myawesomepkg 0.1.5__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,497 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 4,
6
+ "id": "13511edf",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "data": {
11
+ "text/plain": [
12
+ "(365,)"
13
+ ]
14
+ },
15
+ "execution_count": 4,
16
+ "metadata": {},
17
+ "output_type": "execute_result"
18
+ }
19
+ ],
20
+ "source": [
21
+ " import numpy as np\n",
22
+ " import pandas as pd\n",
23
+ " # use Pandas to extract rainfall inches as a NumPy array\n",
24
+ " rainfall = pd.read_csv('D://data//Seattle2014.csv')['PRCP'].values\n",
25
+ " inches = rainfall / 254 # 1/10mm -> inches\n",
26
+ " inches.shape"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "execution_count": 5,
32
+ "id": "32368a23",
33
+ "metadata": {},
34
+ "outputs": [],
35
+ "source": [
36
+ "%matplotlib inline\n",
37
+ "import matplotlib.pyplot as plt\n",
38
+ "import seaborn; seaborn.set() # set plot styles"
39
+ ]
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "execution_count": 6,
44
+ "id": "791bec4d",
45
+ "metadata": {},
46
+ "outputs": [
47
+ {
48
+ "data": {
49
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGgCAYAAACE80yQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmhElEQVR4nO3df3AU92H38c/tCf2ydCBRITF4ElMRSY8wFpFRLE8jsOVq3Bh7nqpMhkksZwyU4HZGFGNQx4YEuzEGFxUMrgWOEbaalEJSSMfD1E1lT1MnDkNAaTLYIAgekBODkM0PHUjozrrb5w8/unKIH7fSSfre3vs1o4nY/e7q+9F64ZPdvTuPbdu2AAAADGSN9QQAAABuhKICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADBWylhPIB5s21Y4HP/3rbMsz4js13TJmJvMySEZM0vJmZvM5rMsjzwezy3HuaKohMO2zp/vies+U1Is5eTcJr+/V/394bju22TJmJvMZHazZMxN5sTInJt7m7zeWxcVbv0AAABjUVQAAICxKCoAAMBYFBUAAGAsR0Xl4sWL+u53v6vZs2ervLxc3/jGN3To0KHI+qefflrFxcVRX7Nnz46sD4fD2rJli6qqqlRWVqaFCxeqo6MjfmkAAICrOHrVz/Lly3Xu3Dlt3LhRubm52rlzpxYtWqS9e/eqsLBQx44d0xNPPKG6urrINl6vN/J9U1OTdu3apXXr1ik/P18bNmzQ4sWLtW/fPqWmpsYvFQAAcIWYr6h0dHTovffe05o1azRr1iz98R//sVatWqX8/Hzt27dPoVBIJ06c0IwZM5SXlxf5ys3NlSQFg0Ht2LFD9fX1mjNnjkpKSrRp0yadPXtWra2tIxYQAAAkrpiLSk5Ojr7//e/rzjvvjCzzeDyybVvd3d06deqUAoGACgsLr7t9e3u7enp6VFlZGVnm8/lUWlqqgwcPDiMCAABwq5hv/fh8Ps2ZMydq2VtvvaWPPvpIX/3qV3X8+HF5PB61tLTo3XfflWVZmjNnjpYtW6bs7Gx1dnZKkiZPnhy1j0mTJunMmTPDD5IS3+eCvV4r6n+TRTLmJnNySMbMUnLmJrO7DPmdadva2vTMM8/ogQceUHV1tbZs2SLLsjRlyhRt27ZNHR0devHFF3X8+HG1tLToypUrkjToWZS0tDR1d3cPK4RleZSTc9uw9nEjPl/GiOzXdMmYm8zJIRkzS8mZm8zuMKSi8vbbb2vFihUqKyvTxo0bJUn19fV6/PHH5fP5JElFRUXKy8vT/PnzdfjwYaWnp0v6/FmVge8lKRAIKCNjeL/YcNiW3987rH1cy+u15PNlyO+/olAoMd6OOB6SMTeZyexmyZibzImR2efLiOkKkOOi8sMf/lBr165VTU2NGhsbI1dIPB5PpKQMKCoqkiR1dnZGbvl0dXXpC1/4QmRMV1eXSkpKnE5jkJH6bINQKJwwn5sQT8mYm8zJIRkzS8mZm8zu4Ohm1s6dO/W9731Pjz76qF566aWo2zhPPfWUFi1aFDX+8OHDkqRp06appKREWVlZOnDgQGS93+/XkSNHNGvWrOFkAAAALhXzFZWTJ0/qhRdeUE1NjZYsWaJz585F1qWnp+vhhx/WX/3VX2nr1q2aO3euTp48qb/7u7/Tww8/HHklUF1dnRobG5Wbm6spU6Zow4YNKigoUE1NTfyTAQCAhBdzUfnpT3+qzz77TK2trYPe96S2tlbr16/X5s2btW3bNm3btk3Z2dl65JFHtGzZssi4pUuXqr+/X6tXr1ZfX58qKirU3NzMm70BAIDr8ti2bY/1JIYrFArr/PmeuO4zJcVSTs5tjh5MCodthcOJ/escyH3hQo/r7nPeCJnJ7GbJmJvMiZE5N/e2kXmYNll4PB6Fw7ajl3qFQmFdvNib8GUFAABTUFRuwLI8siyPGv+5TX84e+mW42/Pz9aKR++WZXkoKgAAxAlF5Rb+cPaSPvx4eG9IBwAAhsZ977ULAABcg6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABjLUVG5ePGivvvd72r27NkqLy/XN77xDR06dCiy/ujRo6qrq9PMmTN13333qbm5OWr7cDisLVu2qKqqSmVlZVq4cKE6OjrikwQAALiOo6KyfPly/fa3v9XGjRv1r//6r5o+fboWLVqkDz/8UBcuXNCCBQt0xx13aM+ePaqvr9fmzZu1Z8+eyPZNTU3atWuXnn/+ee3evVsej0eLFy9WMBiMezAAAJD4UmId2NHRoffee0//8i//ovLycknSqlWr9O6772rfvn1KT09Xamqqnn32WaWkpKiwsFAdHR167bXXNG/ePAWDQe3YsUMrV67UnDlzJEmbNm1SVVWVWltbNXfu3JFJCAAAElbMRSUnJ0ff//73deedd0aWeTwe2bat7u5uvf/++6qoqFBKyv/usrKyUq+++qrOnTunjz/+WD09PaqsrIys9/l8Ki0t1cGDB4ddVFJS4vu4jWV5hrSd15vYj/0MzD/RczhB5uSQjJml5MxNZneJuaj4fL7IlZABb731lj766CN99atf1aZNm1RUVBS1ftKkSZKk06dPq7OzU5I0efLkQWPOnDkzpMkPsCyPcnJuG9Y+4sXnyxjrKcSFW3I4QebkkIyZpeTMTWZ3iLmoXKutrU3PPPOMHnjgAVVXV2vdunVKTU2NGpOWliZJCgQCunLliiRdd0x3d/dQpyFJCodt+f29w9rHtcaN8yorK93xdn7/FYVC4bjOZTR5vZZ8voyEz+EEmcnsZsmYm8yJkdnny4jpCtCQisrbb7+tFStWqKysTBs3bpQkpaenD3ooNhAISJIyMzOVnv75P/rBYDDy/cCYjIzhN8D+/vgemKFePguFwnGfy1hwSw4nyJwckjGzlJy5yewOjv81/uEPf6j6+nrNnj1br732WqR0FBQUqKurK2rswJ/z8/Mjt3yuN6agoGBIkwcAAO7mqKjs3LlT3/ve9/Too4/qpZdeirqNU1FRoba2NoVCociy/fv3a+rUqZo4caJKSkqUlZWlAwcORNb7/X4dOXJEs2bNikMUAADgNjEXlZMnT+qFF15QTU2NlixZonPnzumTTz7RJ598okuXLmnevHm6fPmyVq1apRMnTmjv3r1qaWnRkiVLJH3+bEpdXZ0aGxv1zjvvqL29XU8++aQKCgpUU1MzYgEBAEDiivkZlZ/+9Kf67LPP1NraqtbW1qh1tbW1Wr9+vbZv3661a9eqtrZWeXl5amhoUG1tbWTc0qVL1d/fr9WrV6uvr08VFRVqbm4e9IAtAACAJHls27bHehLDFQqFdf58T1z3mZaWIp8vQ8s2/kwffnzrVyUVThmvl5bfpwsXehL6QaaUFEs5ObclfA4nyExmN0vG3GROjMy5ubfF9MIV970zDAAAcA2KCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMNayi0tTUpMceeyxq2dNPP63i4uKor9mzZ0fWh8NhbdmyRVVVVSorK9PChQvV0dExnGkAAACXGnJReeONN7Rly5ZBy48dO6YnnnhCv/jFLyJf//Zv/xZZ39TUpF27dun555/X7t275fF4tHjxYgWDwaFOBQAAuJTjonL27Fn95V/+pTZv3qypU6dGrQuFQjpx4oRmzJihvLy8yFdubq4kKRgMaseOHaqvr9ecOXNUUlKiTZs26ezZs2ptbY1PIgAA4BopTjf44IMPNH78eL355pt65ZVX9PHHH0fWnTp1SoFAQIWFhdfdtr29XT09PaqsrIws8/l8Ki0t1cGDBzV37twhRPhcSkp8H7exLM+QtvN6E/uxn4H5J3oOJ8icHJIxs5ScucnsLo6LSnV1taqrq6+77vjx4/J4PGppadG7774ry7I0Z84cLVu2TNnZ2ers7JQkTZ48OWq7SZMm6cyZM0OY/ucsy6OcnNuGvH08+XwZYz2FuHBLDifInBySMbOUnLnJ7A6Oi8rN/O53v5NlWZoyZYq2bdumjo4Ovfjiizp+/LhaWlp05coVSVJqamrUdmlpaeru7h7yzw2Hbfn9vcOa+7XGjfMqKyvd8XZ+/xWFQuG4zmU0eb2WfL6MhM/hBJnJ7GbJmJvMiZHZ58uI6QpQXItKfX29Hn/8cfl8PklSUVGR8vLyNH/+fB0+fFjp6Z//wx8MBiPfS1IgEFBGxvBaYH9/fA/MUC+fhULhuM9lLLglhxNkTg7JmFlKztxkdoe43szyeDyRkjKgqKhIktTZ2Rm55dPV1RU1pqurSwUFBfGcCgAAcIG4FpWnnnpKixYtilp2+PBhSdK0adNUUlKirKwsHThwILLe7/fryJEjmjVrVjynAgAAXCCuReXhhx/We++9p61bt+qjjz7Sf//3f+uZZ57Rww8/rMLCQqWmpqqurk6NjY1655131N7erieffFIFBQWqqamJ51QAAIALxPUZlfvvv1+bN2/Wtm3btG3bNmVnZ+uRRx7RsmXLImOWLl2q/v5+rV69Wn19faqoqFBzc/OgB2wBAACGVVTWr18/aNmDDz6oBx988IbbeL1erVy5UitXrhzOjwYAAEnAfe8MAwAAXIOiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGGlZRaWpq0mOPPRa17OjRo6qrq9PMmTN13333qbm5OWp9OBzWli1bVFVVpbKyMi1cuFAdHR3DmQYAAHCpIReVN954Q1u2bIladuHCBS1YsEB33HGH9uzZo/r6em3evFl79uyJjGlqatKuXbv0/PPPa/fu3fJ4PFq8eLGCweDQUwAAAFdKcbrB2bNntWrVKrW1tWnq1KlR6370ox8pNTVVzz77rFJSUlRYWKiOjg699tprmjdvnoLBoHbs2KGVK1dqzpw5kqRNmzapqqpKra2tmjt3bnxSAQAAV3B8ReWDDz7Q+PHj9eabb6qsrCxq3aFDh1RRUaGUlP/tP5WVlTp58qTOnTun9vZ29fT0qLKyMrLe5/OptLRUBw8eHEYMAADgRo6vqFRXV6u6uvq66zo7O1VUVBS1bNKkSZKk06dPq7OzU5I0efLkQWPOnDnjdCpRUlLi+1ywZXmGtJ3Xm9jPJw/MP9FzOEHm5JCMmaXkzE1md3FcVG6mr69PqampUcvS0tIkSYFAQFeuXJGk647p7u4e8s+1LI9ycm4b8vbx5PNljPUU4sItOZwgc3JIxsxScuYmszvEtaikp6cPeig2EAhIkjIzM5Weni5JCgaDke8HxmRkDP2XGw7b8vt7h7z99Ywb51VWVvqtB17D77+iUCgc17mMJq/Xks+XkfA5nCAzmd0sGXOTOTEy+3wZMV0BimtRKSgoUFdXV9SygT/n5+erv78/suwLX/hC1JiSkpJh/ez+/vgemKFePguFwnGfy1hwSw4nyJwckjGzlJy5yewOcb2ZVVFRoba2NoVCociy/fv3a+rUqZo4caJKSkqUlZWlAwcORNb7/X4dOXJEs2bNiudUAACAC8S1qMybN0+XL1/WqlWrdOLECe3du1ctLS1asmSJpM+fTamrq1NjY6Peeecdtbe368knn1RBQYFqamriORUAAOACcb31M3HiRG3fvl1r165VbW2t8vLy1NDQoNra2siYpUuXqr+/X6tXr1ZfX58qKirU3Nw86AFbAACAYRWV9evXD1p21113affu3Tfcxuv1auXKlVq5cuVwfjQAAEgC7nvBNQAAcA2KCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMFfei8vHHH6u4uHjQ149//GNJ0tGjR1VXV6eZM2fqvvvuU3Nzc7ynAAAAXCIl3js8duyY0tLS9Pbbb8vj8USWZ2dn68KFC1qwYIH+9E//VM8995x+85vf6LnnntOECRM0b968eE8FAAAkuLgXlePHj2vq1KmaNGnSoHUtLS1KTU3Vs88+q5SUFBUWFqqjo0OvvfYaRQUAAAwS91s/x44d07Rp06677tChQ6qoqFBKyv/2o8rKSp08eVLnzp2L91QAAECCG5ErKnl5efrmN7+pU6dO6Ytf/KL++q//WlVVVers7FRRUVHU+IErL6dPn9bEiROH/HNTUuLbuSzLc+tB1+H1JvbzyQPzT/QcTpA5OSRjZik5c5PZXeJaVILBoE6dOqWMjAw1NDQoMzNTb775phYvXqzXX39dfX19Sk1NjdomLS1NkhQIBIb8cy3Lo5yc24Y193jx+TLGegpx4ZYcTpA5OSRjZik5c5PZHeJaVFJTU3Xw4EGlpKRECsmdd96pDz/8UM3NzUpPT1cwGIzaZqCgZGZmDvnnhsO2/P7eoU/8OsaN8yorK93xdn7/FYVC4bjOZTR5vZZ8voyEz+EEmcnsZsmYm8yJkdnny4jpClDcb/1cr3AUFRXpF7/4hQoKCtTV1RW1buDP+fn5w/q5/f3xPTBDvXwWCoXjPpex4JYcTpA5OSRjZik5c5PZHeJ6M6u9vV1f/vKXdejQoajl77//vqZNm6aKigq1tbUpFApF1u3fv19Tp04d1vMpAADAneJaVIqKivSlL31Jzz33nA4dOqQPP/xQ69at029+8xs98cQTmjdvni5fvqxVq1bpxIkT2rt3r1paWrRkyZJ4TgMAALhEXG/9WJalbdu2qbGxUcuWLZPf71dpaalef/11FRcXS5K2b9+utWvXqra2Vnl5eWpoaFBtbW08pwEAAFwi7s+o5Obm6oUXXrjh+rvuuku7d++O948FAAAu5L4XXAMAANegqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYK2WsJ4BbsyyPLMsT09hw2FY4bI/wjAAAGB0UFcNZlkcTJmTK643t4lcoFNbFi72UFQCAK1BUDGdZHnm9lhr/uU1/OHvppmNvz8/WikfvlmV5KCoAAFegqCSIP5y9pA8/7h7raQAAMKp4mBYAABiLKypxFuuzJDz0CgDArVFU4mRCdprCYVs+X0ZM40OhsC5d6pNt37ysxFp8AABwI4pKnGRljJNleWJ66PX/TM3V4v87QxMmZI7S7AAASEwUlTiL5aHX2ydlxVxqyksm6VsPlcZzigAAJAyKyhiKtdQAAJCseAACAAAYi6ICAACMRVEBAADG4hkVF3LykmbezwUAYDKKios4fS8XiQ8xBACYjaLiIk7ey0VKjg8xtCyPLMtz0zEDV6A8npuPAwCMPoqKCzn9AMOrbxUNfH+920dObhPFUhCGsl8nLMujCRMyY74Vlp2dHtO7BQ/gthkAjDyKShK72a2i6y2L9TaR04IwUrefLMsjr9casXcL5rYZAIw8ikoSc3KraOA20bhxXoVC4ZuO9XqtmAvCaNx+ive7BUvJcdsMAExAUUFM/5AP5UFdJ7egTHmlktPbZmPNyS22q93sFt+ARLvVB8CdKCqIiZOrL04+n2ior1Qy5ZOnx/LTrT0ej7Kz0x3NIRS25b2qUNzs955ot/oAuNOYFJVwOKx//Md/1I9//GP5/X7dfffdWrNmjb74xS+OxXTgQLw/n8jpK5VM+eRppwXr2oIQr7GSYv7dDRTIeN+Sc/IsELfMADg1JkWlqalJu3bt0rp165Sfn68NGzZo8eLF2rdvn1JTU8diShhjsd5yMeWTp4dyhWmkxjr53UnxvyU3MCbRbpslg4ESKd36WHJLDqYa9aISDAa1Y8cOrVy5UnPmzJEkbdq0SVVVVWptbdXcuXNHe0pIQKZ88rSTeYzU2JEwlFtyJrjZszKx/oMdDyb8o3/tLblbHctYb6k6ZcLvAoMl0nNlo15U2tvb1dPTo8rKysgyn8+n0tJSHTx4kKICGGCknkkaSbE+KzPwD7bTW2yObt8Z8BzOSL48P9F+F4iWaM+Veex41+db+M///E/V19frt7/9rdLT0yPL/+Zv/kZ9fX169dVXHe/TtuPf9jweybIsXbwUUP8tXo4rSWmpXmVnpsY03oSxpswjEedsyjwScc4pXuv/X6259XyHwrIsXe4NKnSLvw/GpVjKTB8X01in472WR1mZqSOW0YlY/w4bOIbx/t2N5e/CsiwjjsFocpI51nPl6mMY77ZgWZ6Y3hF81K+oXLlyRZIGPYuSlpam7u6h3d/2eDzyekfm7c8nZKeN2HgTxpoyj0ScsynzSMQ5W9bI3X7Jyoz9OTcnY52OH8mMTjg5LiP1uxur34Upx2A0OcmcCMdQkkb9Jw9cRQkGg1HLA4GAMjIS6344AAAYWaNeVCZPnixJ6urqilre1dWlgoKC0Z4OAAAw2KgXlZKSEmVlZenAgQORZX6/X0eOHNGsWbNGezoAAMBgo/6MSmpqqurq6tTY2Kjc3FxNmTJFGzZsUEFBgWpqakZ7OgAAwGBj8oZvS5cuVX9/v1avXq2+vj5VVFSoubmZN3sDAABRRv3lyQAAALFKvtduAQCAhEFRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwVtIUlXA4rC1btqiqqkplZWVauHChOjo6bjj+woULeuqpp1RRUaGKigp95zvfUW9vb9SYt956Sw899JBmzJihRx55RO++++5Ix3DEaebf/e53+va3v6177rlH9957r5YuXarTp09HjamurlZxcXHU14oVK0Y6iiNOc//kJz8ZlKm4uDhqGzcd65dffvm6eYuLi/X0009HxiXCsR7Q1NSkxx577KZj3HBOXyuW3G45rwfEktkN5/TVbpXZjed0FDtJvPzyy/a9995r/+xnP7OPHj1qL1y40K6pqbEDgcB1x9fV1dlf//rX7ffff9/+5S9/ad9///12Q0NDZP3+/fvt6dOn2z/4wQ/sEydO2OvXr7fvvPNO+8SJE6MV6ZacZD5//rz9J3/yJ/ayZcvs48eP24cPH7br6ursr33ta3ZfX59t27Z96dIlu7i42P6v//ovu6urK/Ll9/tHO9pNOT3W69ats+vq6qIydXV12f39/bZtu+9YX758eVDWpqYm+6677rKPHj1q23biHGvbtu3XX3/dLi4utuvq6m46zg3n9NViye2m89q2Yz/WbjinB8SS2W3n9LWSoqgEAgH7y1/+sr1z587Isu7ubvuuu+6y9+3bN2j8r3/9a7uoqCjqP9qf//zndnFxsd3Z2Wnbtm0vXLjQXrZsWdR28+fPt7/zne+MUApnnGb+0Y9+ZJeXl0f+8rJt2z5z5oxdVFRk//KXv7Rt27bb2trsoqIiu7u7e+QDDJHT3LZt2wsWLLCff/75G+7Tbcf6Wh0dHXZZWVnU9olwrDs7O+1FixbZM2fOtP/sz/7spn+Ru+GcHuAkt1vOayeZbTvxz2nbdp75aol6Tt9IUtz6aW9vV09PjyorKyPLfD6fSktLdfDgwUHjDx06pLy8PBUWFkaWfeUrX5HH41FbW5vC4bB+/etfR+1Pku655x4dOnRo5II44DTzvffeq1deeUVpaWmD1nV3d0uSjh07pry8PPl8vpGb+DA5zS19nmvatGnXXefGY32t9evX60tf+pLmz58fWZYIx/qDDz7Q+PHj9eabb6qsrOymY91wTg9wktst57WTzFLin9OS88xXS9Rz+kbG5EMJR1tnZ6ckafLkyVHLJ02apDNnzgwaf/bs2UFjU1NTNWHCBJ05c0Z+v1+9vb0qKCiIaX9jwWnm22+/XbfffnvUsldffVVpaWmqqKiQJB0/flyZmZmqr6/X//zP/yg3N1d/8Rd/oW9961uyLDM6r9Pc58+f16effqqDBw/qBz/4gS5evKiysjKtWLFCU6dOdeWxvtrhw4f1zjvvqKWlJeoYJsKxrq6uVnV1dUxj3XBOD3CS2y3ntZPMbjinJWeZr5bI5/SNmD27OLly5YokDfp05rS0NAUCgeuOv94nOQ+M7+vrc7S/seA