myawesomepkg 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,482 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "0a4a008c-1cc1-4881-afbd-d1e042af1116",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "data": {
11
+ "text/html": [
12
+ "<div>\n",
13
+ "<style scoped>\n",
14
+ " .dataframe tbody tr th:only-of-type {\n",
15
+ " vertical-align: middle;\n",
16
+ " }\n",
17
+ "\n",
18
+ " .dataframe tbody tr th {\n",
19
+ " vertical-align: top;\n",
20
+ " }\n",
21
+ "\n",
22
+ " .dataframe thead th {\n",
23
+ " text-align: right;\n",
24
+ " }\n",
25
+ "</style>\n",
26
+ "<table border=\"1\" class=\"dataframe\">\n",
27
+ " <thead>\n",
28
+ " <tr style=\"text-align: right;\">\n",
29
+ " <th></th>\n",
30
+ " <th>A</th>\n",
31
+ " <th>B</th>\n",
32
+ " <th>C</th>\n",
33
+ " </tr>\n",
34
+ " </thead>\n",
35
+ " <tbody>\n",
36
+ " <tr>\n",
37
+ " <th>0</th>\n",
38
+ " <td>A0</td>\n",
39
+ " <td>B0</td>\n",
40
+ " <td>C0</td>\n",
41
+ " </tr>\n",
42
+ " <tr>\n",
43
+ " <th>1</th>\n",
44
+ " <td>A1</td>\n",
45
+ " <td>B1</td>\n",
46
+ " <td>C1</td>\n",
47
+ " </tr>\n",
48
+ " <tr>\n",
49
+ " <th>2</th>\n",
50
+ " <td>A2</td>\n",
51
+ " <td>B2</td>\n",
52
+ " <td>C2</td>\n",
53
+ " </tr>\n",
54
+ " </tbody>\n",
55
+ "</table>\n",
56
+ "</div>"
57
+ ],
58
+ "text/plain": [
59
+ " A B C\n",
60
+ "0 A0 B0 C0\n",
61
+ "1 A1 B1 C1\n",
62
+ "2 A2 B2 C2"
63
+ ]
64
+ },
65
+ "execution_count": 1,
66
+ "metadata": {},
67
+ "output_type": "execute_result"
68
+ }
69
+ ],
70
+ "source": [
71
+ "import pandas as pd\n",
72
+ "import numpy as np\n",
73
+ "def make_df(cols, ind):\n",
74
+ " data = {c: [str(c) + str(i) for i in ind]\n",
75
+ " for c in cols}\n",
76
+ " return pd.DataFrame(data, ind)\n",
77
+ "\n",
78
+ "make_df('ABC', range(3))"
79
+ ]
80
+ },
81
+ {
82
+ "cell_type": "code",
83
+ "execution_count": 2,
84
+ "id": "01df54aa-d5a4-442d-bee8-f7ef978ff9aa",
85
+ "metadata": {},
86
+ "outputs": [
87
+ {
88
+ "data": {
89
+ "text/plain": [
90
+ "array([1, 2, 3, 4, 5, 6, 7, 8, 9])"
91
+ ]
92
+ },
93
+ "execution_count": 2,
94
+ "metadata": {},
95
+ "output_type": "execute_result"
96
+ }
97
+ ],
98
+ "source": [
99
+ "x = [1, 2, 3]\n",
100
+ "y = [4, 5, 6]\n",
101
+ "z = [7, 8, 9]\n",
102
+ "np.concatenate([x, y, z])"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "code",
107
+ "execution_count": 3,
108
+ "id": "865938c6-668c-4015-b357-063e854bed46",
109
+ "metadata": {},
110
+ "outputs": [
111
+ {
112
+ "data": {
113
+ "text/plain": [
114
+ "array([[1, 2, 1, 2],\n",
115
+ " [3, 4, 3, 4]])"
116
+ ]
117
+ },
118
+ "execution_count": 3,
119
+ "metadata": {},
120
+ "output_type": "execute_result"
121
+ }
122
+ ],
123
+ "source": [
124
+ "x = [[1, 2],\n",
125
+ "[3, 4]]\n",
126
+ "np.concatenate([x, x], axis=1)"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "code",
131
+ "execution_count": 11,
132
+ "id": "bee431f1-5b60-4972-aef6-ddcfad6dda02",
133
+ "metadata": {},
134
+ "outputs": [
135
+ {
136
+ "data": {
137
+ "text/plain": [
138
+ "1 A\n",
139
+ "2 B\n",
140
+ "3 C\n",
141
+ "4 D\n",
142
+ "5 E\n",
143
+ "6 F\n",
144
+ "dtype: object"
145
+ ]
146
+ },
147
+ "execution_count": 11,
148
+ "metadata": {},
149
+ "output_type": "execute_result"
150
+ }
151
+ ],
152
+ "source": [
153
+ "ser1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3])\n",
154
+ "ser2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6])\n",
155
+ "pd.concat([ser1, ser2])"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": 12,
161
+ "id": "309aa9ab-754e-430d-9070-35f9ba2275a1",
162
+ "metadata": {},
