myawesomepkg 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,1146 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "169e80fc",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "Requirement already satisfied: numpy in c:\\users\\lap-01\\anaconda3\\lib\\site-packages (1.21.5)\n",
14
+ "Note: you may need to restart the kernel to use updated packages.\n"
15
+ ]
16
+ }
17
+ ],
18
+ "source": [
19
+ "pip install numpy"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "code",
24
+ "execution_count": 3,
25
+ "id": "94111d0c",
26
+ "metadata": {},
27
+ "outputs": [],
28
+ "source": [
29
+ "import numpy as np"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": 5,
35
+ "id": "10326722",
36
+ "metadata": {},
37
+ "outputs": [],
38
+ "source": [
39
+ "# NumPy Array A-dimensional arrayttributes\n",
40
+ "import numpy as np\n",
41
+ "np.random.seed(0) # seed for reproducibility\n",
42
+ "x1 = np.random.randint(10, size=6) # One-dimensional array\n",
43
+ "x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array\n",
44
+ "x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional array"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "code",
49
+ "execution_count": 6,
50
+ "id": "3a4b0eee",
51
+ "metadata": {},
52
+ "outputs": [
53
+ {
54
+ "name": "stdout",
55
+ "output_type": "stream",
56
+ "text": [
57
+ "x3 ndim: 3\n",
58
+ "x3 shape: (3, 4, 5)\n",
59
+ "x3 size: 60\n"
60
+ ]
61
+ }
62
+ ],
63
+ "source": [
64
+ "print(\"x3 ndim: \", x3.ndim)\n",
65
+ "print(\"x3 shape:\", x3.shape)\n",
66
+ "print(\"x3 size: \", x3.size)\n"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type": "code",
71
+ "execution_count": 7,
72
+ "id": "ed81bf92",
73
+ "metadata": {},
74
+ "outputs": [
75
+ {
76
+ "name": "stdout",
77
+ "output_type": "stream",
78
+ "text": [
79
+ "dtype: int32\n",
80
+ "itemsize: 4 bytes\n",
81
+ "nbytes: 240 bytes\n"
82
+ ]
83
+ }
84
+ ],
85
+ "source": [
86
+ "print(\"dtype:\", x3.dtype)\n",
87
+ "print(\"itemsize:\", x3.itemsize, \"bytes\")\n",
88
+ "print(\"nbytes:\", x3.nbytes, \"bytes\")\n"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": 8,
94
+ "id": "0c7f7ad8",
95
+ "metadata": {},
96
+ "outputs": [
97
+ {
98
+ "data": {
99
+ "text/plain": [
100
+ "array([5, 0, 3, 3, 7, 9])"
101
+ ]
102
+ },
103
+ "execution_count": 8,
104
+ "metadata": {},
105
+ "output_type": "execute_result"
106
+ }
107
+ ],
108
+ "source": [
109
+ "#Array Indexing: Accessing Single Elements\n",
110
+ "x1"
111
+ ]
112
+ },
113
+ {
114
+ "cell_type": "code",
115
+ "execution_count": 9,
116
+ "id": "feda5fdb",
117
+ "metadata": {},
118
+ "outputs": [
119
+ {
120
+ "data": {
121
+ "text/plain": [
122
+ "5"
123
+ ]
124
+ },
125
+ "execution_count": 9,
126
+ "metadata": {},
127
+ "output_type": "execute_result"
128
+ }
129
+ ],
130
+ "source": [
131
+ "x1[0]\n"
132