087X+6Z/+STt37tTy5cs1ceJESZ8/lHfp0iU99NBDam5u1vz587V582a9/PLL8Q8wRE5zHz9+XJLk9Xr14osvatOmTert7dU3v/lNffrpp64/1m+88YbKysoG/b/LRDjWTrjhnI6HRD2vnXDDOT0cbjynk+KKSnp6uiQpGAxGvpekQCCgjIyM644PBoODlgcCAWVmZkYuo1475kb7GwtOMw+wbVubN2/W1q1btWTJEj3++OORda+//roCgYCysrIkScXFxerp6dHWrVtVX19vRCt3mruyslK/+tWvNH78+MiyV155Rffff7/27t2rr3/965H9Xc0Nx7q3t1etra1as2bNoHWJcKydcMM5PRyJfl474YZzeqjcek6bO7M4Grjk29XVFbW8q6tr0OU/SSooKBg0NhgM6uLFi8rPz9eECROUmZkZ8/7GgtPMkvTZZ59p5cqV2rZtmxoaGrR8+fKo9ePGjYv8Rz6gqKhIvb29kfvdY20oua/+C02SMjMzdfvtt+vs2bOuPdaS9POf/1zhcFg1NTWD1iXCsXbCDef0ULnhvHYq0c/poXLrOZ0URaWkpERZWVk6cOBAZJnf79eRI0c0a9asQeMrKirU2dkZ9Zr7gW3Ly8vl8XhUXl6uX/3qV1HbHThwQHffffcIpXDGaWZJamho0H/8x3/oH/7hH7Ro0aKodeFwWNXV1dq6dWvU8sOHD+uP/uiPlJOTE/8QQ+A0986dO3XPPfdELgdL0uXLl3Xq1ClNmzbNtcdaktra2jR9+vRBD9clyrF2wg3n9FC54bx2wg3n9FC59ZxOils/qampqqurU2Njo3JzczVlyhRt2LBBBQUFqqmpUSgU0vnz55Wdna309HSVlZWpvLxcTz75pJ599ln19vZqzZo1+vM//3Pl5+dLkhYsWKBvf/vbKi0t1ezZs7Vnzx4dPXpUa9euHeO0n3Oaee/evfr3f/93NTQ06Ctf+Yo++eSTyL4Gxjz44IPavn277rjjDk2fPl379+/X9u3btWrVqjFMGs1p7vvvv18vvfSSGhoaVF9fr76+Pm3cuFG5ubmqra2V5L5jPaC9vV1FRUWD9mdZVkIc65tx4zkdC7ee1zfjxnP6VpLunB7r10ePlv7+fvvv//7v7crKSnvmzJn24sWL7d///ve2bdv273//e7uoqMjes2dPZPynn35q19fX2zNnzrTvuecee82aNVHvRWDbtv2Tn/zErqmpsWfMmGHX1tZG3pfAFE4yL1iwwC4qKrru18CYzz77zG5qarIfeOABe/r06faDDz5o7969e8zy3YjTY33kyBF74cKF9t13322Xl5fb9fX19unTp6P26aZjPeBrX/ua3djYeN39JcqxHvC3f/u3Ue8z4dZz+lq3yu2m83pALMfaDef01WLJbNvuOqev5rFt2x7rsgQAAHA9SfGMCgAASEwUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAw1v8DVwBBlEmjpY8AAAAASUVORK5CYII=",
50
+ "text/plain": [
51
+ "<Figure size 640x480 with 1 Axes>"
52
+ ]
53
+ },
54
+ "metadata": {},
55
+ "output_type": "display_data"
56
+ }
57
+ ],
58
+ "source": [
59
+ "plt.hist(inches, 40);"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": 7,
65
+ "id": "1bc779a5",
66
+ "metadata": {},
67
+ "outputs": [
68
+ {
69
+ "data": {
70
+ "text/plain": [
71
+ "array([[5, 0, 3, 3],\n",
72
+ " [7, 9, 3, 5],\n",
73
+ " [2, 4, 7, 6]])"
74
+ ]
75
+ },
76
+ "execution_count": 7,
77
+ "metadata": {},
78
+ "output_type": "execute_result"
79
+ }
80
+ ],
81
+ "source": [
82
+ "#Comparison Operators as ufuncs\n",
83
+ "rng = np.random.RandomState(0)\n",
84
+ "x = rng.randint(10, size=(3, 4))\n",
85
+ "x"
86
+ ]
87
+ },
88
+ {
89
+ "cell_type": "code",
90
+ "execution_count": 8,
91
+ "id": "c0838314",
92
+ "metadata": {},
93
+ "outputs": [
94
+ {
95
+ "data": {
96
+ "text/plain": [
97
+ "array([[ True, True, True, True],\n",
98
+ " [False, False, True, True],\n",
99
+ " [ True, True, False, False]])"
100
+ ]
101
+ },
102
+ "execution_count": 8,
103
+ "metadata": {},
104
+ "output_type": "execute_result"
105
+ }
106
+ ],
107
+ "source": [
108
+ "x < 6"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": 9,
114
+ "id": "3c87d4a9",
