myawesomepkg 0.1.5__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- myawesomepkg/TSAPY1/1 (A) Working with Numpy Arrays.py +1146 -0
- myawesomepkg/TSAPY1/1(B)Aggregation (1).py +319 -0
- myawesomepkg/TSAPY1/1(C) Broadcasting .py +328 -0
- myawesomepkg/TSAPY1/2(a) Comparison, Masking And Boolean Logic (1).py +497 -0
- myawesomepkg/TSAPY1/2(b)Fancy Indexing.py +594 -0
- myawesomepkg/TSAPY1/2(c) Sorting Arrays.py +528 -0
- myawesomepkg/TSAPY1/2(d) Structured Array.py +350 -0
- myawesomepkg/TSAPY1/3 (A) Handling Missing Data.py +1013 -0
- myawesomepkg/TSAPY1/4A_Merge_Joins.py +1209 -0
- myawesomepkg/TSAPY1/Aggregation_Groupin_Pivot_Filter_Vectorice_Time_Series.py +1999 -0
- myawesomepkg/TSAPY1/Combining_Joins.py +1209 -0
- myawesomepkg/TSAPY1/Pract3_C.py +482 -0
- myawesomepkg/TSAPY1/Pract5_Data_Visualization.py +481 -0
- myawesomepkg/TSAPY1/Practical 6.py +860 -0
- myawesomepkg/TSAPY1/pract3A-B.py +3212 -0
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/METADATA +1 -1
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/RECORD +19 -4
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/WHEEL +0 -0
- {myawesomepkg-0.1.5.dist-info → myawesomepkg-0.1.6.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,319 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": 10,
|
6
|
+
"id": "b1716d12-c5e2-43e6-a9b2-23fdab9b64d6",
|
7
|
+
"metadata": {},
|
8
|
+
"outputs": [],
|
9
|
+
"source": [
|
10
|
+
"import numpy as np"
|
11
|
+
]
|
12
|
+
},
|
13
|
+
{
|
14
|
+
"cell_type": "code",
|
15
|
+
"execution_count": 11,
|
16
|
+
"id": "ff55f097-4d1c-4289-98dd-c65faad54cd0",
|
17
|
+
"metadata": {},
|
18
|
+
"outputs": [
|
19
|
+
{
|
20
|
+
"data": {
|
21
|
+
"text/plain": [
|
22
|
+
"52.74561706217718"
|
23
|
+
]
|
24
|
+
},
|
25
|
+
"execution_count": 11,
|
26
|
+
"metadata": {},
|
27
|
+
"output_type": "execute_result"
|
28
|
+
}
|
29
|
+
],
|
30
|
+
"source": [
|
31
|
+
"L = np.random.random(100)\n",
|
32
|
+
"sum(L)"
|
33
|
+
]
|
34
|
+
},
|
35
|
+
{
|
36
|
+
"cell_type": "code",
|
37
|
+
"execution_count": 12,
|
38
|
+
"id": "39f25dea-4547-48e5-b46a-4fbe67945454",
|
39
|
+
"metadata": {},
|
40
|
+
"outputs": [
|
41
|
+
{
|
42
|
+
"data": {
|
43
|
+
"text/plain": [
|
44
|
+
"52.74561706217718"
|
45
|
+
]
|
46
|
+
},
|
47
|
+
"execution_count": 12,
|
48
|
+
"metadata": {},
|
49
|
+
"output_type": "execute_result"
|
50
|
+
}
|
51
|
+
],
|
52
|
+
"source": [
|
53
|
+
"np.sum(L)"
|
54
|
+
]
|
55
|
+
},
|
56
|
+
{
|
57
|
+
"cell_type": "code",
|
58
|
+
"execution_count": 13,
|
59
|
+
"id": "7da5f038-28ee-4a98-a702-042c8d0b5e1a",
|
60
|
+
"metadata": {},
|
61
|
+
"outputs": [
|
62
|
+
{
|
63
|
+
"name": "stdout",
|
64
|
+
"output_type": "stream",
|
65
|
+
"text": [
|
66
|
+
"112 ms ± 31.8 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n",
|
67
|
+
"1.08 ms ± 49 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n"
|
68
|
+
]
|
69
|
+
}
|
70
|
+
],
|
71
|
+
"source": [
|
72
|
+
"big_array = np.random.rand(1000000)\n",
|
73
|
+
"%timeit sum(big_array)\n",
|
74
|
+
"%timeit np.sum(big_array)"
|
75
|
+
]
|
76
|
+
},
|
77
|
+
{
|
78
|
+
"cell_type": "code",
|
79
|
+
"execution_count": 15,
|
80
|
+
"id": "6d945538-3f7a-48f7-8308-ddc0118ef92e",
|
81
|
+
"metadata": {},
|
82
|
+
"outputs": [
|
83
|
+
{
|
84
|
+
"data": {
|
85
|
+
