMBgo/6MSmpqqurq6tTY2Kjc3FxNmTJFGzZsUEFBgWpqakZ7OgAAwGBj8oZvS5cuVX9/v1avXq2+vj5VVFSoubmZN3sDAABRRv3lyQAAALFKvtduAQCAhEFRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwVtIUlXA4rC1btqiqqkplZWVauHChOjo6bjj+woULeuqpp1RRUaGKigp95zvfUW9vb9SYt956Sw899JBmzJihRx55RO++++5Ix3DEaebf/e53+va3v6177rlH9957r5YuXarTp09HjamurlZxcXHU14oVK0Y6iiNOc//kJz8ZlKm4uDhqGzcd65dffvm6eYuLi/X0009HxiXCsR7Q1NSkxx577KZj3HBOXyuW3G45rwfEktkN5/TVbpXZjed0FDtJvPzyy/a9995r/+xnP7OPHj1qL1y40K6pqbEDgcB1x9fV1dlf//rX7ffff9/+5S9/ad9///12Q0NDZP3+/fvt6dOn2z/4wQ/sEydO2OvXr7fvvPNO+8SJE6MV6ZacZD5//rz9J3/yJ/ayZcvs48eP24cPH7br6ursr33ta3ZfX59t27Z96dIlu7i42P6v//ovu6urK/Ll9/tHO9pNOT3W69ats+vq6qIydXV12f39/bZtu+9YX758eVDWpqYm+6677rKPHj1q23biHGvbtu3XX3/dLi4utuvq6m46zg3n9NViye2m89q2Yz/WbjinB8SS2W3n9LWSoqgEAgH7y1/+sr1z587Isu7ubvuuu+6y9+3bN2j8r3/9a7uoqCjqP9qf//zndnFxsd3Z2Wnbtm0vXLjQXrZsWdR28+fPt7/zne+MUApnnGb+0Y9+ZJeXl0f+8rJt2z5z5oxdVFRk//KXv7Rt27bb2trsoqIiu7u7e+QDDJHT3LZt2wsWLLCff/75G+7Tbcf6Wh0dHXZZWVnU9olwrDs7O+1FixbZM2fOtP/sz/7spn+Ru+GcHuAkt1vOayeZbTvxz2nbdp75aol6Tt9IUtz6aW9vV09PjyorKyPLfD6fSktLdfDgwUHjDx06pLy8PBUWFkaWfeUrX5HH41FbW5vC4bB+/etfR+1Pku655x4dOnRo5II44DTzvffeq1deeUVpaWmD1nV3d0uSjh07pry8PPl8vpGb+DA5zS19nmvatGnXXefGY32t9evX60tf+pLmz58fWZYIx/qDDz7Q+PHj9eabb6qsrOymY91wTg9wktst57WTzFLin9OS88xXS9Rz+kbG5EMJR1tnZ6ckafLkyVHLJ02apDNnzgwaf/bs2UFjU1NTNWHCBJ05c0Z+v1+9vb0qKCiIaX9jwWnm22+/XbfffnvUsldffVVpaWmqqKiQJB0/flyZmZmqr6/X//zP/yg3N1d/8Rd/oW9961uyLDM6r9Pc58+f16effqqDBw/qBz/4gS5evKiysjKtWLFCU6dOdeWxvtrhw4f1zjvvqKWlJeoYJsKxrq6uVnV1dUxj3XBOD3CS2y3ntZPMbjinJWeZr5bI5/SNmD27OLly5YokDfp05rS0NAUCgeuOv94nOQ+M7+vrc7S/seA087X+6Z/+STt37tTy5cs1ceJESZ8/lHfp0iU99NBDam5u1vz587V582a9/PLL8Q8wRE5zHz9+XJLk9Xr14osvatOmTert7dU3v/lNffrpp64/1m+88YbKysoG/b/LRDjWTrjhnI6HRD2vnXDDOT0cbjynk+KKSnp6uiQpGAxGvpekQCCgjIyM644PBoODlgcCAWVmZkYuo1475kb7GwtOMw+wbVubN2/W1q1btWTJEj3++OORda+//roCgYCysrIkScXFxerp6dHWrVtVX19vRCt3mruyslK/+tWvNH78+MiyV155Rffff7/27t2rr3/965H9Xc0Nx7q3t1etra1as2bNoHWJcKydcMM5PRyJfl474YZzeqjcek6bO7M4Grjk29XVFbW8q6tr0OU/SSooKBg0NhgM6uLFi8rPz9eECROUmZkZ8/7GgtPMkvTZZ59p5cqV2rZtmxoaGrR8+fKo9ePGjYv8Rz6gqKhIvb29kfvdY20oua/+C02SMjMzdfvtt+vs2bOuPdaS9POf/1zhcFg1NTWD1iXCsXbCDef0ULnhvHYq0c/poXLrOZ0URaWkpERZWVk6cOBAZJnf79eRI0c0a9asQeMrKirU2dkZ9Zr7gW3Ly8vl8XhUXl6uX/3qV1HbHThwQHffffcIpXDGaWZJamho0H/8x3/oH/7hH7Ro0aKodeFwWNXV1dq6dWvU8sOHD+uP/uiPlJOTE/8QQ+A0986dO3XPPfdELgdL0uXLl3Xq1ClNmzbNtcdaktra2jR9+vRBD9clyrF2wg3n9FC54bx2wg3n9FC59ZxOils/qampqqurU2Njo3JzczVlyhRt2LBBBQUFqqmpUSgU0vnz55Wdna309HSVlZWpvLxcTz75pJ599ln19vZqzZo1+vM//3Pl5+dLkhYsWKBvf/vbKi0t1ezZs7Vnzx4dPXpUa9euHeO0n3Oaee/evfr3f/93NTQ06Ctf+Yo++eSTyL4Gxjz44IPavn277rjjDk2fPl379+/X9u3btWrVqjFMGs1p7vvvv18vvfSSGhoaVF9fr76+Pm3cuFG5ubmqra2V5L5jPaC9vV1FRUWD9mdZVkIc65tx4zkdC7ee1zfjxnP6VpLunB7r10ePlv7+fvvv//7v7crKSnvmzJn24sWL7d///ve2bdv273//e7uoqMjes2dPZPynn35q19fX2zNnzrTvuecee82aNVHvRWDbtv2Tn/zErqmpsWfMmGHX1tZG3pfAFE4yL1iwwC4qKrru18CYzz77zG5qarIfeOABe/r06faDDz5o7969e8zy3YjTY33kyBF74cKF9t13322Xl5fb9fX19unTp6P26aZjPeBrX/ua3djYeN39JcqxHvC3f/u3Ue8z4dZz+lq3yu2m83pALMfaDef01WLJbNvuOqev5rFt2x7rsgQAAHA9SfGMCgAASEwUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAw1v8DVwBBlEmjpY8AAAAASUVORK5CYII=",
|
50
|
+
"text/plain": [
|
51
|
+
"<Figure size 640x480 with 1 Axes>"
|
52
|
+
]
|
53
|
+
},
|
54
|
+
"metadata": {},
|
55
|
+
"output_type": "display_data"
|
56
|
+
}
|
57
|
+
],
|
58
|
+
"source": [
|
59
|
+
"plt.hist(inches, 40);"
|
60
|
+
]
|
61
|
+
},
|
62
|
+
{
|
63
|
+
"cell_type": "code",
|
64
|
+
"execution_count": 7,
|
65
|
+
"id": "1bc779a5",
|
66
|
+
"metadata": {},
|
67
|
+
"outputs": [
|
68
|
+
{
|
69
|
+
"data": {
|
70
|
+
"text/plain": [
|
71
|
+
"array([[5, 0, 3, 3],\n",
|
72
|
+
" [7, 9, 3, 5],\n",
|
73
|
+
" [2, 4, 7, 6]])"
|
74
|
+
]
|
75
|
+
},
|
76
|
+
"execution_count": 7,
|
77
|
+
"metadata": {},
|
78
|
+
"output_type": "execute_result"
|
79
|
+
}
|
80
|
+
],
|
81
|
+
"source": [
|
82
|
+
"#Comparison Operators as ufuncs\n",
|
83
|
+
"rng = np.random.RandomState(0)\n",
|
84
|
+
"x = rng.randint(10, size=(3, 4))\n",
|
85
|
+
"x"
|
86
|
+
]
|
87
|
+
},
|
88
|
+
{
|
89
|
+
"cell_type": "code",
|
90
|
+
"execution_count": 8,
|
91
|
+
"id": "c0838314",
|
92
|
+
"metadata": {},
|
93
|
+
"outputs": [
|
94
|
+
{
|
95
|
+
"data": {
|
96
|
+
"text/plain": [
|
97
|
+
"array([[ True, True, True, True],\n",
|
98
|
+
" [False, False, True, True],\n",
|
99
|
+
" [ True, True, False, False]])"
|
100
|
+
]
|
101
|
+
},
|
102
|
+
"execution_count": 8,
|
103
|
+
"metadata": {},
|
104
|
+
"output_type": "execute_result"
|
105
|
+
}
|
106
|
+
],
|
107
|
+
"source": [
|
108
|
+
"x < 6"
|
109
|
+
]
|
110
|
+
},
|
111
|
+
{
|
112
|
+
"cell_type": "code",
|
113
|
+
"execution_count": 9,
|
114
|
+
"id": "3c87d4a9",
|
115
|
+
"metadata": {},
|
116
|
+
"outputs": [
|
117
|
+
{
|
118
|
+
"name": "stdout",
|
119
|
+
"output_type": "stream",
|
120
|
+
"text": [
|
121
|
+
"[[5 0 3 3]\n",
|
122
|
+