115
+ "metadata": {},
116
+ "outputs": [
117
+ {
118
+ "name": "stdout",
119
+ "output_type": "stream",
120
+ "text": [
121
+ "[[5 0 3 3]\n",
122
+ " [7 9 3 5]\n",
123
+ " [2 4 7 6]]\n"
124
+ ]
125
+ }
126
+ ],
127
+ "source": [
128
+ "#Working with Boolean Arrays\n",
129
+ "print(x)"
130
+ ]
131
+ },
132
+ {
133
+ "cell_type": "code",
134
+ "execution_count": 10,
135
+ "id": "f9be880d",
136
+ "metadata": {},
137
+ "outputs": [
138
+ {
139
+ "data": {
140
+ "text/plain": [
141
+ "8"
142
+ ]
143
+ },
144
+ "execution_count": 10,
145
+ "metadata": {},
146
+ "output_type": "execute_result"
147
+ }
148
+ ],
149
+ "source": [
150
+ "#Counting entries\n",
151
+ "# how many values less than 6?\n",
152
+ "np.count_nonzero(x < 6)\n"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": 11,
158
+ "id": "c63b2c53",
159
+ "metadata": {},
160
+ "outputs": [
161
+ {
162
+ "data": {
163
+ "text/plain": [
164
+ "8"
165
+ ]
166
+ },
167
+ "execution_count": 11,
168
+ "metadata": {},
169
+ "output_type": "execute_result"
170
+ }
171
+ ],
172
+ "source": [
173
+ "np.sum(x < 6)\n"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "code",
178
+ "execution_count": 12,
179
+ "id": "0499cb8d",
180
+ "metadata": {},
181
+ "outputs": [
182
+ {
183
+ "data": {
184
+ "text/plain": [
185
+ "array([4, 2, 2])"
186
+ ]
187
+ },
188
+ "execution_count": 12,
189
+ "metadata": {},
190
+ "output_type": "execute_result"
191
+ }
192
+ ],
193
+ "source": [
194
+ "# how many values less than 6 in each row?\n",
195
+ "np.sum(x < 6, axis=1)\n"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": 13,
201
+ "id": "b8e7334c",
202
+ "metadata": {},
203
+ "outputs": [
204
+ {
205
+ "data": {
206
+ "text/plain": [
207
+ "True"
208
+ ]
209
+ },
210
+ "execution_count": 13,
211
+ "metadata": {},
212
+ "output_type": "execute_result"
213
+ }
214
+ ],
215
+ "source": [
216
+ "# are there any values greater than 8?\n",
217
+ "np.any(x > 8)\n"
218
+ ]
219
+ },
220
+ {
221
+ "cell_type": "code",
222
+ "execution_count": 15,
223
+ "id": "80fd2edb",
224
+ "metadata": {},
225
+ "outputs": [
226
+ {
227
+ "data": {
228
+ "text/plain": [
229
+ "False"
230
+ ]
231
+ },
232
+ "execution_count": 15,
233
+ "metadata": {},
234
+ "output_type": "execute_result"
235
+ }
236
+ ],
237
+ "source": [
238
+ "# are there any values less than zero?\n",
239
+ "np.any(x < 0)"
240
+ ]
241
+ },
242
+ {
243
+ "cell_type": "code",
244
+ "execution_count": 14,
245
+ "id": "c9982771",
246
+ "metadata": {},
247
+ "outputs": [
248
+ {
249
+ "data": {
250
+ "text/plain": [
251
+ "True"
252
+ ]
253
+ },
254
+ "execution_count": 14,
255
+ "metadata": {},
256
+ "output_type": "execute_result"
257
+ }
258
+ ],
259
+ "source": [
260
+ "# are all values less than 10?\n",
261
+ "np.all(x < 10)\n"
