myawesomepkg 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- myawesomepkg/TSAPY1/1 (A) Working with Numpy Arrays.py +1146 -0
- myawesomepkg/TSAPY1/1(B)Aggregation (1).py +319 -0
- myawesomepkg/TSAPY1/1(C) Broadcasting .py +328 -0
- myawesomepkg/TSAPY1/10-A_Load_stringr.py +77 -0
- myawesomepkg/TSAPY1/10-B_Forcats.py +70 -0
- myawesomepkg/TSAPY1/2(a) Comparison, Masking And Boolean Logic (1).py +497 -0
- myawesomepkg/TSAPY1/2(b)Fancy Indexing.py +594 -0
- myawesomepkg/TSAPY1/2(c) Sorting Arrays.py +528 -0
- myawesomepkg/TSAPY1/2(d) Structured Array.py +350 -0
- myawesomepkg/TSAPY1/3 (A) Handling Missing Data.py +1013 -0
- myawesomepkg/TSAPY1/4A_Merge_Joins.py +1209 -0
- myawesomepkg/TSAPY1/9A_Dplyr.py +85 -0
- myawesomepkg/TSAPY1/9B_Tidyr.py +71 -0
- myawesomepkg/TSAPY1/Aggregation_Groupin_Pivot_Filter_Vectorice_Time_Series.py +1999 -0
- myawesomepkg/TSAPY1/Combining_Joins.py +1209 -0
- myawesomepkg/TSAPY1/Pract3_C.py +482 -0
- myawesomepkg/TSAPY1/Pract5_Data_Visualization.py +481 -0
- myawesomepkg/TSAPY1/Practical 6.py +860 -0
- myawesomepkg/TSAPY1/Print_R.py +123 -0
- myawesomepkg/TSAPY1/R_Graph.py +32 -0
- myawesomepkg/TSAPY1/Working_Ggplot.py +53 -0
- myawesomepkg/TSAPY1/pract3A-B.py +3212 -0
- {myawesomepkg-0.1.4.dist-info → myawesomepkg-0.1.6.dist-info}/METADATA +1 -1
- myawesomepkg-0.1.6.dist-info/RECORD +47 -0
- myawesomepkg-0.1.4.dist-info/RECORD +0 -25
- {myawesomepkg-0.1.4.dist-info → myawesomepkg-0.1.6.dist-info}/WHEEL +0 -0
- {myawesomepkg-0.1.4.dist-info → myawesomepkg-0.1.6.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,85 @@
|
|
1
|
+
✅ Step 1: Load dplyr
|
2
|
+
r
|
3
|
+
Copy
|
4
|
+
Edit
|
5
|
+
library(dplyr)
|
6
|
+
🔹 Sample Data
|
7
|
+
r
|
8
|
+
Copy
|
9
|
+
Edit
|
10
|
+
employees <- data.frame(
|
11
|
+
emp_id = c(1, 2, 3, 4, 5),
|
12
|
+
name = c("John", "Emma", "Raj", "Sara", "Mike"),
|
13
|
+
dept_id = c(10, 20, 10, 30, 20)
|
14
|
+
)
|
15
|
+
|
16
|
+
departments <- data.frame(
|
17
|
+
dept_id = c(10, 20, 30),
|
18
|
+
dept_name = c("HR", "Finance", "IT")
|
19
|
+
)
|
20
|
+
🔹 1. Filtering Rows
|
21
|
+
r
|
22
|
+
Copy
|
23
|
+
Edit
|
24
|
+
# Filter employees from dept 10
|
25
|
+
employees %>%
|
26
|
+
filter(dept_id == 10)
|
27
|
+
🔹 2. Mutating Joins (left_join)
|
28
|
+
r
|
29
|
+
Copy
|
30
|
+
Edit
|
31
|
+
# Add department name to employees
|
32
|
+
employees %>%
|
33
|
+
left_join(departments, by = "dept_id")
|
34
|
+
🔹 3. Inner Join
|
35
|
+
r
|
36
|
+
Copy
|
37
|
+
Edit
|
38
|
+
# Only matching employees with department info
|
39
|
+
employees %>%
|
40
|
+
inner_join(departments, by = "dept_id")
|
41
|
+
🔹 4. Handling Duplicate Keys
|
42
|
+
r
|
43
|
+
Copy
|
44
|
+
Edit
|
45
|
+
# Add a duplicate dept row
|
46
|
+
departments2 <- rbind(departments, data.frame(dept_id = 10, dept_name = "HR-Duplicate"))
|
47
|
+
|
48
|
+
# Join - will create multiple rows for duplicate keys
|
49
|
+
employees %>%
|
50
|
+
left_join(departments2, by = "dept_id")