" [7 9 3 5]\n",
|
123
|
+
" [2 4 7 6]]\n"
|
124
|
+
]
|
125
|
+
}
|
126
|
+
],
|
127
|
+
"source": [
|
128
|
+
"#Working with Boolean Arrays\n",
|
129
|
+
"print(x)"
|
130
|
+
]
|
131
|
+
},
|
132
|
+
{
|
133
|
+
"cell_type": "code",
|
134
|
+
"execution_count": 10,
|
135
|
+
"id": "f9be880d",
|
136
|
+
"metadata": {},
|
137
|
+
"outputs": [
|
138
|
+
{
|
139
|
+
"data": {
|
140
|
+
"text/plain": [
|
141
|
+
"8"
|
142
|
+
]
|
143
|
+
},
|
144
|
+
"execution_count": 10,
|
145
|
+
"metadata": {},
|
146
|
+
"output_type": "execute_result"
|
147
|
+
}
|
148
|
+
],
|
149
|
+
"source": [
|
150
|
+
"#Counting entries\n",
|
151
|
+
"# how many values less than 6?\n",
|
152
|
+
"np.count_nonzero(x < 6)\n"
|
153
|
+
]
|
154
|
+
},
|
155
|
+
{
|
156
|
+
"cell_type": "code",
|
157
|
+
"execution_count": 11,
|
158
|
+
"id": "c63b2c53",
|
159
|
+
"metadata": {},
|
160
|
+
"outputs": [
|
161
|
+
{
|
162
|
+
"data": {
|
163
|
+
"text/plain": [
|
164
|
+
"8"
|
165
|
+
]
|
166
|
+
},
|
167
|
+
"execution_count": 11,
|
168
|
+
"metadata": {},
|
169
|
+
"output_type": "execute_result"
|
170
|
+
}
|
171
|
+
],
|
172
|
+
"source": [
|
173
|
+
"np.sum(x < 6)\n"
|
174
|
+
]
|
175
|
+
},
|
176
|
+
{
|
177
|
+
"cell_type": "code",
|
178
|
+
"execution_count": 12,
|
179
|
+
"id": "0499cb8d",
|
180
|
+
"metadata": {},
|
181
|
+
"outputs": [
|
182
|
+
{
|
183
|
+
"data": {
|
184
|
+
"text/plain": [
|
185
|
+
"array([4, 2, 2])"
|
186
|
+
]
|
187
|
+
},
|
188
|
+
"execution_count": 12,
|
189
|
+
"metadata": {},
|
190
|
+
"output_type": "execute_result"
|
191
|
+
}
|
192
|
+
],
|
193
|
+
"source": [
|
194
|
+
"# how many values less than 6 in each row?\n",
|
195
|
+
"np.sum(x < 6, axis=1)\n"
|
196
|
+
]
|
197
|
+
},
|
198
|
+
{
|
199
|
+
"cell_type": "code",
|
200
|
+
"execution_count": 13,
|
201
|
+
"id": "b8e7334c",
|
202
|
+
"metadata": {},
|
203
|
+
"outputs": [
|
204
|
+
{
|
205
|
+
"data": {
|
206
|
+
"text/plain": [
|
207
|
+
"True"
|
208
|
+
]
|
209
|
+
},
|
210
|
+
"execution_count": 13,
|
211
|
+
"metadata": {},
|
212
|
+
"output_type": "execute_result"
|
213
|
+
}
|
214
|
+
],
|
215
|
+
"source": [
|
216
|
+
"# are there any values greater than 8?\n",
|
217
|
+
"np.any(x > 8)\n"
|
218
|
+
]
|
219
|
+
},
|
220
|
+
{
|
221
|
+
"cell_type": "code",
|
222
|
+
"execution_count": 15,
|
223
|
+
"id": "80fd2edb",
|
224
|
+
"metadata": {},
|
225
|
+
"outputs": [
|
226
|
+
{
|
227
|
+
"data": {
|
228
|
+