262
+ ]
263
+ },
264
+ {
265
+ "cell_type": "code",
266
+ "execution_count": 15,
267
+ "id": "07f77c6a",
268
+ "metadata": {},
269
+ "outputs": [
270
+ {
271
+ "data": {
272
+ "text/plain": [
273
+ "False"
274
+ ]
275
+ },
276
+ "execution_count": 15,
277
+ "metadata": {},
278
+ "output_type": "execute_result"
279
+ }
280
+ ],
281
+ "source": [
282
+ "# are all values equal to 6?\n",
283
+ "np.all(x == 6)"
284
+ ]
285
+ },
286
+ {
287
+ "cell_type": "code",
288
+ "execution_count": 16,
289
+ "id": "a27c832b",
290
+ "metadata": {},
291
+ "outputs": [
292
+ {
293
+ "data": {
294
+ "text/plain": [
295
+ "array([ True, False, True])"
296
+ ]
297
+ },
298
+ "execution_count": 16,
299
+ "metadata": {},
300
+ "output_type": "execute_result"
301
+ }
302
+ ],
303
+ "source": [
304
+ "# are all values in each row less than 8?\n",
305
+ "np.all(x < 8, axis=1)"
306
+ ]
307
+ },
308
+ {
309
+ "cell_type": "code",
310
+ "execution_count": 17,
311
+ "id": "f37da6ad",
312
+ "metadata": {},
313
+ "outputs": [
314
+ {
315
+ "data": {
316
+ "text/plain": [
317
+ "29"
318
+ ]
319
+ },
320
+ "execution_count": 17,
321
+ "metadata": {},
322
+ "output_type": "execute_result"
323
+ }
324
+ ],
325
+ "source": [
326
+ "#Boolean operators\n",
327
+ "np.sum((inches > 0.5) & (inches < 1))"
328
+ ]
329
+ },
330
+ {
331
+ "cell_type": "code",
332
+ "execution_count": 18,
333
+ "id": "2c509db9",
334
+ "metadata": {},
335
+ "outputs": [
336
+ {
337
+ "data": {
338
+ "text/plain": [
339
+ "29"
340
+ ]
341
+ },
342
+ "execution_count": 18,
343
+ "metadata": {},
344
+ "output_type": "execute_result"
345
+ }
346
+ ],
347
+ "source": [
348
+ "np.sum(~( (inches <= 0.5) | (inches >= 1) ))"
349
+ ]
350
+ },
351
+ {
352
+ "cell_type": "code",
353
+ "execution_count": 19,
354
+ "id": "eaa118f8",
355
+ "metadata": {},
356
+ "outputs": [
357
+ {
358
+ "name": "stdout",
359
+ "output_type": "stream",
360
+ "text": [
361
+ "Number days without rain: 215\n",
362
+ "Number days with rain: 150\n",
363
+ "Days with more than 0.5 inches: 37\n",
364
+ "Rainy days with < 0.1 inches : 75\n"
365
+ ]
366
+ }
367
+ ],
368
+ "source": [
369
+ "print(\"Number days without rain: \", np.sum(inches == 0))\n",
370
+ "print(\"Number days with rain: \", np.sum(inches != 0))\n",
371
+ "print(\"Days with more than 0.5 inches:\", np.sum(inches > 0.5))\n",
372
+ "print(\"Rainy days with < 0.1 inches :\", np.sum((inches > 0) & (inches < 0.2)))"
373
+ ]
374
+ },
375
+ {
376
+ "cell_type": "code",
377
+ "execution_count": 20,
378
+ "id": "ec322dc2",
379
+ "metadata": {},
380
+ "outputs": [
381
+ {
382
+ "data": {
383
+ "text/plain": [
384
+ "array([[5, 0, 3, 3],\n",
385
+ " [7, 9, 3, 5],\n",
386
+ " [2, 4, 7, 6]])"
387
+ ]
388
+ },
389
+ "execution_count": 20,
390
+ "metadata": {},