"text/plain": [
|
86
|
+
"(2.459947670896412e-06, 0.9999994968740656)"
|
87
|
+
]
|
88
|
+
},
|
89
|
+
"execution_count": 15,
|
90
|
+
"metadata": {},
|
91
|
+
"output_type": "execute_result"
|
92
|
+
}
|
93
|
+
],
|
94
|
+
"source": [
|
95
|
+
"min(big_array), max(big_array)"
|
96
|
+
]
|
97
|
+
},
|
98
|
+
{
|
99
|
+
"cell_type": "code",
|
100
|
+
"execution_count": 16,
|
101
|
+
"id": "6340e901-30d7-4a36-9421-ba0f87e64969",
|
102
|
+
"metadata": {},
|
103
|
+
"outputs": [
|
104
|
+
{
|
105
|
+
"data": {
|
106
|
+
"text/plain": [
|
107
|
+
"(2.459947670896412e-06, 0.9999994968740656)"
|
108
|
+
]
|
109
|
+
},
|
110
|
+
"execution_count": 16,
|
111
|
+
"metadata": {},
|
112
|
+
"output_type": "execute_result"
|
113
|
+
}
|
114
|
+
],
|
115
|
+
"source": [
|
116
|
+
"np.min(big_array), np.max(big_array)"
|
117
|
+
]
|
118
|
+
},
|
119
|
+
{
|
120
|
+
"cell_type": "code",
|
121
|
+
"execution_count": 17,
|
122
|
+
"id": "2c837204-ddd6-4206-99d3-e2dc356f92ba",
|
123
|
+
"metadata": {},
|
124
|
+
"outputs": [
|
125
|
+
{
|
126
|
+
"name": "stdout",
|
127
|
+
"output_type": "stream",
|
128
|
+
"text": [
|
129
|
+
"[[0.40515773 0.12656963 0.14937442 0.00683728]\n",
|
130
|
+
" [0.3502941 0.62659932 0.54795217 0.13145624]\n",
|
131
|
+
" [0.05532995 0.49480523 0.77369714 0.42759192]]\n"
|
132
|
+
]
|
133
|
+
}
|
134
|
+
],
|
135
|
+
"source": [
|
136
|
+
" M = np.random.random((3, 4))\n",
|
137
|
+
" print(M)"
|
138
|
+
]
|
139
|
+
},
|
140
|
+
{
|
141
|
+
"cell_type": "code",
|
142
|
+
"execution_count": 18,
|
143
|
+
"id": "973947a3-609a-4883-abe8-c2f044c9b78a",
|
144
|
+
"metadata": {},
|
145
|
+
"outputs": [
|
146
|
+
{
|
147
|
+
"data": {
|
148
|
+
"text/plain": [
|
149
|
+
"4.095665116718065"
|
150
|
+
]
|
151
|
+
},
|
152
|
+
"execution_count": 18,
|
153
|
+
"metadata": {},
|
154
|
+
"output_type": "execute_result"
|
155
|
+
}
|
156
|
+
],
|
157
|
+
"source": [
|
158
|
+
"M.sum()"
|
159
|
+
]
|
160
|
+
},
|
161
|
+
{
|
162
|
+
"cell_type": "code",
|
163
|
+
"execution_count": 19,
|
164
|
+
"id": "87d935f2-b8f9-46f5-bea8-8bab6a4efeef",
|
165
|
+
"metadata": {},
|
166
|
+
"outputs": [
|
167
|
+
{
|
168
|
+
"data": {
|
169
|
+
"text/plain": [
|
170
|
+
"array([0.05532995, 0.12656963, 0.14937442, 0.00683728])"
|
171
|
+
]
|
172
|
+
},
|
173
|
+
"execution_count": 19,
|
174
|
+
"metadata": {},
|
175
|
+
"output_type": "execute_result"
|
176
|
+
}
|
177
|
+
],
|
178
|
+
"source": [
|
179
|
+
"M.min(axis=0)"
|
180
|
+
]
|
181
|
+
},
|
182
|
+
{
|
183
|
+
"cell_type": "code",
|
184
|
+
"execution_count": 21,
|
185
|
+
"id": "65bb11eb-5b50-497b-bd83-bd4a2a81e00e",
|
186
|
+
"metadata": {},
|
187
|
+
"outputs": [
|
188
|
+
{
|
189
|
+
"data": {
|
190
|
+
"text/plain": [
|
191
|
+
"array([0.40515773, 0.62659932, 0.77369714])"
|
192
|
+
]
|
193
|
+
},
|
194
|
+
"execution_count": 21,
|
195
|
+
"metadata": {},
|
196
|
+
"output_type": "execute_result"
|
197
|
+
}
|
198
|
+
],
|
199
|
+
"source": [
|
200
|
+
"M.max(axis=1)"
|
201
|
+
]
|
202
|
+
},
|
203
|
+
{
|
204
|
+
"cell_type": "code",
|
205
|
+
"execution_count": 30,
|
206
|
+
"id": "ea408e7d-6c3a-4071-a7ef-aaa51e67bfe5",
|
207
|
+
"metadata": {},
|
208
|
+
"outputs": [
|
209
|
+
{
|
210
|
+
"name": "stdout",
|
211
|
+
"output_type": "stream",
|
212
|
+
"text": [
|
213
|
+