|
51
|
+
🔹 5. Defining Key Column (custom join keys)
|
52
|
+
r
|
53
|
+
Copy
|
54
|
+
Edit
|
55
|
+
emp <- data.frame(id = c(1, 2), val = c("A", "B"))
|
56
|
+
ref <- data.frame(key = c(1, 2), desc = c("X", "Y"))
|
57
|
+
|
58
|
+
emp %>%
|
59
|
+
left_join(ref, by = c("id" = "key"))
|
60
|
+
🔹 6. Filtering Joins
|
61
|
+
r
|
62
|
+
Copy
|
63
|
+
Edit
|
64
|
+
# Semi Join: Keep rows in employees that match departments
|
65
|
+
employees %>%
|
66
|
+
semi_join(departments, by = "dept_id")
|
67
|
+
|
68
|
+
# Anti Join: Keep rows in employees that don't match departments
|
69
|
+
employees %>%
|
70
|
+
anti_join(departments, by = "dept_id")
|
71
|
+
🔹 7. Set Operations
|
72
|
+
r
|
73
|
+
Copy
|
74
|
+
Edit
|
75
|
+
a <- data.frame(x = c(1, 2, 3))
|
76
|
+
b <- data.frame(x = c(2, 3, 4))
|
77
|
+
|
78
|
+
# Union (unique values)
|
79
|
+
union(a, b)
|
80
|
+
|
81
|
+
# Intersect (common values)
|
82
|
+
intersect(a, b)
|
83
|
+
|
84
|
+
# Set difference (in a but not in b)
|
85
|
+
setdiff(a, b)
|
@@ -0,0 +1,71 @@
|
|
1
|
+
✅ Step 1: Load tidyr and dplyr
|
2
|
+
r
|
3
|
+
Copy
|
4
|
+
Edit
|
5
|
+
library(tidyr)
|
6
|
+
library(dplyr)
|
7
|
+
🔹 Sample Data
|
8
|
+
r
|
9
|
+
Copy
|
10
|
+
Edit
|
11
|
+
data <- data.frame(
|
12
|
+
name = c("Alice", "Bob"),
|
13
|
+
math = c(90, 85),
|
14
|
+
science = c(95, 80)
|
15
|
+
)
|
16
|
+
🔹 1. Gathering → pivot_longer()
|
17
|
+
r
|
18
|
+
Copy
|
19
|
+
Edit
|
20
|
+
data_long <- data %>%
|
21
|
+
pivot_longer(cols = c(math, science), names_to = "subject", values_to = "score")
|
22
|
+
|
23
|
+
print(data_long)
|
24
|
+
🔹 2. Spreading → pivot_wider()
|
25
|
+
r
|
26
|
+
Copy
|
27
|
+
Edit
|
28
|
+
data_wide <- data_long %>%
|
29
|
+
pivot_wider(names_from = subject, values_from = score)
|
30
|
+
|
31
|
+
print(data_wide)
|
32
|
+
🔹 3. Separate Columns
|
33
|
+
r
|
34
|
+
Copy
|
35
|
+
Edit
|
36
|
+
full_name <- data.frame(name = c("Alice_Smith", "Bob_Jones"))
|
37
|
+
|
38
|
+
# Separate name into first and last
|
39
|
+
full_name_sep <- full_name %>%
|
40
|
+
separate(name, into = c("first_name", "last_name"), sep = "_")
|
41
|
+
|
42
|
+
print(full_name_sep)
|
43
|
+
🔹 4. Unite Columns
|
44
|
+
r
|
45
|
+
Copy
|
46
|
+
Edit
|
47
|
+
# Combine first_name and last_name
|
48
|
+
full_name_united <- full_name_sep %>%
|
49
|
+
unite("full_name", first_name, last_name, sep = " ")
|
50
|
+
|
51
|
+
print(full_name_united)
|
52
|
+
🔹 5. Handling Missing Values
|
53
|
+
r
|
54
|
+
Copy
|
55
|
+
Edit
|
56
|
+
missing_data <- data.frame(
|
57
|
+
name = c("A", "B", "C"),
|
58
|
+
score = c(85, NA, 90)
|
59
|
+
)
|
60
|
+
|
61
|
+
# Remove rows with NA
|
62
|
+
missing_data_clean <- missing_data %>%
|
63
|
+
drop_na()
|
64
|
+
|
65
|
+
# Replace NA with value
|
66
|
+
missing_data_filled <- missing_data %>%
|
67
|
+
replace_na(list(score = 0))
|
68
|
+
|
69
|
+
print(missing_data_clean)
|
70
|
+
print(missing_data_filled)
|
71
|
+
Let m
|