163
+ "outputs": [
164
+ {
165
+ "name": "stdout",
166
+ "output_type": "stream",
167
+ "text": [
168
+ " A B\n",
169
+ "1 A1 B1\n",
170
+ "2 A2 B2\n",
171
+ " A B\n",
172
+ "3 A3 B3\n",
173
+ "4 A4 B4\n",
174
+ " A B\n",
175
+ "1 A1 B1\n",
176
+ "2 A2 B2\n",
177
+ "3 A3 B3\n",
178
+ "4 A4 B4\n"
179
+ ]
180
+ }
181
+ ],
182
+ "source": [
183
+ "df1 = make_df('AB', [1, 2])\n",
184
+ "df2 = make_df('AB', [3, 4])\n",
185
+ "print(df1); print(df2); print(pd.concat([df1, df2]))"
186
+ ]
187
+ },
188
+ {
189
+ "cell_type": "code",
190
+ "execution_count": 13,
191
+ "id": "78b97a80-adb7-4c50-8a9a-92df803d825d",
192
+ "metadata": {},
193
+ "outputs": [
194
+ {
195
+ "name": "stdout",
196
+ "output_type": "stream",
197
+ "text": [
198
+ " A B\n",
199
+ "0 A0 B0\n",
200
+ "1 A1 B1\n",
201
+ " C D\n",
202
+ "0 C0 D0\n",
203
+ "1 C1 D1\n"
204
+ ]
205
+ },
206
+ {
207
+ "ename": "ValueError",
208
+ "evalue": "No axis named col for object type DataFrame",
209
+ "output_type": "error",
210
+ "traceback": [
211
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
212
+ "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
213
+ "\u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\pandas\\core\\generic.py\u001b[0m in \u001b[0;36m?\u001b[1;34m(cls, axis)\u001b[0m\n\u001b[0;32m 576\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mcls\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_AXIS_TO_AXIS_NUMBER\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 577\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 578\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33mf\"\u001b[0m\u001b[1;33mNo axis named \u001b[0m\u001b[1;33m{\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m for object type \u001b[0m\u001b[1;33m{\u001b[0m\u001b[0mcls\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
214
+ "\u001b[1;31mKeyError\u001b[0m: 'col'",
215
+ "\nDuring handling of the above exception, another exception occurred:\n",
216
+ "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)",
217
+ "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_5252\\1072251557.py\u001b[0m in \u001b[0;36m?\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mdf3\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmake_df\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'AB'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0mdf4\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmake_df\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'CD'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf3\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m;\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf4\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m;\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mdf3\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdf4\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'col'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
218
+ "\u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\pandas\\core\\reshape\\concat.py\u001b[0m in \u001b[0;36m?\u001b[1;34m(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)\u001b[0m\n\u001b[0;32m 378\u001b[0m \u001b[0mcopy\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mTrue\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 379\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0mcopy\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0musing_copy_on_write\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 380\u001b[0m \u001b[0mcopy\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 381\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 382\u001b[1;33m op = _Concatenator(\n\u001b[0m\u001b[0;32m 383\u001b[0m \u001b[0mobjs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 384\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 385\u001b[0m \u001b[0mignore_index\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mignore_index\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