+ ]
133
+ },
134
+ {
135
+ "cell_type": "code",
136
+ "execution_count": 10,
137
+ "id": "b222c117",
138
+ "metadata": {},
139
+ "outputs": [
140
+ {
141
+ "data": {
142
+ "text/plain": [
143
+ "7"
144
+ ]
145
+ },
146
+ "execution_count": 10,
147
+ "metadata": {},
148
+ "output_type": "execute_result"
149
+ }
150
+ ],
151
+ "source": [
152
+ "x1[4]"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "code",
157
+ "execution_count": 11,
158
+ "id": "c9828983",
159
+ "metadata": {},
160
+ "outputs": [
161
+ {
162
+ "data": {
163
+ "text/plain": [
164
+ "9"
165
+ ]
166
+ },
167
+ "execution_count": 11,
168
+ "metadata": {},
169
+ "output_type": "execute_result"
170
+ }
171
+ ],
172
+ "source": [
173
+ "x1[-1]\n"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "code",
178
+ "execution_count": 12,
179
+ "id": "62a862d4",
180
+ "metadata": {},
181
+ "outputs": [
182
+ {
183
+ "data": {
184
+ "text/plain": [
185
+ "7"
186
+ ]
187
+ },
188
+ "execution_count": 12,
189
+ "metadata": {},
190
+ "output_type": "execute_result"
191
+ }
192
+ ],
193
+ "source": [
194
+ "x1[-2]"
195
+ ]
196
+ },
197
+ {
198
+ "cell_type": "code",
199
+ "execution_count": 13,
200
+ "id": "a038d188",
201
+ "metadata": {},
202
+ "outputs": [
203
+ {
204
+ "data": {
205
+ "text/plain": [
206
+ "array([[3, 5, 2, 4],\n",
207
+ " [7, 6, 8, 8],\n",
208
+ " [1, 6, 7, 7]])"
209
+ ]
210
+ },
211
+ "execution_count": 13,
212
+ "metadata": {},
213
+ "output_type": "execute_result"
214
+ }
215
+ ],
216
+ "source": [
217
+ "x2"
218
+ ]
219
+ },
220
+ {
221
+ "cell_type": "code",
222
+ "execution_count": 14,
223
+ "id": "cca28148",
224
+ "metadata": {},
225
+ "outputs": [
226
+ {
227
+ "data": {
228
+ "text/plain": [
229
+ "3"
230
+ ]
231
+ },
232
+ "execution_count": 14,
233
+ "metadata": {},
234
+ "output_type": "execute_result"
235
+ }
236
+ ],
237
+ "source": [
238
+ "x2[0, 0]\n"
239
+ ]
240
+ },
241
+ {
242
+ "cell_type": "code",
243
+ "execution_count": 15,
244
+ "id": "26e981f4",
245
+ "metadata": {},
246
+ "outputs": [
247
+ {
248
+ "data": {
249
+ "text/plain": [
250
+ "1"
251
+ ]
252
+ },
253
+ "execution_count": 15,
254
+ "metadata": {},
255
+ "output_type": "execute_result"
256
+ }
257
+ ],
258
+ "source": [
259
+ "x2[2, 0]"
260
+ ]
261
+ },
262
+ {
263
+ "cell_type": "code",
264
+ "execution_count": 16,
265
+ "id": "f37337e2",
266
+ "metadata": {},
267
+ "outputs": [
268
+ {
269
+ "data": {
270
+ "text/plain": [
271
+ "7"
272
+ ]
273
+ },
274
+ "execution_count": 16,
275
+ "metadata": {},
276
+ "output_type": "execute_result"
277
+ }
278
+ ],
279
+ "source": [
280
+ "x2[2, -1]\n"
281
+ ]
282
+ },
283
+ {
284
+ "cell_type": "code",
285
+ "execution_count": 17,
286
+ "id": "1f4168ce",
287
+ "metadata": {},
288
+ "outputs": [
289
+ {
290
+ "data": {
291
+ "text/plain": [
292
+ "array([[12, 5, 2, 4],\n",
293
+ " [ 7, 6, 8, 8],\n",
294
+ " [ 1, 6, 7, 7]])"
295
+ ]
296
+ },
297
+ "execution_count": 17,
298
+ "metadata": {},
299
+ "output_type": "execute_result"
300
+ }
301
+ ],
302
+ "source": [
303
+ "x2[0, 0] = 12\n",
304
+ "x2"
305
+ ]
306
+ },
307
+ {
308
+ "cell_type": "code",
309
+ "execution_count": 18,
310
+ "id": "9ae4e924",
311
+ "metadata": {},
312
+ "outputs": [
313
+ {
314
+ "data": {
315
+ "text/plain": [
316
+ "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
317
+ ]
318
+ },
319
+ "execution_count": 18,
320
+ "metadata": {},
321
+ "output_type": "execute_result"
322
+ }
323
+ ],
324
+ "source": [
325
+ "#Array Slicing: Accessing Subarrays\n",
326
+ "x = np.arange(10)\n",
327
+ "x"
328
+ ]
329
+ },
330
+ {
331
+ "cell_type": "code",
332
+ "execution_count": 19,
333
+ "id": "ab2d6c83",
334
+ "metadata": {},
335
+ "outputs": [
336
+ {
337
+ "data": {
338
+ "text/plain": [
339
+ "array([0, 1, 2, 3, 4])"
340
+ ]
341
+ },
342
+ "execution_count": 19,
343
+ "metadata": {},
344
+ "output_type": "execute_result"
345
+ }
346
+ ],
347
+ "source": [
348
+ " # first five elements\n",
349
+ "x[:5]"
350
+ ]
351
+ },
352
+ {
353
+ "cell_type": "code",
354
+ "execution_count": 20,
355
+ "id": "c5e4b212",
356
+ "metadata": {},
357
+ "outputs": [
358
+ {
359
+ "data": {
360
+ "text/plain": [
361
+ "array([5, 6, 7, 8, 9])"
362
+ ]
363
+ },
364
+ "execution_count": 20,
365
+ "metadata": {},
366
+ "output_type": "execute_result"
367
+ }
368
+ ],
369
+ "source": [
370
+ "# elements after index 5\n",
371
+ "x[5:] "
372
+ ]
373
+ },
374
+ {
375
+ "cell_type": "code",
376
+ "execution_count": 21,
377
+ "id": "e5be7ef1",
378
+ "metadata": {},
379
+ "outputs": [
380
+ {
381
+ "data": {
382
+ "text/plain": [
383
+ "array([4, 5, 6])"
384
+ ]
385
+ },
386
+ "execution_count": 21,
387
+ "metadata": {},
388
+ "output_type": "execute_result"
389
+ }
390
+ ],
391
+ "source": [
392
+ "# middle subarray\n",
393
+ "x[4:7] "
394
+ ]
395
+ },
396
+ {
397
+ "cell_type": "code",
398
+ "execution_count": 22,
399
+ "id": "93edeaf1",
400
+ "metadata": {},
401
+ "outputs": [
402
+ {
403
+ "data": {
404
+ "text/plain": [
405
+ "array([0, 2, 4, 6, 8])"
406
+ ]
407
+ },
408
+ "execution_count": 22,
409
+ "metadata": {},
410
+ "output_type": "execute_result"
411
+ }
412
+ ],
413
+ "source": [
414
+ "# every other element\n",
415
+ "x[::2] "
416
+ ]
417
+ },
418
+ {
419
+ "cell_type": "code",
420
+ "execution_count": 24,
421
+ "id": "58d6d02a",
422
+ "metadata": {},
423
+ "outputs": [
424
+ {
425
+ "data": {
426
+ "text/plain": [
427
+ "array([1, 3, 5, 7, 9])"
428
+ ]
429
+ },
430
+ "execution_count": 24,
431
+ "metadata": {},
432
+ "output_type": "execute_result"
433
+ }
434
+ ],
435
+ "source": [
436
+ "# every other element, starting at index 1\n",
437
+ "x[1::2]"
438
+ ]
439
+ },
440
+ {
441