"text/plain": [
|
229
|
+
"False"
|
230
|
+
]
|
231
|
+
},
|
232
|
+
"execution_count": 15,
|
233
|
+
"metadata": {},
|
234
|
+
"output_type": "execute_result"
|
235
|
+
}
|
236
|
+
],
|
237
|
+
"source": [
|
238
|
+
"# are there any values less than zero?\n",
|
239
|
+
"np.any(x < 0)"
|
240
|
+
]
|
241
|
+
},
|
242
|
+
{
|
243
|
+
"cell_type": "code",
|
244
|
+
"execution_count": 14,
|
245
|
+
"id": "c9982771",
|
246
|
+
"metadata": {},
|
247
|
+
"outputs": [
|
248
|
+
{
|
249
|
+
"data": {
|
250
|
+
"text/plain": [
|
251
|
+
"True"
|
252
|
+
]
|
253
|
+
},
|
254
|
+
"execution_count": 14,
|
255
|
+
"metadata": {},
|
256
|
+
"output_type": "execute_result"
|
257
|
+
}
|
258
|
+
],
|
259
|
+
"source": [
|
260
|
+
"# are all values less than 10?\n",
|
261
|
+
"np.all(x < 10)\n"
|
262
|
+
]
|
263
|
+
},
|
264
|
+
{
|
265
|
+
"cell_type": "code",
|
266
|
+
"execution_count": 15,
|
267
|
+
"id": "07f77c6a",
|
268
|
+
"metadata": {},
|
269
|
+
"outputs": [
|
270
|
+
{
|
271
|
+
"data": {
|
272
|
+
"text/plain": [
|
273
|
+
"False"
|
274
|
+
]
|
275
|
+
},
|
276
|
+
"execution_count": 15,
|
277
|
+
"metadata": {},
|
278
|
+
"output_type": "execute_result"
|
279
|
+
}
|
280
|
+
],
|
281
|
+
"source": [
|
282
|
+
"# are all values equal to 6?\n",
|
283
|
+
"np.all(x == 6)"
|
284
|
+
]
|
285
|
+
},
|
286
|
+
{
|
287
|
+
"cell_type": "code",
|
288
|
+
"execution_count": 16,
|
289
|
+
"id": "a27c832b",
|
290
|
+
"metadata": {},
|
291
|
+
"outputs": [
|
292
|
+
{
|
293
|
+
"data": {
|
294
|
+
"text/plain": [
|
295
|
+
"array([ True, False, True])"
|
296
|
+
]
|
297
|
+
},
|
298
|
+
"execution_count": 16,
|
299
|
+
"metadata": {},
|
300
|
+
"output_type": "execute_result"
|
301
|
+
}
|
302
|
+
],
|
303
|
+
"source": [
|
304
|
+
"# are all values in each row less than 8?\n",
|
305
|
+
"np.all(x < 8, axis=1)"
|
306
|
+
]
|
307
|
+
},
|
308
|
+
{
|
309
|
+
"cell_type": "code",
|
310
|
+
"execution_count": 17,
|
311
|
+
"id": "f37da6ad",
|
312
|
+
"metadata": {},
|
313
|
+
"outputs": [
|
314
|
+
{
|
315
|
+
"data": {
|
316
|
+
"text/plain": [
|
317
|
+
"29"
|
318
|
+
]
|
319
|
+
},
|
320
|
+
"execution_count": 17,
|
321
|
+
"metadata": {},
|
322
|
+
"output_type": "execute_result"
|
323
|
+
}
|
324
|
+
],
|
325
|
+
"source": [
|
326
|
+
"#Boolean operators\n",
|
327
|
+
"np.sum((inches > 0.5) & (inches < 1))"
|
328
|
+
]
|
329
|
+
},
|
330
|
+
{
|
331
|
+
"cell_type": "code",
|
332
|
+