219
+ "\u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\pandas\\core\\reshape\\concat.py\u001b[0m in \u001b[0;36m?\u001b[1;34m(self, objs, axis, join, keys, levels, names, ignore_index, verify_integrity, copy, sort)\u001b[0m\n\u001b[0;32m 455\u001b[0m \u001b[0maxis\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mDataFrame\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 456\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_is_frame\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 457\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_is_series\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mTrue\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 458\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 459\u001b[1;33m \u001b[0maxis\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0msample\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 460\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_is_frame\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mTrue\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 461\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_is_series\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 462\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
220
+ "\u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\pandas\\core\\generic.py\u001b[0m in \u001b[0;36m?\u001b[1;34m(cls, axis)\u001b[0m\n\u001b[0;32m 574\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_get_axis_number\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcls\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mAxis\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m->\u001b[0m \u001b[0mAxisInt\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 575\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 576\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mcls\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_AXIS_TO_AXIS_NUMBER\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 577\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 578\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33mf\"\u001b[0m\u001b[1;33mNo axis named \u001b[0m\u001b[1;33m{\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m for object type \u001b[0m\u001b[1;33m{\u001b[0m\u001b[0mcls\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[1;33m}\u001b[0m\u001b[1;33m\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
221
+ "\u001b[1;31mValueError\u001b[0m: No axis named col for object type DataFrame"
222
+ ]
223
+ }
224
+ ],
225
+ "source": [
226
+ "df3 = make_df('AB', [0, 1])\n",
227
+ "df4 = make_df('CD', [0, 1])\n",
228
+ "print(df3); print(df4); print(pd.concat([df3, df4], axis='col'))"
229
+ ]
230
+ },
231
+ {
232
+ "cell_type": "code",
233
+ "execution_count": 15,
234
+ "id": "44083d4b-c066-4682-ab9f-e891ed1c1518",
235
+ "metadata": {},
236
+ "outputs": [
237
+ {
238
+ "name": "stdout",
239
+ "output_type": "stream",
240
+ "text": [
241
+ " A B\n",
242
+ "0 A0 B0\n",
243
+ "1 A1 B1\n",
244
+ " A B\n",
245
+ "0 A2 B2\n",
246
+ "1 A3 B3\n",
247
+ " A B\n",
248
+ "0 A0 B0\n",
249
+ "1 A1 B1\n",
250