+ "cell_type": "code",
442
+ "execution_count": 25,
443
+ "id": "cd7cec10",
444
+ "metadata": {},
445
+ "outputs": [
446
+ {
447
+ "data": {
448
+ "text/plain": [
449
+ "array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])"
450
+ ]
451
+ },
452
+ "execution_count": 25,
453
+ "metadata": {},
454
+ "output_type": "execute_result"
455
+ }
456
+ ],
457
+ "source": [
458
+ "x[::-1] # all elements, reversed"
459
+ ]
460
+ },
461
+ {
462
+ "cell_type": "code",
463
+ "execution_count": 26,
464
+ "id": "53a4bd27",
465
+ "metadata": {},
466
+ "outputs": [
467
+ {
468
+ "data": {
469
+ "text/plain": [
470
+ "array([[12, 5, 2, 4],\n",
471
+ " [ 7, 6, 8, 8],\n",
472
+ " [ 1, 6, 7, 7]])"
473
+ ]
474
+ },
475
+ "execution_count": 26,
476
+ "metadata": {},
477
+ "output_type": "execute_result"
478
+ }
479
+ ],
480
+ "source": [
481
+ "#Multidimensional Arrays\n",
482
+ "x2"
483
+ ]
484
+ },
485
+ {
486
+ "cell_type": "code",
487
+ "execution_count": 27,
488
+ "id": "7eb3736f",
489
+ "metadata": {},
490
+ "outputs": [
491
+ {
492
+ "data": {
493
+ "text/plain": [
494
+ "array([[12, 5, 2],\n",
495
+ " [ 7, 6, 8]])"
496
+ ]
497
+ },
498
+ "execution_count": 27,
499
+ "metadata": {},
500
+ "output_type": "execute_result"
501
+ }
502
+ ],
503
+ "source": [
504
+ "x2[:2, :3] # two rows, three columns"
505
+ ]
506
+ },
507
+ {
508
+ "cell_type": "code",
509
+ "execution_count": 28,
510
+ "id": "adb40ab1",
511
+ "metadata": {},
512
+ "outputs": [
513
+ {
514
+ "data": {
515
+ "text/plain": [
516
+ "array([[12, 2],\n",
517
+ " [ 7, 8],\n",
518
+ " [ 1, 7]])"
519
+ ]
520
+ },
521
+ "execution_count": 28,
522
+ "metadata": {},
523
+ "output_type": "execute_result"
524
+ }
525
+ ],
526
+ "source": [
527
+ "x2[:3, ::2] # all rows, every other column"
528
+ ]
529
+ },
530
+ {
531
+ "cell_type": "code",
532
+ "execution_count": 29,
533
+ "id": "d4facc1d",
534
+ "metadata": {},
535
+ "outputs": [
536
+ {
537
+ "data": {
538
+ "text/plain": [
539
+ "array([[ 7, 7, 6, 1],\n",
540
+ " [ 8, 8, 6, 7],\n",
541
+ " [ 4, 2, 5, 12]])"
542
+ ]
543
+ },
544
+ "execution_count": 29,
545
+ "metadata": {},
546
+ "output_type": "execute_result"
547
+ }
548
+ ],
549
+ "source": [
550
+ "x2[::-1, ::-1]"
551
+ ]
552
+ },
553
+ {
554
+ "cell_type": "code",
555
+ "execution_count": 30,
556
+ "id": "fa0f7197",
557
+ "metadata": {},
558
+ "outputs": [
559
+ {
560
+ "name": "stdout",
561
+ "output_type": "stream",
562
+ "text": [
563
+ "[12 7 1]\n"
564
+ ]
565
+ }
566
+ ],
567
+ "source": [
568
+ "#Accessing array rows and columns\n",
569
+ "print(x2[:, 0]) # first column of x2\n"
570
+ ]
571
+ },
572
+ {
573
+ "cell_type": "code",
574
+ "execution_count": 31,
575
+ "id": "70f1b70c",
576
+ "metadata": {},
577
+ "outputs": [
578
+ {
579
+ "name": "stdout",
580
+ "output_type": "stream",
581
+ "text": [
582
+ "[12 5 2 4]\n"