391
+ "output_type": "execute_result"
392
+ }
393
+ ],
394
+ "source": [
395
+ "#Boolean Arrays as Masks\n",
396
+ "x"
397
+ ]
398
+ },
399
+ {
400
+ "cell_type": "code",
401
+ "execution_count": 21,
402
+ "id": "a57444d6",
403
+ "metadata": {},
404
+ "outputs": [
405
+ {
406
+ "data": {
407
+ "text/plain": [
408
+ "array([[False, True, True, True],\n",
409
+ " [False, False, True, False],\n",
410
+ " [ True, True, False, False]])"
411
+ ]
412
+ },
413
+ "execution_count": 21,
414
+ "metadata": {},
415
+ "output_type": "execute_result"
416
+ }
417
+ ],
418
+ "source": [
419
+ "x < 5"
420
+ ]
421
+ },
422
+ {
423
+ "cell_type": "code",
424
+ "execution_count": 22,
425
+ "id": "bd8091aa",
426
+ "metadata": {},
427
+ "outputs": [
428
+ {
429
+ "data": {
430
+ "text/plain": [
431
+ "array([0, 3, 3, 3, 2, 4])"
432
+ ]
433
+ },
434
+ "execution_count": 22,
435
+ "metadata": {},
436
+ "output_type": "execute_result"
437
+ }
438
+ ],
439
+ "source": [
440
+ "x[x < 5]"
441
+ ]
442
+ },
443
+ {
444
+ "cell_type": "code",
445
+ "execution_count": 23,
446
+ "id": "a3126de1",
447
+ "metadata": {},
448
+ "outputs": [
449
+ {
450
+ "name": "stdout",
451
+ "output_type": "stream",
452
+ "text": [
453
+ "Median precip on rainy days in 2014 (inches): 0.19488188976377951\n",
454
+ "Median precip on summer days in 2014 (inches): 0.0\n",
455
+ "Maximum precip on summer days in 2014 (inches): 0.8503937007874016\n",
456
+ "Median precip on non-summer rainy days (inches): 0.20078740157480315\n"
457
+ ]
458
+ }
459
+ ],
460
+ "source": [
461
+ "import numpy as np\n",
462
+ "# construct a mask of all rainy days\n",
463
+ "rainy = (inches > 0)\n",
464
+ "\n",
465
+ "# construct a mask of all summer days (June 21st is the 172nd day)\n",
466
+ "days = np.arange(365)\n",
467
+ "summer = (days > 172) & (days < 262)\n",
468
+ "\n",
469
+ "print(\"Median precip on rainy days in 2014 (inches): \",np.median(inches[rainy]))\n",
470
+ "print(\"Median precip on summer days in 2014 (inches): \",np.median(inches[summer]))\n",
471
+ "print(\"Maximum precip on summer days in 2014 (inches): \",np.max(inches[summer]))\n",
472
+ "print(\"Median precip on non-summer rainy days (inches):\",np.median(inches[rainy & ~summer]))"
473
+ ]
474
+ }
475
+ ],
476
+ "metadata": {
477
+ "kernelspec": {
478
+ "display_name": "Python 3 (ipykernel)",
479
+ "language": "python",
480
+ "name": "python3"
481
+ },
482
+ "language_info": {
483
+ "codemirror_mode": {
484
+ "name": "ipython",
485
+ "version": 3
486
+ },
487
+ "file_extension": ".py",
488
+ "mimetype": "text/x-python",
489
+ "name": "python",
490
+ "nbconvert_exporter": "python",
491
+ "pygments_lexer": "ipython3",
492
+ "version": "3.11.7"
493
+ }
494
+ },
495
+ "nbformat": 4,
496
+ "nbformat_minor": 5
497
+ }