+ "0 A2 B2\n",
251
+ "1 A3 B3\n"
252
+ ]
253
+ }
254
+ ],
255
+ "source": [
256
+ "x = make_df('AB', [0, 1])\n",
257
+ "y = make_df('AB', [2, 3])\n",
258
+ "y.index = x.index # make duplicate indices!\n",
259
+ "print(x); print(y); print(pd.concat([x, y]))"
260
+ ]
261
+ },
262
+ {
263
+ "cell_type": "code",
264
+ "execution_count": 16,
265
+ "id": "b066dc1c-1271-4387-ae4d-5c3ce0b50a54",
266
+ "metadata": {},
267
+ "outputs": [
268
+ {
269
+ "name": "stdout",
270
+ "output_type": "stream",
271
+ "text": [
272
+ " A B\n",
273
+ "0 A0 B0\n",
274
+ "1 A1 B1\n",
275
+ " A B\n",
276
+ "0 A2 B2\n",
277
+ "1 A3 B3\n",
278
+ " A B\n",
279
+ "0 A0 B0\n",
280
+ "1 A1 B1\n",
281
+ "2 A2 B2\n",
282
+ "3 A3 B3\n"
283
+ ]
284
+ }
285
+ ],
286
+ "source": [
287
+ "print(x); print(y); print(pd.concat([x, y], ignore_index=True))"
288
+ ]
289
+ },
290
+ {
291
+ "cell_type": "code",
292
+ "execution_count": 17,
293
+ "id": "a290255f-4821-4149-8c02-71855531ace3",
294
+ "metadata": {},
295
+ "outputs": [
296
+ {
297
+ "name": "stdout",
298
+ "output_type": "stream",
299
+ "text": [
300
+ " A B\n",
301
+ "0 A0 B0\n",
302
+ "1 A1 B1\n",
303
+ " A B\n",
304
+ "0 A2 B2\n",
305
+ "1 A3 B3\n",
306
+ " A B\n",
307
+ "x 0 A0 B0\n",
308
+ " 1 A1 B1\n",
309
+ "y 0 A2 B2\n",
310
+ " 1 A3 B3\n"
311
+ ]
312
+ }
313
+ ],
314
+ "source": [
315
+ "print(x); print(y); print(pd.concat([x, y], keys=['x', 'y']))"
316
+ ]
317
+ },
318
+ {
319
+ "cell_type": "code",
320
+ "execution_count": 18,
321
+ "id": "35b844b6-a29e-4f70-b747-082e70452e7f",
322
+ "metadata": {},
323
+ "outputs": [
324
+ {
325
+ "name": "stdout",
326
+ "output_type": "stream",
327
+ "text": [
328
+ " A B C\n",
329
+ "1 A1 B1 C1\n",
330
+ "2 A2 B2 C2\n",
331
+ " B C D\n",
332
+ "3 B3 C3 D3\n",
333
+ "4 B4 C4 D4\n",
334
+ " A B C D\n",
335
+ "1 A1 B1 C1 NaN\n",
336
+ "2 A2 B2 C2 NaN\n",
337
+ "3 NaN B3 C3 D3\n",
338
+ "4 NaN B4 C4 D4\n"
339
+ ]
340
+ }
341
+ ],
342
+ "source": [
343
+ "df5 = make_df('ABC', [1, 2])\n",
344
+ "df6 = make_df('BCD', [3, 4])\n",
345
+ "\n",
346
+ "print(df5)\n",
347
+ "print(df6)\n",
348
+ "print(pd.concat([df5, df6]))\n"
349
+ ]
350
+ },
351
+ {
352
+ "cell_type": "code",
353
+ "execution_count": 19,
354
+ "id": "93231324-c85c-4e25-866f-a7c8b707234b",
355
+ "metadata": {},
356
+ "outputs": [
357
+ {
358
+ "name": "stdout",
359
+ "output_type": "stream",
360
+ "text": [
361
+ " A B C\n",
362
+ "1 A1 B1 C1\n",
363
+ "2 A2 B2 C2\n",
364
+ " B C D\n",
365
+ "3 B3 C3 D3\n",
366
+ "4 B4 C4 D4\n",
367
+ " B C\n",
368
+ "1 B1 C1\n",
369
+ "2 B2 C2\n",
370
+ "3 B3 C3\n",
371
+ "4 B4 C4\n"
372
+ ]
373
+ }
374
+ ],
375
+ "source": [
376
+ "print(df5); print(df6);\n",
377
+ "print(pd.concat([df5, df6], join='inner'))"
378
+ ]
379
+ },
380
+ {
381
+ "cell_type": "code",
382
+ "execution_count": 20,
383
+ "id": "25e9bed9-c459-446e-addc-80234e4f6121",
384
+ "metadata": {},
385
+ "outputs": [
386
+ {
387
+ "name": "stdout",
388
+ "output_type": "stream",
389
+ "text": [
390
+ " A B C\n",
391
+ "1 A1 B1 C1\n",
392
+ "2 A2 B2 C2\n",
393
+ " B C D\n",
394
+ "3 B3 C3 D3\n",
395
+ "4 B4 C4 D4\n"
396
+ ]
397
+ },
398
+ {
399
+ "ename": "TypeError",
400
+ "evalue": "concat() got an unexpected keyword argument 'join_axes'",
401
+ "output_type": "error",
402
+ "traceback": [
403
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
404
+ "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
405