583
+ ]
584
+ }
585
+ ],
586
+ "source": [
587
+ "print(x2[0, :]) # first row of x2"
588
+ ]
589
+ },
590
+ {
591
+ "cell_type": "code",
592
+ "execution_count": 32,
593
+ "id": "a21c6589",
594
+ "metadata": {},
595
+ "outputs": [
596
+ {
597
+ "name": "stdout",
598
+ "output_type": "stream",
599
+ "text": [
600
+ "[12 5 2 4]\n"
601
+ ]
602
+ }
603
+ ],
604
+ "source": [
605
+ " print(x2[0]) # equivalent to x2[0, :]"
606
+ ]
607
+ },
608
+ {
609
+ "cell_type": "code",
610
+ "execution_count": 33,
611
+ "id": "17385960",
612
+ "metadata": {},
613
+ "outputs": [
614
+ {
615
+ "name": "stdout",
616
+ "output_type": "stream",
617
+ "text": [
618
+ "[[12 5 2 4]\n",
619
+ " [ 7 6 8 8]\n",
620
+ " [ 1 6 7 7]]\n"
621
+ ]
622
+ }
623
+ ],
624
+ "source": [
625
+ "#Subarrays as no-copy views\n",
626
+ "print(x2)\n"
627
+ ]
628
+ },
629
+ {
630
+ "cell_type": "code",
631
+ "execution_count": 34,
632
+ "id": "6c0e4f3e",
633
+ "metadata": {},
634
+ "outputs": [
635
+ {
636
+ "name": "stdout",
637
+ "output_type": "stream",
638
+ "text": [
639
+ "[[12 5]\n",
640
+ " [ 7 6]]\n"
641
+ ]
642
+ }
643
+ ],
644
+ "source": [
645
+ "x2_sub = x2[:2, :2]\n",
646
+ "print(x2_sub)"
647
+ ]
648
+ },
649
+ {
650
+ "cell_type": "code",
651
+ "execution_count": 35,
652
+ "id": "7e38fa6f",
653
+ "metadata": {},
654
+ "outputs": [
655
+ {
656
+ "name": "stdout",
657
+ "output_type": "stream",
658
+ "text": [
659
+ "[[99 5]\n",
660
+ " [ 7 6]]\n"
661
+ ]
662
+ }
663
+ ],
664
+ "source": [
665
+ "x2_sub[0, 0] = 99\n",
666
+ "print(x2_sub)"
667
+ ]
668
+ },
669
+ {
670
+ "cell_type": "code",
671
+ "execution_count": 36,
672
+ "id": "3e7b4b73",
673
+ "metadata": {},
674
+ "outputs": [
675
+ {
676
+ "name": "stdout",
677
+ "output_type": "stream",
678
+ "text": [
679
+ "[[99 5 2 4]\n",
680
+ " [ 7 6 8 8]\n",
681
+ " [ 1 6 7 7]]\n"
682
+ ]
683
+ }
684
+ ],
685
+ "source": [
686
+ "print(x2)"
687
+ ]
688
+ },
689
+ {
690
+ "cell_type": "code",
691
+ "execution_count": 37,
692
+ "id": "1521ac1f",
693
+ "metadata": {},
694
+ "outputs": [
695
+ {
696
+ "name": "stdout",
697
+ "output_type": "stream",
698
+ "text": [
699
+ "[[99 5]\n",
700
+ " [ 7 6]]\n"
701
+ ]
702
+ }
703
+ ],
704
+ "source": [
705
+ "#Creating copies of arrays\n",
706
+ "x2_sub_copy = x2[:2, :2].copy()\n",
707
+ "print(x2_sub_copy)"
708
+ ]
709
+ },
710
+ {
711
+ "cell_type": "code",
712
+ "execution_count": 38,
713
+ "id": "3bfc6db8",
714
+ "metadata": {},
715
+ "outputs": [
716
+ {
717
+ "name": "stdout",
718
+ "output_type": "stream",
719
+ "text": [
720
+ "[[42 5]\n",
721
+ " [ 7 6]]\n"
722
+ ]
723
+ }
724
+ ],
725
+ "source": [
726
+ "x2_sub_copy[0, 0] = 42\n",
727
+ "print(x2_sub_copy)\n"
728
+ ]
729
+ },
730
+ {
731
+ "cell_type": "code",
732
+ "execution_count": 39,
733
+ "id": "80e6304d",
734
+ "metadata": {},
735
+ "outputs": [
736