"execution_count": 18,
|
333
|
+
"id": "2c509db9",
|
334
|
+
"metadata": {},
|
335
|
+
"outputs": [
|
336
|
+
{
|
337
|
+
"data": {
|
338
|
+
"text/plain": [
|
339
|
+
"29"
|
340
|
+
]
|
341
|
+
},
|
342
|
+
"execution_count": 18,
|
343
|
+
"metadata": {},
|
344
|
+
"output_type": "execute_result"
|
345
|
+
}
|
346
|
+
],
|
347
|
+
"source": [
|
348
|
+
"np.sum(~( (inches <= 0.5) | (inches >= 1) ))"
|
349
|
+
]
|
350
|
+
},
|
351
|
+
{
|
352
|
+
"cell_type": "code",
|
353
|
+
"execution_count": 19,
|
354
|
+
"id": "eaa118f8",
|
355
|
+
"metadata": {},
|
356
|
+
"outputs": [
|
357
|
+
{
|
358
|
+
"name": "stdout",
|
359
|
+
"output_type": "stream",
|
360
|
+
"text": [
|
361
|
+
"Number days without rain: 215\n",
|
362
|
+
"Number days with rain: 150\n",
|
363
|
+
"Days with more than 0.5 inches: 37\n",
|
364
|
+
"Rainy days with < 0.1 inches : 75\n"
|
365
|
+
]
|
366
|
+
}
|
367
|
+
],
|
368
|
+
"source": [
|
369
|
+
"print(\"Number days without rain: \", np.sum(inches == 0))\n",
|
370
|
+
"print(\"Number days with rain: \", np.sum(inches != 0))\n",
|
371
|
+
"print(\"Days with more than 0.5 inches:\", np.sum(inches > 0.5))\n",
|
372
|
+
"print(\"Rainy days with < 0.1 inches :\", np.sum((inches > 0) & (inches < 0.2)))"
|
373
|
+
]
|
374
|
+
},
|
375
|
+
{
|
376
|
+
"cell_type": "code",
|
377
|
+
"execution_count": 20,
|
378
|
+
"id": "ec322dc2",
|
379
|
+
"metadata": {},
|
380
|
+
"outputs": [
|
381
|
+
{
|
382
|
+
"data": {
|
383
|
+
"text/plain": [
|
384
|
+
"array([[5, 0, 3, 3],\n",
|
385
|
+
" [7, 9, 3, 5],\n",
|
386
|
+
" [2, 4, 7, 6]])"
|
387
|
+
]
|
388
|
+
},
|
389
|
+
"execution_count": 20,
|
390
|
+
"metadata": {},
|
391
|
+
"output_type": "execute_result"
|
392
|
+
}
|
393
|
+
],
|
394
|
+
"source": [
|
395
|
+
"#Boolean Arrays as Masks\n",
|
396
|
+
"x"
|
397
|
+
]
|
398
|
+
},
|
399
|
+
{
|
400
|
+
"cell_type": "code",
|
401
|
+
"execution_count": 21,
|
402
|
+
"id": "a57444d6",
|
403
|
+
"metadata": {},
|
404
|
+
"outputs": [
|
405
|
+
{
|
406
|
+
"data": {
|
407
|
+
"text/plain": [
|
408
|
+
"array([[False, True, True, True],\n",
|
409
|
+
" [False, False, True, False],\n",
|
410
|
+
" [ True, True, False, False]])"
|
411
|
+
]
|
412
|
+
},
|
413
|
+
"execution_count": 21,
|
414
|
+
"metadata": {},
|
415
|
+
"output_type": "execute_result"
|
416
|
+
}
|
417
|
+
],
|
418
|
+
"source": [
|
419
|
+
"x < 5"
|
420
|
+
]
|
421
|
+
},
|
422
|
+
{
|
423
|
+
"cell_type": "code",