"[189 170 189 163 183 171 185 168 173 183 173 173 175 178 183 193 178 173\n",
|
214
|
+
" 174 183 183 168 170 178 182 180 183 178 182 188 175 179 183 193 182 183\n",
|
215
|
+
" 177 185 188 188 182 185]\n"
|
216
|
+
]
|
217
|
+
}
|
218
|
+
],
|
219
|
+
"source": [
|
220
|
+
"import pandas as pd\n",
|
221
|
+
"data = pd.read_csv(\"D:\\\\Data\\\\president_heights.csv\")\n",
|
222
|
+
"heights = np.array(data['height(cm)'])\n",
|
223
|
+
"print(heights)"
|
224
|
+
]
|
225
|
+
},
|
226
|
+
{
|
227
|
+
"cell_type": "code",
|
228
|
+
"execution_count": 31,
|
229
|
+
"id": "74c0b07a-e2dd-4697-89e3-0c307106dd32",
|
230
|
+
"metadata": {},
|
231
|
+
"outputs": [
|
232
|
+
{
|
233
|
+
"name": "stdout",
|
234
|
+
"output_type": "stream",
|
235
|
+
"text": [
|
236
|
+
"Mean height: 179.73809523809524\n",
|
237
|
+
"Standard deviation: 6.931843442745892\n",
|
238
|
+
"Minimum height: 163\n",
|
239
|
+
"Maximum height: 193\n"
|
240
|
+
]
|
241
|
+
}
|
242
|
+
],
|
243
|
+
"source": [
|
244
|
+
" print(\"Mean height: \", heights.mean())\n",
|
245
|
+
" print(\"Standard deviation:\", heights.std())\n",
|
246
|
+
" print(\"Minimum height: \", heights.min())\n",
|
247
|
+
" print(\"Maximum height: \", heights.max())"
|
248
|
+
]
|
249
|
+
},
|
250
|
+
{
|
251
|
+
"cell_type": "code",
|
252
|
+
"execution_count": 42,
|
253
|
+
"id": "48d75be2-f202-4b67-8f70-ec2c0b2b4139",
|
254
|
+
"metadata": {},
|
255
|
+
"outputs": [
|
256
|
+
{
|
257
|
+
"name": "stdout",
|
258
|
+
"output_type": "stream",
|
259
|
+
"text": [
|
260
|
+
"25th percentile: 174.25\n",
|
261
|
+
"Median: 182.0\n",
|
262
|
+
"75th percentile: 183.0\n"
|
263
|
+
]
|
264
|
+
}
|
265
|
+
],
|
266
|
+
"source": [
|
267
|
+
"print(\"25th percentile: \", np.percentile(heights, 25))\n",
|
268
|
+
"print(\"Median: \", np.median(heights))\n",
|
269
|
+
"print(\"75th percentile: \", np.percentile(heights, 75))"
|
270
|
+
]
|
271
|
+
},
|
272
|
+
{
|
273
|
+
"cell_type": "code",
|
274
|
+
"execution_count": 43,
|
275
|
+
"id": "f9b51dce-4595-4bc2-8bd0-0aba2df203d4",
|
276
|
+
"metadata": {},
|
277
|
+
"outputs": [],
|
278
|
+
"source": [
|
279
|
+
"%matplotlib inline\n",
|
280
|
+
"import matplotlib.pyplot as plt\n",
|
281
|
+
"import seaborn; seaborn.set() # set plot style"
|
282
|
+
]
|
283
|
+
},
|
284
|
+
{
|
285
|
+
"cell_type": "code",
|
286
|
+
"execution_count": null,
|
287
|
+
"id": "fb31754c-62a9-4887-8552-8b7940135557",
|
288
|
+
"metadata": {},
|
289
|
+
"outputs": [],
|
290
|
+
"source": [
|
291
|
+
"plt.hist(heights)\n",
|
292
|
+
"plt.title('Height Distribution of US Presidents')\n",
|
293
|
+
" plt.xlabel('height (cm)')\n",
|
294
|
+
" plt.ylabel('number');\n"
|
295
|
+
]
|
296
|
+
}
|
297
|
+
],
|
298
|
+
"metadata": {
|
299
|
+
"kernelspec": {
|
300
|
+
"display_name": "Python 3 (ipykernel)",
|
301
|
+
"language": "python",
|
302
|
+
"name": "python3"
|
303
|
+
},
|
304
|
+
"language_info": {
|
305
|
+
"codemirror_mode": {
|
306
|
+
"name": "ipython",
|
307
|
+
"version": 3
|
308
|
+
},
|
309
|
+
"file_extension": ".py",
|
310
|
+
"mimetype": "text/x-python",
|
311
|
+
"name": "python",
|
312
|
+
"nbconvert_exporter": "python",
|
313
|
+
"pygments_lexer": "ipython3",
|
314
|
+
"version": "3.11.7"
|
315
|
+
}
|
316
|
+
},
|
317
|
+
"nbformat": 4,
|
318
|
+
"nbformat_minor": 5
|
319
|
+
}
|