+ {
737
+ "name": "stdout",
738
+ "output_type": "stream",
739
+ "text": [
740
+ "[[99 5 2 4]\n",
741
+ " [ 7 6 8 8]\n",
742
+ " [ 1 6 7 7]]\n"
743
+ ]
744
+ }
745
+ ],
746
+ "source": [
747
+ "print(x2)\n"
748
+ ]
749
+ },
750
+ {
751
+ "cell_type": "code",
752
+ "execution_count": 40,
753
+ "id": "a02b6581",
754
+ "metadata": {},
755
+ "outputs": [
756
+ {
757
+ "name": "stdout",
758
+ "output_type": "stream",
759
+ "text": [
760
+ "[[1 2 3]\n",
761
+ " [4 5 6]\n",
762
+ " [7 8 9]]\n"
763
+ ]
764
+ }
765
+ ],
766
+ "source": [
767
+ "#Reshaping of Arrays\n",
768
+ "grid = np.arange(1, 10).reshape((3, 3))\n",
769
+ "print(grid)"
770
+ ]
771
+ },
772
+ {
773
+ "cell_type": "code",
774
+ "execution_count": 41,
775
+ "id": "b6d34dc4",
776
+ "metadata": {},
777
+ "outputs": [
778
+ {
779
+ "data": {
780
+ "text/plain": [
781
+ "array([[1, 2, 3]])"
782
+ ]
783
+ },
784
+ "execution_count": 41,
785
+ "metadata": {},
786
+ "output_type": "execute_result"
787
+ }
788
+ ],
789
+ "source": [
790
+ "x = np.array([1, 2, 3])\n",
791
+ "# row vector via reshape\n",
792
+ "x.reshape((1, 3))"
793
+ ]
794
+ },
795
+ {
796
+ "cell_type": "code",
797
+ "execution_count": 43,
798
+ "id": "45f902e0",
799
+ "metadata": {},
800
+ "outputs": [
801
+ {
802
+ "data": {
803
+ "text/plain": [
804
+ "array([[1, 2, 3]])"
805
+ ]
806
+ },
807
+ "execution_count": 43,
808
+ "metadata": {},
809
+ "output_type": "execute_result"
810
+ }
811
+ ],
812
+ "source": [
813
+ "# row vector via newaxis\n",
814
+ "x[np.newaxis, :]"
815
+ ]
816
+ },
817
+ {
818
+ "cell_type": "code",
819
+ "execution_count": 44,
820
+ "id": "7d3e80a5",
821
+ "metadata": {},
822
+ "outputs": [
823
+ {
824
+ "data": {
825
+ "text/plain": [
826
+ "array([[1],\n",
827
+ " [2],\n",
828
+ " [3]])"
829
+ ]
830
+ },
831
+ "execution_count": 44,
832
+ "metadata": {},
833
+ "output_type": "execute_result"
834
+ }
835
+ ],
836
+ "source": [
837
+ "# column vector via reshape\n",
838
+ "x.reshape((3, 1))\n"
839
+ ]
840
+ },
841
+ {
842
+ "cell_type": "code",
843
+ "execution_count": 45,
844
+ "id": "0a7a6e97",
845
+ "metadata": {},
846
+ "outputs": [
847
+ {
848
+ "data": {
849
+ "text/plain": [
850
+ "array([[1],\n",
851
+ " [2],\n",
852
+ " [3]])"
853
+ ]
854
+ },
855
+ "execution_count": 45,
856
+ "metadata": {},
857
+ "output_type": "execute_result"
858
+ }
859
+ ],
860
+ "source": [
861
+ "# column vector via newaxis\n",
862
+ "x[:, np.newaxis]\n"
863
+ ]
864
+ },
865
+ {
866
+ "cell_type": "code",
867
+ "execution_count": 46,
868
+ "id": "a8931161",
869
+ "metadata": {},
870
+ "outputs": [
871
+ {
872
+ "data": {
873
+ "text/plain": [
874
+ "array([1, 2, 3, 3, 2, 1])"
875
+ ]
876
+ },
877
+ "execution_count": 46,
878
+ "metadata": {},
879
+ "output_type": "execute_result"
880
+ }
881
+ ],
882
+ "source": [
883
+ "#Array Concatenation and Splitting\n",