|
424
|
+
"execution_count": 22,
|
425
|
+
"id": "bd8091aa",
|
426
|
+
"metadata": {},
|
427
|
+
"outputs": [
|
428
|
+
{
|
429
|
+
"data": {
|
430
|
+
"text/plain": [
|
431
|
+
"array([0, 3, 3, 3, 2, 4])"
|
432
|
+
]
|
433
|
+
},
|
434
|
+
"execution_count": 22,
|
435
|
+
"metadata": {},
|
436
|
+
"output_type": "execute_result"
|
437
|
+
}
|
438
|
+
],
|
439
|
+
"source": [
|
440
|
+
"x[x < 5]"
|
441
|
+
]
|
442
|
+
},
|
443
|
+
{
|
444
|
+
"cell_type": "code",
|
445
|
+
"execution_count": 23,
|
446
|
+
"id": "a3126de1",
|
447
|
+
"metadata": {},
|
448
|
+
"outputs": [
|
449
|
+
{
|
450
|
+
"name": "stdout",
|
451
|
+
"output_type": "stream",
|
452
|
+
"text": [
|
453
|
+
"Median precip on rainy days in 2014 (inches): 0.19488188976377951\n",
|
454
|
+
"Median precip on summer days in 2014 (inches): 0.0\n",
|
455
|
+
"Maximum precip on summer days in 2014 (inches): 0.8503937007874016\n",
|
456
|
+
"Median precip on non-summer rainy days (inches): 0.20078740157480315\n"
|
457
|
+
]
|
458
|
+
}
|
459
|
+
],
|
460
|
+
"source": [
|
461
|
+
"import numpy as np\n",
|
462
|
+
"# construct a mask of all rainy days\n",
|
463
|
+
"rainy = (inches > 0)\n",
|
464
|
+
"\n",
|
465
|
+
"# construct a mask of all summer days (June 21st is the 172nd day)\n",
|
466
|
+
"days = np.arange(365)\n",
|
467
|
+
"summer = (days > 172) & (days < 262)\n",
|
468
|
+
"\n",
|
469
|
+
"print(\"Median precip on rainy days in 2014 (inches): \",np.median(inches[rainy]))\n",
|
470
|
+
"print(\"Median precip on summer days in 2014 (inches): \",np.median(inches[summer]))\n",
|
471
|
+
"print(\"Maximum precip on summer days in 2014 (inches): \",np.max(inches[summer]))\n",
|
472
|
+
"print(\"Median precip on non-summer rainy days (inches):\",np.median(inches[rainy & ~summer]))"
|
473
|
+
]
|
474
|
+
}
|
475
|
+
],
|
476
|
+
"metadata": {
|
477
|
+
"kernelspec": {
|
478
|
+
"display_name": "Python 3 (ipykernel)",
|
479
|
+
"language": "python",
|
480
|
+
"name": "python3"
|
481
|
+
},
|
482
|
+
"language_info": {
|
483
|
+
"codemirror_mode": {
|
484
|
+
"name": "ipython",
|
485
|
+
"version": 3
|
486
|
+
},
|
487
|
+
"file_extension": ".py",
|
488
|
+
"mimetype": "text/x-python",
|
489
|
+
"name": "python",
|
490
|
+
"nbconvert_exporter": "python",
|
491
|
+
"pygments_lexer": "ipython3",
|
492
|
+
"version": "3.11.7"
|
493
|
+
}
|
494
|
+
},
|
495
|
+
"nbformat": 4,
|
496
|
+
"nbformat_minor": 5
|
497
|
+
}
|