+ "Cell \u001b[1;32mIn[20], line 2\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;28mprint\u001b[39m(df5); \u001b[38;5;28mprint\u001b[39m(df6);\n\u001b[1;32m----> 2\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconcat\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43mdf5\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdf6\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mjoin_axes\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43mdf5\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m)\n",
406
+ "\u001b[1;31mTypeError\u001b[0m: concat() got an unexpected keyword argument 'join_axes'"
407
+ ]
408
+ }
409
+ ],
410
+ "source": [
411
+ "print(df5); print(df6);\n",
412
+ "print(pd.concat([df5, df6], join_axes=[df5.columns]))"
413
+ ]
414
+ },
415
+ {
416
+ "cell_type": "code",
417
+ "execution_count": 21,
418
+ "id": "17806bf1-397b-4e1f-8543-73d48c22da45",
419
+ "metadata": {},
420
+ "outputs": [
421
+ {
422
+ "name": "stdout",
423
+ "output_type": "stream",
424
+ "text": [
425
+ " A B\n",
426
+ "1 A1 B1\n",
427
+ "2 A2 B2\n",
428
+ " A B\n",
429
+ "3 A3 B3\n",
430
+ "4 A4 B4\n"
431
+ ]
432
+ },
433
+ {
434
+ "ename": "AttributeError",
435
+ "evalue": "'DataFrame' object has no attribute 'append'",
436
+ "output_type": "error",
437
+ "traceback": [
438
+ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
439
+ "\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
440
+ "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_5252\\3875926826.py\u001b[0m in \u001b[0;36m?\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m;\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf2\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m;\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf1\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdf2\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
441
+ "\u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\pandas\\core\\generic.py\u001b[0m in \u001b[0;36m?\u001b[1;34m(self, name)\u001b[0m\n\u001b[0;32m 6295\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mname\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_accessors\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6296\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_info_axis\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_can_hold_identifiers_and_holds_name\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6297\u001b[0m \u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6298\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mname\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 6299\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mobject\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
442
+ "\u001b[1;31mAttributeError\u001b[0m: 'DataFrame' object has no attribute 'append'"
443
+ ]
444
+ }
445
+ ],
446
+ "source": [
447
+ " print(df1); print(df2); print(df1.append(df2))"
448
+ ]
449
+ },
450
+ {
451
+ "cell_type": "code",
452
+ "execution_count": null,
453
+ "id": "49f9a144-f0ac-4a49-b82a-45ced9fa4b15",
454
+ "metadata": {},
455
+ "outputs": [],
456
+ "source": [
457
+ "# Combining Datasets: Merge and Join\n"
458
+ ]
459
+ }
460
+ ],
461
+ "metadata": {
462
+ "kernelspec": {
463
+ "display_name": "Python 3 (ipykernel)",
464
+ "language": "python",
465
+ "name": "python3"
466
+ },
467
+ "language_info": {
468
+ "codemirror_mode": {
469
+ "name": "ipython",
470
+ "version": 3
471
+ },
472
+ "file_extension": ".py",
473
+ "mimetype": "text/x-python",
474
+ "name": "python",
475
+ "nbconvert_exporter": "python",
476
+ "pygments_lexer": "ipython3",
477
+ "version": "3.12.0"
478
+ }
479
+ },
480
+ "nbformat": 4,
481
+ "nbformat_minor": 5
482
+ }