884
+ "#Concatenation of arrays\n",
885
+ "x = np.array([1, 2, 3])\n",
886
+ "y = np.array([3, 2, 1])\n",
887
+ "np.concatenate([x, y])"
888
+ ]
889
+ },
890
+ {
891
+ "cell_type": "code",
892
+ "execution_count": 47,
893
+ "id": "a3d639da",
894
+ "metadata": {},
895
+ "outputs": [
896
+ {
897
+ "name": "stdout",
898
+ "output_type": "stream",
899
+ "text": [
900
+ "[ 1 2 3 3 2 1 99 99 99]\n"
901
+ ]
902
+ }
903
+ ],
904
+ "source": [
905
+ "z = [99, 99, 99]\n",
906
+ "print(np.concatenate([x, y, z]))\n"
907
+ ]
908
+ },
909
+ {
910
+ "cell_type": "code",
911
+ "execution_count": 48,
912
+ "id": "d224be9a",
913
+ "metadata": {},
914
+ "outputs": [],
915
+ "source": [
916
+ "grid = np.array([[1, 2, 3],\n",
917
+ "[4, 5, 6]])"
918
+ ]
919
+ },
920
+ {
921
+ "cell_type": "code",
922
+ "execution_count": 49,
923
+ "id": "164ae8ea",
924
+ "metadata": {},
925
+ "outputs": [
926
+ {
927
+ "data": {
928
+ "text/plain": [
929
+ "array([[1, 2, 3],\n",
930
+ " [4, 5, 6],\n",
931
+ " [1, 2, 3],\n",
932
+ " [4, 5, 6]])"
933
+ ]
934
+ },
935
+ "execution_count": 49,
936
+ "metadata": {},
937
+ "output_type": "execute_result"
938
+ }
939
+ ],
940
+ "source": [
941
+ "# concatenate along the first axis\n",
942
+ "np.concatenate([grid, grid])"
943
+ ]
944
+ },
945
+ {
946
+ "cell_type": "code",
947
+ "execution_count": 50,
948
+ "id": "8965119f",
949
+ "metadata": {},
950
+ "outputs": [
951
+ {
952
+ "data": {
953
+ "text/plain": [
954
+ "array([[1, 2, 3, 1, 2, 3],\n",
955
+ " [4, 5, 6, 4, 5, 6]])"
956
+ ]
957
+ },
958
+ "execution_count": 50,
959
+ "metadata": {},
960
+ "output_type": "execute_result"
961
+ }
962
+ ],
963
+ "source": [
964
+ "# concatenate along the second axis (zero-indexed)\n",
965
+ "np.concatenate([grid, grid], axis=1)\n"
966
+ ]
967
+ },
968
+ {
969
+ "cell_type": "code",
970
+ "execution_count": 51,
971
+ "id": "d79b7ba6",
972
+ "metadata": {},
973
+ "outputs": [
974
+ {
975
+ "data": {
976
+ "text/plain": [
977
+ "array([[1, 2, 3],\n",
978
+ " [9, 8, 7],\n",
979
+ " [6, 5, 4]])"
980
+ ]
981
+ },
982
+ "execution_count": 51,
983
+ "metadata": {},
984
+ "output_type": "execute_result"
985
+ }
986
+ ],
987
+ "source": [
988
+ "x = np.array([1, 2, 3])\n",
989
+ "grid = np.array([[9, 8, 7],\n",
990
+ " [6, 5, 4]])\n",
991
+ "# vertically stack the arrays\n",
992
+ "np.vstack([x, grid])\n"
993
+ ]
994
+ },
995
+ {
996
+ "cell_type": "code",
997
+ "execution_count": 52,
998
+ "id": "f241b0c1",
999
+ "metadata": {},
1000
+ "outputs": [
1001
+ {
1002
+ "data": {
1003
+ "text/plain": [
1004
+ "array([[ 9, 8, 7, 99],\n",
1005
+ " [ 6, 5, 4, 99]])"
1006
+ ]
1007
+ },
1008
+ "execution_count": 52,
1009
+ "metadata": {},
1010
+ "output_type": "execute_result"
1011
+ }
1012
+ ],
1013
+ "source": [
1014
+ "# horizontally stack the arrays\n",
1015
+ "y = np.array([[99],\n",
1016
+ " [99]])\n",
1017
+ "np.hstack([grid, y])"
1018
+ ]
1019
+ },
1020
+ {
1021
+ "cell_type": "code",
1022
+ "execution_count": 53,
1023
+ "id": "06bb0fec",
1024
+ "metadata": {},
1025
+ "outputs": [
1026
+ {
1027
+ "name": "stdout",
1028
+ "output_type": "stream",
1029
+ "text": [
1030
+ "[1 2 3] [99 99] [3 2 1]\n"
1031
+ ]
1032
+ }
1033
+ ],
1034
+ "source": [
1035
+ "#Splitting of arrays\n",
1036
+ "x = [1, 2, 3, 99, 99, 3, 2, 1]\n",
1037
+ "x1, x2, x3 = np.split(x, [3, 5])\n",
1038
+ "print(x1, x2, x3)\n"
1039
+ ]
1040
+ },
1041
+ {
1042
+ "cell_type": "code",
1043
+ "execution_count": 54,
1044
+ "id": "701312e9",
1045
+ "metadata": {},
1046
+ "outputs": [
1047
+ {
1048
+ "data": {
1049
+ "text/plain": [
1050
+ "array([[ 0, 1, 2, 3],\n",
1051
+ " [ 4, 5, 6, 7],\n",
1052
+ " [ 8, 9, 10, 11],\n",
1053
+ " [12, 13, 14, 15]])"
1054
+ ]
1055
+ },
1056
+ "execution_count": 54,
1057
+ "metadata": {},
1058
+ "output_type": "execute_result"
1059
+ }
1060
+ ],
1061
+ "source": [
1062
+ "grid = np.arange(16).reshape((4, 4))\n",
1063
+ "grid"
1064
+ ]
1065
+ },
1066
+ {
1067
+ "cell_type": "code",
1068
+ "execution_count": 55,
1069
+ "id": "976b4aef",
1070
+ "metadata": {},
1071
+ "outputs": [
1072
+ {
1073
+ "name": "stdout",
1074
+ "output_type": "stream",
1075
+ "text": [
1076
+ "[[0 1 2 3]\n",
1077
+ " [4 5 6 7]]\n",
1078
+ "[[ 8 9 10 11]\n",
1079
+ " [12 13 14 15]]\n"
1080
+ ]
1081
+ }
1082
+ ],
1083
+ "source": [
1084
+ "upper, lower = np.vsplit(grid, [2])\n",
1085
+ "print(upper)\n",
1086
+ "print(lower)"
1087
+ ]
1088
+ },
1089
+ {
1090
+ "cell_type": "code",
1091
+ "execution_count": 56,
1092
+ "id": "3e4cdfb1",
1093
+ "metadata": {},
1094
+ "outputs": [
1095
+ {
1096
+ "name": "stdout",
1097
+ "output_type": "stream",
1098
+ "text": [
1099
+ "[[ 0 1]\n",
1100
+ " [ 4 5]\n",
1101
+ " [ 8 9]\n",
1102
+ " [12 13]]\n",
1103
+ "[[ 2 3]\n",
1104
+ " [ 6 7]\n",
1105
+ " [10 11]\n",
1106
+ " [14 15]]\n"
1107
+ ]
1108
+ }
1109
+ ],
1110
+ "source": [
1111
+ "left, right = np.hsplit(grid, [2])\n",
1112
+ "print(left)\n",
1113
+ "print(right)\n"
1114
+ ]
1115
+ },
1116
+ {
1117
+ "cell_type": "code",
1118
+ "execution_count": null,
1119
+ "id": "11232c91",
1120
+ "metadata": {},
1121
+ "outputs": [],
1122
+ "source": []
1123
+ }
1124
+ ],
1125
+ "metadata": {
1126
+ "kernelspec": {
1127
+ "display_name": "Python 3 (ipykernel)",
1128
+ "language": "python",
1129
+ "name": "python3"
1130
+ },
1131
+ "language_info": {
1132
+ "codemirror_mode": {
1133
+ "name": "ipython",
1134
+ "version": 3
1135
+ },
1136
+ "file_extension": ".py",
1137
+ "mimetype": "text/x-python",
1138
+ "name": "python",
1139
+ "nbconvert_exporter": "python",
1140
+ "pygments_lexer": "ipython3",
1141
+ "version": "3.9.13"
1142
+ }
1143
+ },
1144
+ "nbformat": 4,
1145
+ "nbformat_minor": 5
1146
+ }